
Printed ISSN 1330–0008

Online ISSN 1333–9125

CD ISSN 1333–8390

CODEN FIZAE4

SOME NOTES ON PROJECTIVE RICCATI EQUATION METHOD

XINGHUA DU

Department of Mathematics, Daqing Petroleum Institute, Daqing 163318, China
E-mail address: xinghuadu@126.com

Received 15 December 2008; Revised manuscript received 13 November 2009

Accepted 18 November 2009 Online 7 December 2009

In this paper, several aspects of projective Riccati equation method are discussed.
Firstly, according to the scheme of routine projective Riccati equation method, a
united scheme of projective Riccati equation method is proposed, and its mathe-
matical foundation is studied. Secondly, some no-go theorems and positive results
are obtained. The limitations of projective Riccati equation method are found. In
particular, in the end, we point out that some solutions obtained by the projective
Riccati equation method to some equations in a reference are not solutions at all.
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1. Introduction

For a given nonlinear partial differential equation (NLPDE)

N(u, ut, ux, uxx, · · ·) = 0, (1)

we consider its traveling wave solutions

u(x, t) = u(ξ), ξ = ωx+ ct . (2)

Then Eq. (1) becomes a nonlinear ordinary differential equation as

M(u, u′, u′′, · · ·) = 0 . (3)

A number of methods for obtaining solutions to Eq. (3) have been proposed
[1 – 28]. Among those, various projective Riccati equation methods were studied
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extensively [18 – 28]. In Ref. [18], Conte et al. presented a general ansatz for seeking
more new solitary wave solutions of some NLPDEs that can be expressed as a
polynomial in two elementary functions which satisfy a projective Riccati equation
[19]. Later, Yan developed Conte’s method and presented the general projective
Riccati eqation method [20]. Several authors have used Yan’s technique to solve
many NLPDNs [25 – 32]. In Ref. [25], some NLPDEs, which include single NLPDEs
and coupled systems of NLPDEs, were reduced to the elliptic-like equation

Φ′′(ξ) + k1Φ(ξ) + k3Φ
3(ξ) = 0 . (4)

By Yan’s technique, Emmannuel Yomba obtained sixteen kinds of exact travel-
ing wave solutions to Eq. (4), however, we pointed out in Section 4, eleven solutions
of them are not solutions at all.

In the present paper, we discuss some aspects of projective Riccati equation
method. A united scheme of projective Riccati equation method is proposed, and
the mathematical foundations of this method are studied. In particular, the limi-
tations of projective Riccati equation method are found. If Eq. (3) is a nonlinear
ordinary differential equation with rank homogeneous that can be reduced to an
elementary integral form like Eq. (4), we can obtain all atom solutions to Eq. (3)
by elementary integral method [9 – 17]. According to Ref. [16], atom solution is a
solution which can be obtained by solving an integral. But the projective Riccati
equation method has itself independent role for solving other form solutions such as
multisolitons. In addition, some solutions obtained by projective Riccati equation
method, such as eleven solutions among sixteen solutions of Eq. (4) in Ref. [25] (see
Sec. 4 in this paper for details), are not solutions at all. Appearing of the added
roots in solving algebraic equations by Mathematica maybe cause these results.

The rest of paper is arranged as follows. In Sec. 2, we describe a united scheme
of the projective Riccati equation method. In Sec. 3, we obtain some theorems. In
Sec. 4, we point out that some solutions given in Ref. [25] are not solutions at all.
Finally we give some conclusions in Sec. 5.

