
ISSN1330–0008

CODENFIZAE4

ON SOME PROPERTIES OF (2 + 1)–DIMENSIONAL PERTURBED KdV
EQUATION

SWAPAN K. PAUL and A. ROY CHOWDHURY

High Energy Physics Division, Department of Physics, Jadavpur University,
Calcutta 700032, India

Received 2 December 1999; Accepted 6 July 2000

Explicit solitary-wave solutions of the (2 + 1)–dimensional perturbed KdV equation
obtained by Ma et al. are obtained by using the Backlund transformation. Next,
we obtain the two-soliton solution in a form which implies a form of superposition.
Lastly, the corresponding modified equations are obtained by a new form of the
Miura map.
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1. Introduction

In a recent communication, Ma and Fuchssteiner [1] have shown that a simple
scaling of the space-time coordinates and a perturbation of the nonlinear field itself
can lead to a (2 + 1)-dimensional form of perturbed KdV equation. It is also
possible to derive an extended form of the Lax form for this new equation. In
this communication, we have solved the Backlund transformation to obtain the
explicit soliton solution of this (2 + 1)-dimensional problem. Later, a technique
due to Hirota et al. [2] is used to construct the two-soliton solution which exhibits
a superposition-like character. Lastly, the extended Miura transformation [3] is
utilised to construct the modified version of this (2 + 1)-dimensional equation [4].

2. Formulation

Let us review the salient features of the (2 + 1)–dimensional perturbed KdV
equation. Consider the KdV equation

ut + uxxx + 12uux = 0 , (1)
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and consider the change of variables

(x, y)→ (x, y, t), y = εx , and u→ u+ εv , (2)

ε being a small parameter. Then to the first order in ε, it was demonstrated by Ma
and Fuchssteiner [1] that one gets the following set of coupled equations

ut + uxxx + 12uux = 0 ,

vt + vxxx + 3(uxx + 2u
2)y + 12(uv)x = 0 ,

(3)

which is called the (2 + 1)–dimensional perturbed KdV problem. Ma et al. proved
many important properties of (1), such as the existence of the recursion operator,
hereditary symmetry and so on. On the other hand, in a recent communication,
Sakovich [5] showed how from the Lax pair of the original KdV equations one can
deduce a Lax operator for the new equation applying the procedure. But a new
feature of this new Lax operator is the existence of two spectral parameters (α, β)
which are not constant, but obey the relations

αt = βt = 0, and αy = −βx . (4)

Let us now recapitulate the usual Backlund transformation (BT) for the KdV
equation. If ū and u are two solutions, then BT is a relation of the following form

ū = −u− Y 2 + λ , (5)

where λ is the constant spectral parameter occuring in the equation, satisfied by
the pseudopotential Y ,

Yx = −2u− Y 2 + λ ,
Yt = 4{(u+ λ)(2u+ Y 2 − λ) + 12uxx − uxY } .

(6)

Let us now in Eq. (6) make the change of variables (2), along with

λ→ α+ εβ , (7)

assuming (4) to be valid. Furthermore, for the pseudopotential we set

Y → Y1 + εY2 , (8)

which leads to

Y1x = −2u− Y 21 + α ,
Y1y + Y2x = −2v − 2Y1Y2 + β .

(9)
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The corresponding time part leads to

Y1t = 4(u+ α)(2u+ Y
2
1 − α) + 2uxx − 4uxY1 ,

Y2t = 4(u+ α)(2u+ 2Y1Y2 − β) + 4(v + β)(2u + Y 21 − α)
+4(12vxx + uyx − uxY2 − (vx + uy)Y1) .

(10)

On the other hand, the Backlund transformation (5) itself decomposes into

ū = −u− Y 21 + α, v̄ = −v − 2Y1Y2 + β .

To start with, we consider the trivial solution u = 0, v = 0 and rewrite Eqs. (9)
and (10) as follows

Y1x = −Y 21 + α, Y1y + Y2x = −2Y1Y2 + β , (12a)

Y1t = 4α(Y
2
1 − α), Y2t = 4α(2Y1Y2 − β) + 4β(Y 21 − α) . (12b)

The condition αx = −βy can be easily satisfied if we take α = 2y2 and β = −4xy.
With these simplifications of α and β, we proceed to solve (12a) to (12b). Let us
set

Y1 =
√
2 y tanhΘ(x, y, t) (13)

in (12a). Whence,

∂Θ

∂x
=
√
2 y or Θ =

√
2xy + f(yt) .

