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A generalized theory on the combined effects of ion-temperature, negative ions and
higher-order corrections on ion-acoustic solitary waves in a multicomponent plasma
containing warm, relativistic positive ions and negative ions, two-temperature and
non-isothermal electrons has been made using reductive perturbation method. The
basic set of fluid equations for the warm ion-fluids have been reduced to the renor-
malized Korteweg–de-Vries equation for the first-order perturbed potential and
then a renormalized linear inhomogeneous equation for the second-order perturbed
potential. Steady-state solutions of the coupled equations have been derived and
eventually the solution representing the potential associated with the ion-acoustic
wave has been obtained. The soliton profiles have been displayed graphically under
various conditions.
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1. Introduction

Over the last few decades, the plasma physicists have made a lot of investigations
on various non-linear structures such as ion-acoustic solitary waves, shocks, double
layers etc. in plasmas as these have been found to have relevance with regard
to some experimental observations and astrophysical phenomena. Washimi and
Taniuti [1] are the first to employ the reductive perturbation technique to derive
K-dV equation for the study of ion-acoustic solitary waves in a cold collisionless
plasma containing hot isothermal electrons. But if negative ions exist in the plasma,
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then the response of the plasma to disturbances gets remarkably modified owing
to their heavy mass. The K-dV equation representing the non-linear ion-acoustic
wave propagating in a collisionless plasma with one species of positive ions and
one species of negative ions has been derived by Das and Tagare [2] in which the
electrons are taken to be isothermal.

Jones et al. [3] has made both experimental and theoretical study on the prop-
agation of ion-acoustic waves in a multicomponent plasma having ions and two-
temperature electrons. They observe the speed of the ion-acoustic wave to be
more strongly influenced by the low temperature electron component than by the
high temperature electron component. Goswami and Buti [4] and others [5 – 8]
have made extensive study on solitons and other aspects of ion-acoustic waves
in two-temperature electron plasmas. However, more interesting results are ob-
tained if there exist resonant electrons for which plasma exhibits non-isothermality.
These electrons are non-Boltzmannian. Schamel [9, 10] for the first time has consid-
ered non-isothermality of electrons in a plasma and derived an expression for the
electron-distribution completely different from the familiar expression ne = exp{φ}.
He has also shown an ion-acoustic solitary wave in the lowest order to have a sech4

profile in place of the usual sech2 profile. Later on, other workers [11 – 13] have
adopted Schamel’s model and investigated the effects of non-isothermality of two-
temperature electrons on solitary waves.

Studies on wave propagation in a relativistic plasma have been made by Tsy-
tovich [14], Stenflo et al. [15] in astrophysical scenario and in laser-plasma inter-
actions by Kaw et al. [16], Shukla et al. [17], Chakraborty et al. [18]. Moreover,
non-linear effects on the excitation of ion-acoustic solitons in a relativistic plasma
have been investigated by Das and Paul [19] and others [20 – 23] who have consid-
ered relativistic effects in investigating propagation of IAW under various plasma
conditions.

In the experimental study involving the use of a double-plasma device on the
properties of the ion-acoustic solitary wave, it is observed that the wave velocity is
larger and the width is narrower than those predicted theoretically, i.e. by solution
of the K-dV equation. In order to remove, or rather minimize this discrepancy,
the effect of ion-temperature on the K-dV equation has been studied by several
authors [24 – 27] without considering the higher-order corrections. On the other
hand, Ichikawa et al. [28] and Kodama et al. [29] have investigated the contribution
of higher-order terms to ion-acoustic solitary waves for cold ions using reductive
perturbation method. Later on, with the use of a stationary solution of the Vlasov–
Poisson equations with a Boltzmann distribution of electrons, Watanabe [30] has
studied the combined effects of ion temperature and higher-order non-linearity on
the ion-acoustic solitons. The combined effects have been found to cause an increase
in the soliton-velocity and a decrease in the width which are compatible with the
experimental observation. This work has further been done by Lai [31] where he has
employed reductive perturbation method, and this treatment is analogous to that
of Kodama and Taniuti but for cold ions [29]. Effect of higher-order non-linearity
on ion-acoustic waves in multicomponent plasma with both non-isothermal and
isothermal electrons and negative ions has been studied by Tagare and Reddy [32]
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without considering ion-temperature on the basis of reductive perturbation method.
Again similar theoretical analysis but for a relativistic plasma containing cold ions
and non-isothermal two-temperature electrons has been made by Roychowdhury
et al. [33]. Furthermore, Das et al. [34] have investigated the contributions of
higher-order non-linear and dispersive effects on ion-acoustic solitary waves in a
plasma consisting of warm ions and two groups of non-isothermal electrons. In
their analysis, they have applied the reductive perturbation method also to an
integral form of the governing equations in terms of the pseudopotential.