2. A united scheme of projective Riccati equation method

According to the scheme of routine projective Riccati equation method, a united
scheme is given as follows:

Step 1. We express the solution of Eq. (3) in the form

u(ξ) = H1(f) + gH2(f) =

m1
∑

i=0

bif
i + g

m2
∑

i=0

cif
i, (5)

where f = f(ξ) is a solution of the following ordinary differential equation

f ′ = fg , (6)
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g2 = F (f) =

m3
∑

i=0

aif
i, g′ =

1

2
F ′(f)f , (7)

where m1,m2,m3 are positive integers. By Eqs. (5), (6) and (7), we derive the
following equations

u′ = H1
′(f)fg +

1

2
F ′(f)fH2(f) +H2

′(f)fF (f) , (8)

u′′ = H1
′′(f)f2F (f) +H1

′(f)fF (f) +
1

2
H1

′(f)f2F ′(f)

+
1

2
F ′′(f)H2(f)f

2g +
1

2
F ′(f)H2(f)fg +

3

2
F ′(f)H2

′(f)f2g

+H2
′′(f)F (f)f2g +H2

′(f)F (f)fg , (9)

and so on. Substituting the equations like (5), (8) and (9) into Eq. (3), and making
use of Eqs. (6) and (7) yields the equation

G1(f) + gG2(f) = 0, (10)

where G1(f) and G2(f) are two polynomials of f .

Step 2. According to the balance principle, we can obtain some relations for
m3,m1 and m2, from which the different possible values of m3,m1 and m2 can be
determined.

Step 3. Setting the coefficients of all powers of f in G1(f) and G2(f) to zeroes,
we will get a system of algebraic equations, from which we will determine the values
of ai(i = 0, 1, · · · ,m3), bi(i = 0, 1, · · · ,m1) and ci(i = 0, 1, · · · ,m2). However, it is
possible that we will find the system hasn’t a solution. This means that Eq. (3)
can’t be solved by the united schemes of projective Riccati equation method when
m1,m2 and m3 take those values.

Step 4. By Eqs. (6) and (7), we write Eq. (6) as

(f ′)2 = f2F (f). (11)

Then Eq. (11) can be reduced to the elementary integral form

±(ξ − ξ0) =

∫

df

f
√

F (f)
. (12)

Step 5. By substituting ai (i = 0, 1, · · · ,m3) into Eq. (12), and using a complete
discrimination system for m3-th order polynomial to classify the roots of F (f), we
can solve Eq. (12) and obtain the exact solutions to Eq. (11). Furthermore, we can
give the exact solutions to Eq. (3), respectively.
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Remark 1. It is easy to see that the projective Riccati equation methods in
references are special cases of the united scheme of projective Riccati equation
method. For example, if we take m1 = n,m2 = n − 1 and m3 = 2, the united
schemes of projective Riccati equations method is the projective Riccati equation
method presented in Ref. [25]; if we take m1 = m,m2 = m− 1,m3 = 2, the united
scheme of projective Riccati equation method is the projective Riccati equation
method presented in Ref. [29], and so on.

3. Main results

In order to illustrate concretely and briefly our ideas, we only consider the
following form of Eq. (3)

u′′ + αu′ =

k
∑

i=0

diu
i, (13)

where α, di (i = 0, 1, · · · , k) are arbitrary constants, k is a positive integer. Many
practice model equations, such as BBM-Burgers equations, that can be reduced to

this equation. An obvious fact is that every root of
k
∑

i=0

diu
i = 0 is a solution of

Eq. (13). We call these solutions trivial solutions. In this paper, we only consider
nontrivial solutions. We will give some remarkable results of Eq. (13) in which
projective Riccati equation method has some limitations to develop further. For
Eq. (13), by step 1 and step 2, we can obtain some relations for m1,m2 and m3.
For example, if k = 2, then m2 ≤ m1/2 and m3 = m1; if k = 3, then m2 = 0 and
1 ≤ m1 ≤ m3/2. Thus, we can determine the different possible values of m1,m2 and
m3. Among those values of m1,m2 and m3, when we take some of them, Eq. (13)
can be solved by using the united schemes of projective Riccati equation method.
But Eq. (13) can’t be solved when we take others.

Theorem 1: Eq. (13) has nontrivial solutions by the united schemes of projec-
tive Riccati equations method at least in the following cases:

Case 1: k = 2, and (1) m3 = m1 = 1,m2 = 0; or (2) m3 = m1 = 4,m2 = 0;

Case 2: k = 3, and (1) m3 = 2,m1 = 1,m2 = 0; or (2) m3 = 4,m1 = 2,m2 = 0.