Utilising this in the time part, that is (12b), we get

Θ =
√
2xy − 8√2 y3t+ Θ0, Θ0 being arbitrary constant . (14)

Whence,

Y1 =
√
2 y tanh(

√
2xy − 8

√
2 y3t+ Θ0) .

Plugging in this solution for Y1, we get the following two equations for Y2

Y2x = −2
√
2 y tanhΘY2 − 4xy−

√
2 tanhΘ− (2xy − 48y3t) sceh2Θ , (15)

Y2t = 16
√
2 y3tanhΘY2 + 32 xy

3sech2Θ + 32 xy3 . (16)

To solve for Y2, we put

Y2 = A tanhΘ+ B sech
2Θ +C
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in Eqs. (15) and (16) with A, B and C as functions of (x, y, t). This leads to

Ax = −
√
2− 2

√
2 yC, Bx =

√
2 yA− 2xy+48y3t, Cx = −2

√
2 yA− 4xy , (17)

and

At = 16
√
2Cy3, Bt = −8

√
2Ay3 + 32xy3, Ct = 16

√
2Ay3 + 32xy3 . (18)

Solving (17) and (18), we get

A = −√2x, B = −2x2y + 48xy3t, and C = 0 . (18a)

Finally, the solution for Y2 turns out to be

Y2 = −
√
2x tanhΘ + (−2x2y + 48xy3t) sech2Θ , (19)

where

Θ =
√
2xy − 8√2 y3t+ Θ0 .

Using solutions (14) and (19) for Y1 and Y2, we finally obtain the solution for the
BT, Eq. (11),

ū = −2y2 tanh2(√2 xy − 8√2 y3t+ Θ0) + 2y2 , (20)

and

v̄ = −(4√2x2y2 − 96√2 xy4t) tanh3(√2 xy − 8√2 y3t+Θ0)
+4xy tanh2(

√
2 xy− 8√2 y3t +Θ0)

+(4
√
2x2y2 − 96√2 xy4t) tanh(√2xy − 8√2 y3t+ Θ0)− 4xy .

(21)

So, (ū, ȳ) are a set of nontrivial solutions of Eq. (3).

3. The two-soliton solution

From the previous result, we ascertain that the two solutions (ū, ȳ) can be
written as

ū = m2y2sech2Θ, and v̄ = −xūy . (22)

To construct the two-soliton solution, we follow Hirota et al. [2] and set

u′ = ū1 + ū2, and v′ = −x(ū1y + ū2y) , (23)
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where

ū1 = m
2
1y
2H(Θ2) sech

2(Θ1 +G(Θ2)) ,

ū2 = m
2
2y
2H(Θ1) sech

2(Θ2 +G(Θ1)) ,
(24)

where

Θ1 = m1xy − 4m31y3t, Θ2 =m2xy− 4m32y3t , (25)

where the solution (22) is obtained if one starts with α = m2y2 and β = −2m2xy,
of which (14) is a special case for m =

√
2. This validity of the solution can be

checked by a direct substitution or from the observation that the first equation of
our set can be linearised in the Hirota form.

We set

f = 1 + exp(2Θ1) + exp(2Θ2) + A exp(2Θ1 + 2Θ2) , (26)

whence

ffxx − f2x = 4m21y2p(Θ2) exp(2Θ1) + 4m22y2p(Θ1) exp(2Θ2) ,
p(Θ2) = 1 + β2 exp(2Θ2) +A exp(4Θ2) ,

p(Θ1) = 1 + β1 exp(2Θ1) +A exp(4Θ1) ,

m22β1 +m
2
1β2 = 2(m1 −m2) .