In our paper, we have generalized the studies made by the authors [31 – 34] on
the effect of ion-temperature and higher-order non-linearity on the ion-acoustic soli-
tary wave in a multicomponent plasma, incorporating various parameters and using
reductive perturbation technique. Besides this, we have displayed changes in the
K-dV soliton profile (φ1) due to higher-order non-linearity with various parameters
viz. ion-temperature (σ), relativistic parameter (u0/c), negative ion-concentration
(nj0), electron-temperatures (Tel, Teh) and non-isothermal parameters (bl, bh) sep-
arately. The most interesting point in our theoretical analysis is that our theory
includes all works of the authors [31 – 34] as special cases. So our approach deserves
to be considered as most general, that is more valuable and realistic.

2. The basic equations and formulation of the problem

We consider a collisionless unmagnetised plasma consisting of ions having finite
temperature Ti together with negative ions and two types of non-isothermal elec-
trons of which one is cold and the other is hot having temperatures Tel and Teh,
respectively. It is assumed that Ti � Tel, Teh for which Landau damping is ignored.
We also assume the motion of the positive ions and the negative ions to be weakly
relativistic. The basic non-dimensional fluid equations which govern the dynamics
of such a plasma are

∂nα

∂t
+

∂

∂x
(nαuα) = 0 , (1)

∂uαr

∂t
+ uα

∂uαr

∂x
+

σα

nαQα

∂pα

∂x
= −qα ∂φ

∂x
, (2)

∂pα

∂t
+ uα

∂pα

∂x
+ 3pα

∂uαr

∂x
= 0 , (3)

where α = i(j) stands for positive (negative) ions and qi = 1, qj = −1.
The equations (1) – (3) are supplemented with Poisson’s equation

∂2φ

∂x2
= nel + neh + nj − ni , (4)

where

Qα =
mα

mi
, σα =

Tα

Teff
,
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Teff =
TelTeh

μTeh + ν Tel
, uαr =

uα√
1 − u2

α/c
2
≈ uα

(
1 +

1
2
u2

α

c2

)
.

Here nα, nel, neh are, respectively, the number densities of the ions, low-temperature
electrons and high-temperature electrons, uα is the ion-fluid velocity, pα is the ion-
fluid pressure, φ is the electrostatic potential. Q is the ratio of the negative ion-mass
to the positive ion-mass, i.e., Qj = Q. μ and ν denote the unperturbed number
densities of the low-temperature and high-temperature electron components, i.e.,
μ = n

(0)
el and ν = n

(0)
eh such that μ+ ν = 1. Teff is the effective temperature of the

plasma. The number densities nα, nel and neh have been normalized by n0 where
n0 is the equilibrium number density of electrons, the ion velocities uα have been
normalized by λDeωpi =

√
kBTeff/mi, the ion-pressures pα have been normalized

by n0kBTeff and the electrostatic potential φ has been normalized by kBTeff/e. kB

is the Boltzmann constant. x and t have been made dimensionless by the electron
Debye length λDe =

√
(4πe2n0)/(kBTeff) and the reciprocal of plasma frequency

ω−1
pi =

√
mi/(4πn0e2) .