Proof: For brevity, we only prove (1) of Case 2 . When k = 3, Eq. (13) becomes

u′′ + αu′ = d3u
3 + d2u

2 + d1u+ d0. (14)

Substituting Eqs. (5), (8) and (9) into (14) and use of (6) and (7) yields Eq. (10),
where

G1(f) = H1
′′(f)f2F (f) +H1

′(f)fF (f) +
1

2
H1

′(f)f2F ′(f)

+
1

2
αF ′(f)fH2(f) + αH2

′(f)fF (f)− d3[H1(f)]
3 − d2[H1(f)]

2
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−3d3F (f)H1(f)[H2(f)]
2 − d2F (f)[H2(f)]

2 − d1H1(f)− d0 , (15)

G2(f) =
1

2
F ′′(f)H2(f)f

2 +
1

2
F ′(f)H2(f)f +

1

2
F ′(f)H2

′(f)f2

+H2
′′(f)F (f)f2 +H2

′(f)F (f)f +H2
′F ′(f)f2 + αH1

′(f)f

−3d3[H1(f)]
2H2(f)− d3F (f)[H2(f)]

3 − 2d2H1(f)H2(f)− d1H2(f) . (16)

By step 2, we know that m3 can be taken 2, m1 can be taken 1 and m2 can be
taken 0, that is, m3 = 2,m1 = 1,m2 = 0. So we have

H1(f) =
1
∑

i=0

bif
i, H2(f) = c0, F (f) =

2
∑

i=0

aif
i. (17)

Substituting (17) into (15) and (16) and by step 3, setting the coefficients of all
powers of f to zero, we get the following system of algebraic equations:

2a2c0 − 3d3b1
2c0 − d3a2c0

3 = 0, (18)

1

2
c0a1 + αb1 − 6d3b1b0c0 − d3a1c0

3 − 2d2b1c0 = 0, (19)

3d3b0
2c0 + d3a0c0

3 + 2d2b0c0 + d1c0 = 0, (20)

2b1a2 − d3b1
3 − 3c0

2d3a2b1 = 0, (21)

3

2
b1a1 + αa2c0 − 3d3b1

2b0 − 3d3c0
2a2b0 − 3d3c0

2a1b1 − d2b1
2 − d2a2c0

2 = 0, (22)

b1a0+
1

2
αc0a1−3d3b1b02−3d3c02a0b1−3d3c02a1b0−2d2b1b0−d2a1c02−d1b1=0 , (23)

d3b0
3 + 3d3c0

2a0b0 + d2b0
2 + d2a0c0

2 + d1b0 + d0 = 0. (24)

From Eqs. (18) – (24) we can obtain the following solutions:

c0
2 =

1

2d3
, b0 =

α− 2d2c0
6d3c0

, a0 =
2d2

2 − α2d3 − 6d1d3
3d3

, a2 = 2d3b1
2, (25)

where b1 is arbitrary nonzero constant, a1 is arbitrary constant, and α, d3, d2, d1,
d0 satisfy the expression: 2α3d3 − 3αd2

2 +9αd1d3 = c0(2d2
3 − 9d1d2d3 +27d0d3

2).

Thus, Eq. (13) has nontrivial solutions when k = 3 and m3 = 2,m1 = 1,m2 = 0.
The proof is completed.
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Now, we give some solutions of Eq. (14) when m3 = 2,m1 = 1,m2 = 0. The
solutions of Eq. (14) can be given the following form according to Eqs. (5) and (7)

u(ξ) = b1f + b0 ± c0
√

a2f2 + a1f + a0, (26)

where f can be taken as arbitrary solution of Eq. (12) of the following cases:

± a1
2
√
a2

(ξ − ξ0) = ln

∣

∣

∣

∣

f − a1/(2a2)

f

∣

∣

∣

∣

, (a2 > 0), (27)