(27)

Therefore, with H(Θi) = p(Θi)/q(Θi), i = 1, 2, we can write

ffxx − f2x
f2

= m21y
2H(Θ2) sech

2(Θ1 +G(Θ2)) +m
2
2y
2H(Θ1) sech

2(Θ2 +G(Θ1)) ,

(28)
where

q(Θ1) = 1 + (1 +A) exp(2Θ1) +A exp(4Θ1) ,

q(Θ2) = 1 + (1 +A) exp(2Θ2) +A exp(4Θ2) .
(29)

In the above expression, it should be noted that f2 can be written as

f2 = 4q(Θ1) exp(2Θ2) cosh
2(Θ2 +G(Θ1))

= 4q(Θ2) exp(2Θ1) cosh
2(Θ1 +G(Θ2)) .

Explicitely, we can write

H(Θ2) =
p(Θ2)

q(Θ2)
=

1 + β2 exp(2Θ2) + A exp(4Θ2)

1 + (1 +A) exp(2Θ2) +A exp(4Θ2)
,
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H(Θ1) =
p(Θ1)

q(Θ1)
=

1 + β1 exp(2Θ1) + A exp(4Θ1)

1 + (1 +A) exp(2Θ1) +A exp(4Θ1)
,

G(Θ1) =
1

2
ln
1 + A e2Θ1

1 + e2Θ1
, G(Θ2) =

1

2
ln
1 +A e2Θ2

1 + e2Θ2
, A =

[
m1 −m2
m1 +m2

]2
. (30)

So, the two-soliton solution for v′ can be written as

v′ = {−m21xy2H(Θ2) sech2(Θ1 +G(Θ2)) −m22xy2H(Θ1) sech2(Θ2 +G(Θ1))}y .
(31)

4. The modified equation

It is well known that the KdV equation is connected to the mKdV problem via
the Miura map

u = −1
2
ω2 − 1

2
ωx ,

where ω satisfies the equation

ωt − 6ω2ωx + ωxxx = 0 . (32)

We apply the transformation of Eq. (2) to the equation and get the following
coupled Miura map

u = −1
2
ω21 −

1

2
ω1x, v = −ω1ω2 − 1

2
ω1y − 1

2
ω2x , (33)

where ω1 and ω2 satisfy relations

ω1t − 6ω21ω1x + ω1xxx = 0 ,
ω2t − 6ω21ω2x − 6ω21ω1y − 12ω1ω1xω2 + 3ω1xxy + ω2xxy = 0 ,

(34)

which are the new coupled (modified) system.

5. Conclusion

In our above analysis, we have shown that by a special choice of the spectral
parameters (α, β), introduced for the (2 + 1)–dimensinal KdV equation, one can
effectively use a new Backlund transformation to generate two-soliton solution and
study all properties of this new, integrable system. The forms of this new type of
solutions are depicted in Fig. 1.
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Fig. 1. New types of solutions of the (2 + 1)–dimensional KdV equation obtained
by special choices of the spectral parameters α and β.

References

[1] WX. Ma and B. Fuchssteiner, J. Math. Phys. 40 (1999) 2400.

[2] R. Hirota, Phys. Rev. Lett. 27 (1971) 1192.

FIZIKA A (Zagreb) 9 (2000) 2, 47–54 53



paul and roy chowdhury: on some properties of (2 + 1)–dimensional . . .

[3] it Backlund Transformation, Lecture Notes in Maths., eds. R. K. Bullough and P. J.
Caudras, Vol. 512, Springer, Berlin (1980).

[4] M. J. Ablowitz and P. Clackson, Soliton, Nonlinera Equations and Inverse Scattering,
Cambridge Univ. Press, Cambridge (1991).

[5] Y. Sakowich, Solv-int/9904005.

NEKA SVOJSTVA (2 + 1)–DIMENZIJSKE KdV JEDNADŽBE SA
SMETNJOM

Primjenom Backlundove transformacije dobili smo eksplicitna rješenja (2 + 1)–
dimenzijske KdV jednadžbe sa smetnjom koju su izveli Ma i sur. Zatim izvodimo
dvosolitonska rješenja u obliku koji podrazumijeva dodavanje rješenja. Konačno,
odgovarajuće promijenjene jednadžbe izvodimo novim vidom Miurinog preslika-
vanja.
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