Due to non-isothermality of the two groups of electrons, the number densities
of low-temperature and high-temperature electrons can be written as assumed by
Schamel [9,10]

nel = μ

[
1 +

φ

y
− 4

3
bl

(
φ

y

) 3
2

+
1
2

(
φ

y

)2

− 8
15
b
(1)
l

(
φ

y

) 5
2

+
1
6

(
φ

y

)3

− . . .

]
,

neh = ν

[
1 +

βφ

y
− 4

3
bh

(
βφ

y

) 3
2

+
1
2

(
βφ

y

)2

− 8
15
b
(1)
h

(
βφ

y

) 5
2

+
1
6

(
βφ

y

)3

− . . .

]
, (5)

where y = μ+νβ, β = Tel/Teh, bl = (1−βl)/π1/2, bh = (1−βh)/π1/2, βl = Tel/Telt,
βh = Teh/Teht, b

(1)
l = (1 − β2

l )/π1/2 and b(1)h = (1 − β2
h)/π1/2. Telt and Teht denote

the temperatures of the trapped electrons in the low and high temperature groups
of electrons and Tel and Teh are the same for free electrons.

In order to derive the K-dV type equation describing the propagation of non-
linear ion-acoustic waves in our multicomponent plasma from the basic system of
fluid equations (1) – (9), we expand the densities, the fluid velocities, the fluid pres-
sures and the electrostatic potential around the unperturbed state by a smallness
parameter ε as

nα = nα0 + εnα1 + ε3/2nα2 + ε2nα3 + ε3nα4 + · · · ,
uα = uα0 + εuα1 + ε3/2uα2 + ε2uα3 + ε3uα4 + · · · ,
pα = 1 + εpα1 + ε3/2pα2 + ε2pα3 + ε3pα4 + · · · ,
φ = εφ1 + ε3/2φ2 + ε2φ3 + ε3φ4 + · · · . (6)
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To derive the modified K-dV equation, we employ the stretched variables

ξ = ε1/4(x − vt) , τ = ε3/4t , (7)

where v is an unknown velocity to be determined. Substituting Eqs. (6) and (7)
in Eqs. (1) – (5) and equating the coefficients of various powers of ε, we have the
following equations. The lowest power of ε yields

nα1 =
−qαφ1

γα0λα0
, uα1 =

−qαnα0φ1

γα0λα0
, pα1 =

−3qαnα0φ1

λα0
. (8)

Poisson’s equation yields the linear dispersion relation

1 +
∑
α=i,j

n2
α0

γα0λα0Qα
= 0 , (9)

where

γα0 = 1 +
3
2

(uα0

c

)2

, λα0 =
3σα

Qα
− nα0v

2
α0 , vα0 = v − uα0 .

Equating the coefficients of ε3/2, we obtain the following equations

∂nα1

∂τ
− vα0

∂nα2

∂ξ
+ nα0

∂uα2

∂ξ
= 0 ,

nα0γα0
∂uα1

∂τ
− nα0vα0γα0

∂uα2

∂ξ
+
σα

Qα

∂pα2

∂ξ
=

−qαnα0

Qα

∂φ2

∂ξ
,

∂pα1

∂τ
− vα0

∂pα2

∂ξ
+ 3γα0

∂uα2

∂ξ
= 0 ,

∂2φ1

∂ξ2
= φ2 − 4

3

[
μbl + νbhβ

3/2

y3/2

]
φ

3/2
1 +

∑
α=i,j

−qαnα2 . (10)

Eliminating the second-order perturbed quantities from Eqs. (10) and using the
expressions for the first-order perturbed quantities given by Eq. (8), we get the
modified K-dV equation as

A1
∂φ1

∂τ
+A2φ

1/2
1

∂φ1

∂ξ
+

1
2
∂3φ1

∂ξ3
= 0 , (11)

where

A1 =
∑

α

vα0n
3
α0

γα0λ2
α0Qα

and A2 =
μbl + νbhβ

3/2

y3/2
.
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It is to be mentioned here that Eq. (11) is the generalized form of the K-dV equa-
tions obtained by various authors [30 – 32] under different conditions.