±√
a2(ξ − ξ0) =

1√
βγ

ln
[
√

(−γ)(f − β)−
√

(−β)(f − γ)]2

|f | , (a2 > 0), (28)

±√
a2(ξ − ξ0) =

1√
βγ

ln
[
√

γ(f − β)−
√

(β)(f − γ)]2

|f | , (a2 > 0), (29)

±√
a2(ξ − ξ0) =

1√
−βγ

arcsin
(−γ)(f − β) + (−β)(f − γ)

|f ||β − γ| , (a2 > 0), (30)

±
√

(−a2)(ξ − ξ0) =
1√
−βγ

ln
[
√

(−γ)(f + β)−
√

(β)(f − γ)]2

|f | , (a2 < 0), (31)

±
√

(−a2)(ξ − ξ0) =
1√
−βγ

ln
[
√

γ(−f + β)−
√

(−β)(f − γ)]2

|f | , (a2 < 0), (32)

±
√

(−a2)(ξ − ξ0) =
1√
βγ

arcsin
(−γ)(f + β) + β(f − γ)

|f ||β − γ| , (a2 < 0), (33)

±a0(ξ − ξ0) = ln

∣

∣

∣

∣

∣

−f/(2a1
√
a0) +

√
a0 −

√

a2f2 + a1f + a0
f

∣

∣

∣

∣

∣

, (a0 > 0), (34)

where β =
−a1 +

√
a12 − 4a2a0
2a2

, γ =
−a1 −

√
a12 − 4a2a0
2a2

.

For example, substituting Eq. (27) into Eq. (26), a solution of Eq. (14) can be
obtained as follows

u1(ξ) = ±c0

√

√

√

√a2

(

a1

2a2

1∓ e
± a1

2
√

a2
(ξ−ξ0)

)2

+ a1

(

a1

2a2

1∓ e
± a1

2
√

a2
(ξ−ξ0)

)

+ a0

+
a1b1
2a2

1∓ e
± a1

2
√

a2
(ξ−ξ0)

+ b0. (35)
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Theorem 2. Eq. (13) has not nontrivial solutions by the united schemes of
projective Riccati equation method at least in the following cases :

Case 1: k = 2 , and (1) m3 = m1 = 3,m2 = 1; or (2) m3 = m1 = 4,m2 = 1;

Case 2: k = 3 , and (1) m3 = 3,m1 = 1,m2 = 0; or (2) m3 = 4,m1 = 1,m2 = 0.

Proof : For brevity, we only prove (1) of Case 2.

When k = 3, Eq. (13) becomes Eq. (14). Correspondingly, we have

H1(f) =
1
∑

i=0

bif
i, H2(f) = c0, F (f) =

3
∑

i=0

aif
i. (36)

By step 3, we get the following system of algebraic equations:

9

2
a3c0 − d3a3c0

3 = 0 , (37)

2a2c0 − 3d3b1
2c0 − d3a2c0

3 = 0 , (38)

1

2
a1c0 + αb1 − 6d3b1b0c0 − d3c0

3a1 − 2d2b1c0 = 0 , (39)

2d2b0c0 + d1c0 + 3d3b0
2c0 + d3c0

3a0 = 0 , (40)

5

2
b1a3 − 3d3a3b1c0

2 = 0 , (41)

2b1a2 +
3

2
αc0a3 − d3b1

3 − 3d3a3b0c0
2 − 3d3a2b1c0

2 − d2a3c0
2 = 0 , (42)

3

2
b1a1 + αa2c0 − 3d3b0b1

2 − 3d3a2b0c0
2 − 3d3a1b1c0

2 − d2b1
2 − d2a2c0

2 = 0 , (43)

b1a0+
1

2
αa1c0−3d3b1b02−3d3a1b0c02−3d3a0b1c02−2d2b1b0−d2a1c02−d1b1=0 , (44)

d3b0
3 + 3d3a0b0c0

2 + d2b0
2 + d2a0c0

2 + d1b0 + d0 = 0 . (45)

According to Eq. (37) and Eq. (41), we find c0
2 = 9/(2d3) and c0

2 = 5/(6d3),
what is conflictive because a3, c0 and d3 are all nonzero positive integers. So this
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system of algebraic equations has not solutions, thus Eq. (13) has not nontrivial
solutions by the united scheme of projective Riccati equation method when k = 3
and m3 = 3,m1 = 1,m2 = 0. Other cases can be proved similarly. The proof is
completed.