The second-order quantities nα2, uα2 etc. can be expressed in general forms in
terms of φ1 and φ2 as

uα2 =
−qαnα0

Qαγα0λα0
φ2 − 2qαnα0λ

′
α0

3γα0λ2
α0

A2

A1
φ

3/2
1 − qαnα0λ

′
α0

2A1γα0λ2
α0

∂2φ1

∂ξ2
,

nα2 =
−qαn2

α0

Qαγα0λα0
φ2 − 4qαvα0n

3
α0

3Qαγα0λ2
α0

A2

A1
φ

3/2
1 − qαvα0n

3
α0

QαA1γα0λ2
α0

∂2φ1

∂ξ2
,

pα2 =
−3qαnα0

Qαλα0
φ2 − 4qαvα0n

2
α0

Qαλ2
α0

A2

A1
φ

3/2
1 − 3qαvα0n

2
α0

QαA1λ2
α0

∂2φ1

∂ξ2
, (12)

where λ′α0 = 3σα/Qα + nα0v
2
α0.

To the next higher-order, we have

nα0
∂uα3

∂ξ
− vα0

∂nα3

∂ξ
+
∂nα2

∂τ
+

∂

∂ξ
(nα1uα1) = 0 ,

qαnα0

Qα

∂φ3

∂ξ
− vα0nα0γα0

∂uα3

∂ξ
+
σα

Qα

∂pα3

∂ξ
= vα0γα0nα1

∂uα1

∂ξ

−γα0nα0uα1
∂uα1

∂ξ
+

3
c2
nα0uα0vα0uα1

∂uα1

∂ξ
− qαnα1

Qα

∂φ1

∂ξ
− nα0γα0

∂uα2

∂τ
,

3γα0
∂uα3

∂ξ
− vα0

∂pα3

∂ξ
= −uα1

∂pα1

∂ξ
− 3γα0pα1

∂uα1

∂ξ
− ∂pα2

∂τ
(13)

and

∂3φ2

∂ξ3
=
∂φ3

∂ξ
+

(
μ+ νβ2

y2

)
φ1
∂φ1

∂ξ
− qα

∂nα3

∂ξ
− 2A2

∂

∂ξ

(
φ

1/2
1 φ2

)
.

Eliminating the third-order perturbed quantities from Eqs. (13) and using Eqs. (12),
we get

A1
∂φ2

∂τ
+A2

∂

∂ξ

(
φ

1/2
1 φ2

)
+

1
2
∂3φ2

∂ξ3
= S(φ1) , (14)

where the source term S(φ1) is given by

S(φ1) = Bφ1
∂φ1

∂ξ
+ Cφ

1/2
1

∂3φ1

∂ξ3
+Dφ

−3/2
1

(
∂φ1

∂ξ

)3

+ Eφ
−1/2
1

∂

∂ξ

(
∂φ1

∂ξ

)2

+F
∂5φ1

∂ξ5
. (15)

The coefficients A1, A2 occurring in Eqs. (11) and (14) have been defined earlier
and the defining expressions for the coefficients B, C, D, E and F occurring in
Eq. (15) are given in the Appendix.
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3. The stationary solutions

In order to solve Eqs. (11) and (14), we employ the renormalisation method
developed by Kodama and Taniuti [29] according to which Eqs. (11) and (14) get
modified to

A1
∂φ̄1

∂τ
+A2φ̄

1/2
1

∂φ̄1

∂ξ
+

1
2
∂3φ̄1

∂ξ3
+ δλ

∂φ̄1

∂ξ
= 0 (16)

and

A1
∂φ̄2

∂τ
+A2

∂

∂ξ

(
φ̄

1/2
1 φ̄2

)
+

1
2
∂3

∂ξ3
(φ̄2) + δλ

∂φ̄2

∂ξ
= S(φ̄1) + δλ

∂φ̄1

∂ξ
. (17)

The parameter δλ has been introduced in Eqs. (16) and (17) for the cancellation
of the resonant term occurring in S(φ̄1) by the term δλ∂φ̄1/∂ξ in Eq. (17).

Let us have the stationary solution by defining a new variable η as

η = ξ − (λ+ δλ/A1) τ . (18)

With this transformation, Eqs. (16) and (17) turn out to be

d3φ̄1

dη3
+

4
3
A2

d
dη

(
φ̄1

)3/2 − 2A1λ
dφ̄1

dη
= 0 (19)

and
d3φ̄2

dη3
+ 2A2

d
dη

(
φ̄

1/2
1 φ̄2

)
− 2A1λ

dφ̄2

dη
= 2

[
S(φ̄1) + δλ

dφ̄1

dη

]
. (20)

If Eqs. (19) and (20) be integrated under the boundary conditions

φ̄1 = φ̄2 =
dφ̄1

dη
=

dφ̄2

dη
=

d2φ̄1

dη2
=

d2φ̄2

dη2
= 0

as η → ∞, then we readily obtain

d2φ̄1

dη2
+

4
3
A2φ̄

3/2
1 − 2A1λφ1 = 0 (21)

and

d2φ̄2

dη2
+ 2

(
A2φ̄

1/2
1 −A1λ

)
φ̄2 = 2

η∫
−∞

[
S(φ̄1) + δλ

dφ̄1

dη

]
dη . (22)

The solitary wave solution of Eq. (21) comes out to be

φ̄1 = φ0sech4(η/d) , (23)
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where the amplitude (φ0) and the width (d) of the solitary wave are given by

φ0 =
225
64

(
A1

A2

)
λ2 and d =

(
8
λA1

)1/2

. (24)

Now

2

η∫
−∞

[
S(φ̄1) + δλ

dφ̄1

dη

]
dη

=
[
− (

30C + 16D + 40E
)φ3/2

0

d2
+

(
Bφ2

0 +
1680Fφ0

d4

)]
sech8(η/d)

+
[
−2080

d4
Fφ0 +

64
3d2

(C +D + 2E)φ3/2
0

]
sech6(η/d)

+
1
4

[
4φ0δλ

d
+

1024Fφ0

d5

]
sech4(η/d) . (25)

For the cancellation of the secular terms in S(φ̄1), we have to put the last term in
the right-hand side of Eq. (25) equal to zero. Thus we get

δλ = −4λ2A2
1F . (26)

This relation is consistent with the equations (2.29) of Ref. [32] and (21) of Ref. [31].
If the value of the integral, as is given by Eq. (25), be substituted in Eq. (22),

then we have

d2φ̄2

dη2
+ 2

(
A2φ̄

1/2
1 −A1λ

)
φ̄2 =

[
− 30C

d2
φ

3/2
0 − 16D

d2
φ

3/2
0

−40E
d2

φ
3/2
0 +Bφ2

0 +
1680F
d4

φ0

]
sech8(η/d)

+
[
−2080F

d4
φ0 +

64
3d2

(C +D + 2E)φ3/2
0

]
sech6(η/d) . (27)

For solving the inhomogeneous equation (27), we introduce a new variable μ defined
as

μ = tanh(η/d) . (28)

With this transformation, Eq. (27) becomes

d
dμ

[
(1 − μ2)

dφ̄2

dμ

]
+

(
30 − 16

1 − μ2

)
φ̄2(μ) = τ(μ) , (29)
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where τ(μ) = G(1−μ2)3+H(1−μ2)2; G and H have been defined in the Appendix.
It is important to note that this expression for τ(μ) reduces to those given by
Eq. (2.33) in Ref. [32] and Eq. (25) in Ref. [31]. Equation (29) has two independent
solutions in terms of associated Legendre polynomials given by