Theorem 3. If k ≥ 4 , then Eq. (13) can’t be solved by the united schemes of
projective Riccati equation method.

Proof: If k ≥ 4, it is easy to see that whatever m3, m1 and m2 be chosen any
non-negative integer, the highest derivative term and the highest nonlinear terms
of G1(f) and G2(f) can’t be balanced.

Remark 2. From the above results, the limitations of the projective Riccati
equation method are seen.

Remark 3. The united scheme of the projective Riccati equation method pro-
posed above can also be developed when we take H1(f), H2(f) and F (f) rational
function forms in Eqs. (5) and (7).

4. Discussion of solutions to Eq. (4)

In this section, we list all atom solutions to Eq. (4). In particular, we point out
that many solutions to Eq. (4) in Ref. [25] are not solutions at all.

Integrating Eq. (4) twice, we obtain

±(ξ − ξ0) =

∫

dΦ
√

−k1Φ2 − k3

2 Φ4 +D
, (46)

where D is an integral constant. By elementary integral method [9 – 17], we can
obtain all atom solutions of Eq. (4) as follows:

Φ1(ξ) = ±
√

−k1
k3

tanh

(

√

k1
2
(ξ − ξ0)

)

, (47)

Φ2(ξ) = ±
√

−k1
k3

coth

(

√

k1
2
(ξ − ξ0)

)

, (48)

Φ3(ξ) = ±
√

k1
k3

tan

(

√

−k1
2
(ξ − ξ0)

)

, (49)

Φ4(ξ) = ± 2

(−2k3)1/2(ξ − ξ0)
, (50)
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Φ5(ξ) = ±
√

k1
k3

[

tanh2(

√

−k1
2
(ξ − ξ0))− 2

]
1

2

, (51)

Φ6(ξ) = ±
√

k1
k3

[

coth2(

√

−k1
2
(ξ − ξ0))− 2

]
1

2

, (52)

Φ7(ξ) = ±
√

−k1
k3

[

tan2(

√

k1
2
(ξ − ξ0)) + 2

]
1

2

, (53)

Φ8(ξ) = ±(−2k3)
−1/6

[

α+ (β − α) sn2(

√
γ − α

2
(−2k3)

1/3(ξ − ξ0),m)

]1/2

,

(α < β < γ,m2 =
β − α

γ − α
) , (54)

Φ9(ξ) = ±(−2k3)
−1/6

[−β sn2(
√
γ − α((−2k3)

1/3ξ − ξ0)/2,m) + γ

cn2(
√
γ − α((−2k3)1/3ξ − ξ0)/2,m)

]

1

2

,

(α < β < γ, m2 =
β − α

γ − α
), (55)

Φ10(ξ) = ±
(

2D

− k3

)−1/4 [
2

1 + cn((−8Dk3)
1

4 (ξ − ξ0),m)
− 1

]
1

2

. (56)

In the following, we point out that many solutions in Ref. [25] are not solutions
at all.

Using the projective Riccati equation method in Ref. [25] (in fact, the method
is a special case of our in this paper proposed united scheme projective Riccati
equation method with m1 = n,m2 = n − 1,m3 = 2), Emmanuel Yomba obtained
sixteen kinds of solutions to Eq. (4): Φ1,Φ2, · · · ,Φ16 (see Ref. [25] for details).
Unfortunately, we find many faults in these solutions.