P 4
5 (μ) = 945μ(1 − μ2)2 (30)

and

Q4
5(μ) =

945
2
μ(1 − μ2)2 ln

1 + μ

1 − μ
− 384(1 − μ2)2 + 975μ2(1 − μ2) + 630μ4

+264
μ6

1 − μ2
+ 48

μ8

(1 − μ2)2
, (31)

which are the same as those given by Eqs. (2.32) and (2.35) in the paper by Tagare
and Reddy [32]. Using the familiar method of variation of parameters, the particular
solution of Eq. (29) can be written as

φ̄2P (μ) = ψ1(μ)P 4
5 (μ) + ψ2(μ)Q4

5(μ) , (32)

where the functions ψ1(μ) and ψ2(μ) are given by

ψ1(μ) = −
∫
τ(μ)Q4

5(μ)
945 × 384

dμ and ψ2(μ) =
∫
τ(μ)P 4

5 (μ)
945 × 384

dμ . (33)

After detailed calculation, we have

ψ1(μ) = − 1
315 × 384

[
−

(
407G

4
+

193H
2

)
μ+

(
3335G

12
+

3555H
15

)
μ3

−
(

843G
2

+
1344H

5

)
μ5 +

(
693G

2
+

882H
6

)
μ7 −

(
595G

4
+

378H
12

)
μ9

+
105G

4
μ11 −

(
105G

8
(1 − μ2)6 +

63H
4

(1 − μ2)5
)

ln
1 + μ

1 − μ

]
,

ψ2(μ) = − 1
384

[
G

12
(1 − μ2)6 +

H

10
(1 − μ2)5

]
. (34)

Here the constants of integration have been put equal to zero because of the bound-
ary conditions. On substituting Eq. (34) in (32), we find the particular solution to
come out in terms of old variables as

φ̄2P (η) =
G

6

[
sech4(η/d) − 1

2
sech6(η/d)

]
+
H

10
sech4(η/d) . (35)
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The complementary solution of Eq. (29) is given by

φ2c(μ) = C1P
4
5 (μ) + C2Q

4
5(μ) . (36)

Here the first term is the secular term which can be eliminated by renormalisation
of the amplitude. Again, C2 = 0 because of the boundary condition for φ̄2(η) as
|η| → ∞. Consequently, only the particular solution given by Eq. (35) contributes.
Thus, the stationary solution for the potential for the ion-acoustic wave is given by

φ̄(η) = φ̄1(η) + φ̄2(η) , (37)

where φ̄1(η) and φ̄2(η) are given by Eqs. (23) and (35), respectively.

4. Results and discussion

In Figs. 1 – 6, the profiles of the K-dV soliton, i.e. the first-order soliton and
the second-order soliton have been displayed under diverse situations. In these
figures, φ̄1 and φ̄, respectively, denote the first-order and the second-order perturbed
potential which have been represented by dashed curves and solid curves. The plots
are very effective in revealing various momentous aspects related to the higher-order
non-linearity.

Fig. 1 (left). Effect of higher-order non-linearity and negative-ion concentration
(nj0) on the soliton amplitudes when u0/c = 0.1, Q = 0.4, σ = 0.002, μ = 0.15,
ν = 0.85, bl = 0.1, bh = 0.32, λ = 0.1 and β = 0.025.

Fig. 2. Profiles of the K-dV soliton and higher-order soliton with u0/c as parameter
when nj0 = 0.3, Q = 0.4, σ = 0.002, μ = 0.15, ν = 0.85, bl = 0.1, bh = 0.32, λ = 0.1
and β = 0.025.
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In Fig. 1, we see that amplitude of the solitary wave, for a particular set of
values of the plasma parameters, gets remarkably modified due to higher-order non-
linearity. Moreover, it is evident in this figure that the amplitude of the second-order
soliton increases to a greater extent when the negative ion-concentration (nj0) is
reduced, though the amplitude of the first-order soliton increases simultaneously for
the same cause. In Fig. 2, apart from the increase in the amplitude of the solitary
wave because of the higher-order nonolinearity, we observe that amplitudes of both
the first-order and the second-order soliton increase appreciably as the motion of
the ions in the plasma is more relativistic, i.e. as u0/c increases, though the rate of
increase in the second case is greater.

Fig. 3 (left). Effect of higher-order correction and ion temperature on the soliton-
amplitudes when nj0 = 0.3, u0/c = 0.1, Q = 0.4, μ = 0.15, ν = 0.85, bl = 0.1,
bh = 0.32, λ = 0.1 and β = 0.025.

Fig. 4. Profiles of the K-dV soliton and higher-order soliton with Q(= mj/mi) as
parameter when nj0 = 0.3, u0/c = 0.1, σ = 0.002, μ = 0.15, ν = 0.85, bl = 0.1,
bh = 0.32, λ = 0.1 and β = 0.025.

Figure 3 shows that amplitudes of the first-order and the second-order soliton
get reduced with the increase in the ion-temperature. In addition to it, we find
that the rate of fall in the amplitude of the second-order soliton is greater due to
increase in the ion-temperature. In Fig. 4, it is found that the increase in Q, which
is the ratio of the negative ion-mass to the positive ion-mass, causes enhancement
in amplitudes of the first-order and the second-order soliton. It is interesting to
note here that Q has a greater influence on the amplitude of the second-order
soliton compared to the first-order soliton. Figure 5 demonstrates dependence of
the amplitudes of the first- and the second-order soliton on the values of μ and ν
which denote the equilibrium number densities of the low-temperature and the high-
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temperature electron components in the plasma. Figure 6 indicates that amplitudes
of both types of soliton are affected by the nonisothermality of electrons. Moreover,
higher-order nonisothermality brings about a reduction of the amplitude of the
first-order and the second-order soliton.

Fig. 5 (left). Effect of higher-order non-linearity and concentrations (unperturbed)
of two-temperature electrons when nj0 = 0.3, u0/c = 0.1, Q = 0.4, σ = 0.002,
bl = 0.1, bh = 0.32, λ = 0.1 and β = 0.025.

Fig. 6. Profiles of the K-dV soliton and higher-order soliton with bl, bh as parameters
when nj0 = 0.3, u0/c = 0.1, Q = 0.4, σ = 0.002, μ = 0.15, ν = 0.85, λ = 0.1 and
β = 0.025.

5. Concluding remarks

Various authors like C. S. Lai, S. G. Tagare et al. and A. Roychowdhury et al.
[31 – 33] and others have extensively studied effects of ion-temperature, presence
of negative ions, (weakly) relativistic ion-motion, two-temperature non-isothermal
electrons and higher-order non-linearity on different aspects of solitary waves ex-
cited in collisionless unmagnetised multicomponent plasma. We have developed a
general theory incorporating all parameters for a more realistic situation and have
found that the results obtained by the authors mentioned above are the special
cases of those we have obtained. Furthermore, this work may be extended for a
magnetized multicomponent plasma considering collisional effects.
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Appendix
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OPĆA TEORIJA POPRAVKI VIŠEG REDA ZA SOLITONSKE VALOVE U
VIŠEKOMPONENTNOJ PLAZMI

Primjenom reduktivne metode smetnje, razvili smo poopćenu teoriju složenih
učinaka temperature iona, negativnih iona i popravaka vǐseg reda na ionsko-zvučne
solitarne valove u vǐsekomponentnoj plazmi koja sadrži tople relativističke pozitivne
i negativne ione, te dvotemperaturne i neizotermičke elektrone. Osnovni skup jed-
nadžbi fluida za tople ionske fluide svodi se na renormaliziranu Korteweg–de-Vries
jednadžbu za potencijal smetnje prvog reda i zatim na renormaliziranu linearnu ne-
homogenu jednadžbu za potencijal smetnje drugog reda. Izveli smo rješenja vezanih
jednadžbi i konačno rješenje koje predstavlja potencijal povezan s ionsko-zvučnim
valom. Grafički predstavljamo solitonske oblike u različitim uvjetima.
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