The solutions Φ3,Φ4,Φ7,Φ8, · · · ,Φ15 in Ref. [25] do not satisfy Eq. (4) at all,
which can be easily proved by simple calculations. For example, in Ref. [25],

Φ3 = ±
√

− 2

k3
sech(

√

−k1 ξ), (57)

so, we have

Φ′′
3 = ±(−k1)

√

− 2

k3

−cosh2(
√
−k1ξ) + 2sinh2(

√
−k1ξ)

cosh3(
√
−k1ξ)

, (58)
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substituting Eqs. (57) and (58) into Eq. (4) yields

±2(k1 − 1)

√

−2/k3

cosh3(
√
−k1ξ)

= 0, (59)

From Eq. (59), we must have k1 = 1. Hence, the solution Φ3 in Ref. [25] doesn’t
satisfy Eq. (4).

Using similar method, we can prove that Φ4,Φ7,Φ8, · · · ,Φ15 in Ref. [25] do not
satisfy Eq. (4), and hence they are not solutions of Eq. (4) at all.

Thus, only five kinds of solutions obtained in Ref. [25] are real solutions of

Eq. (4). They are Φ1 = ±
√

−k1/k3 tanh(
√

k1/2 ξ), Φ2 = ±
√

−k1/k3 coth(
√

k1/2 ξ),

Φ5=±
√

k1/k3 tan(
√

−k1/2 ξ), Φ6=±
√

k1/k3 cot(
√

−k1/2 ξ), Φ16=±
√

−2/k3 1/ξ.
Obviously, all of them belong to the solutions listed by us above.

Remark 4. In Eq. (49), if we let ξ0 = 0, then Φ3(ξ) = ±
√

k1/k3 tan(
√

−k1/2 ξ),

which is just Φ5 in Ref. [25]. If we let ξ0 = π/
√
−2k1, then Φ3(ξ) =

±
√

k1/k3 cot(
√

−k1/2 ξ), which is just Φ6 in Ref. [25]. That is, Φ5 and Φ6 in
Ref. [25] are special cases of Eq. (49).

Remark 5. As noted by the referee, a solution of Eq. (4) that is not an atom
solution is given by the projective method

Φ(ξ) = −
√
k1A sinh

(√
2k1 ξ

)

−
√
k1B cosh

(√
2k1 ξ

)

+ 8a1
√
−k2 k1ρ

2

√
−k2

(

B sinh(
√
2k1 ξ)−A cosh(

√
2k1ξ)− 2βρ4

) , (60)

where a1, β, ρ /=0 are constants and A = 16a1
2k1k2 + (β2 + 1)β4, B = 16a1

2k1k2 +
(β2 − 1)β4. The solution (60) has an equivalent form

Φ(ξ) = A
e
√
2k1ξ +Be−

√
2k1ξ + C

e
√
2k1ξ −Be−

√
2k1ξ +D

, (61)

where A,B,C,D are constants. This solution can not been obtained by the di-
rect integral method. It can be considered as a doubled solitary solution with two
opposite traveling directions.

5. Conclusions

In summary, we give a united scheme of projective Riccati equation method,
and discuss the mathematical foundations of this method. We find the limitations
of the projective Riccati equation method, e.g., this method does not work for some
rank inhomogeneous nonlinear ordinary differential equations in which the order of
polynomial is bigger than three. In addition, we point out that some solutions of
Eq. (4) given in Ref. (25) aren’t solutions at all.
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NEKE NAPOMENE O PROJEKTIVNOJ METODI ZA RICCATIJEVU
JEDNADŽBU

U ovom radu raspravljamo vǐse primjena projektivne metode za rješavanje Ric-
catijeve jednadžbe. Prvo, prema uobičajenom pristupu te metode, predlažemo za-
jednički pristup za projektivno rješavanje Riccatijeve jednadžbe i proučavamo nje-
gove matematičke osnove. Zatim se daju neki teoremi kada nema rezultata kao i
neka rješenja. Nad–ena su i ograničenja projektivne metode za rješavanje Riccatijeve
jednadžbe. Na kraju, pokazujemo kako neka rješenja nekih jednadžbi dobivena tom
metodom nisu dobra rješenja.
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