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An attempt is made to investigate the electric susceptibility mass of electrons in
AII

3 B
V
2 materials under arbitrary magnetic quantization by including the influence

of spin and broadening of Landau levels. It is found, taking n-Cd3P2 as an example,
that the same mass oscillates with inverse quantizing magnetic field and also with
the angle of orientation of the same field. Besides, the same mass increases with
increasing carrier degeneracy and the crystal field splitting parameter enhances the
numerical magnitudes in all three variations. The corresponding results for the
three-band Kane model, the two-band Kane model and that of parabolic energy
bands have also been obtained as special cases of our generalized derivation.

1. Introduction

In recent years there has been considerable interest in studying the electric
susceptibility mass (ESM) of the carriers in semiconductors because of their im-
portance in investigations of carrier scattering mechanism in semiconductors1−3).
Besides, the ESM can be determined from measurement in the infrared region of fre-
quency dependence of the spectral reflectivity at normal incidence and provides use-
ful information about very specialized band models2). The fact that ESM changes
drastically in narrow-gap materials due to energy dependence of the effective mass
of the carriers in non-parabolic bands has been well discussed3). Nevertheless, it
appears from the literature that the ESM in AII

3 B
V
2 semiconductors has yet to be

investigated under arbitrary magnetic quantization for the more interesting case
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which occurs from the presence of spin and broadening of Landau levels. This will
make our analysis a generalized one since we can obtain the corresponding well
known results for even isotropic energy bands under certain limiting conditions. It
may also be noted that the above class of materials is being increasingly used as
non-linear optical materials4) and light emitting diodes5). Shay and Rowe6) have
demonstrated that quasi-cubic model can be used to explain the observed sym-
metry and splitting of both bands at the zone centre of AII

3 B
V
2 semiconductors.

Incorporating the anisotropic crystal potential to the Hamiltonian, Kildal7,8) pro-

posed an E-~k dispersion relation of the conduction electrons using the simplified
assumptions of isotropic momentum-matrix elements and isotropic spin-orbit split-
ting parameters, respectively, through the anisotropics in the two aforementioned
band parameters are significant physical features of AII

3 B
V
2 materials9).

In what follows, we shall formulate the ESM by including spin and broadening
together with the use of generalized electron dispersion law as given elsewhere10).
We shall study the concentration and magnetic field dependences of the ESM,
taking n-Cd3P2 as an example.

2. Theoretical background

The ESM of the electrons in semiconductors under magnetic quantization (m∗
SB)

can be expressed, extending the method of Spitzer and Fan1), as

m∗
SB = 3h̄2n0

[

nmax
∑

n=0

NB(E)

(

∂E

∂k′z

)

f0(E)dE

]−1

ε0 , (1)

where h̄ = h/2π, h is the Planck’s constant, n0 is the electron concentration,
n(= 0, 1, 2 ...) is the Landau quantum number, k′z is the arbitrary direction of
application of the quantizing magnetic field B, NB(E) is the magneto-density-of-
states function, E is the electron energy under magnetic quantization as measured
from the edge of the conduction band in the absence of any field and f0(E) is the
Fermi-Dirac occupation probability factor.

It appears, then, that the evaluation of ESM using Eq. (1) requires an expression
for NB(E) which, in turn, is determined by the magneto-dispersion relation. The
generalized dispersion relation of the conduction electrons in bulk specimens of
AII

3 B
V
2 semiconductors can be written as10)

γ(E) = f1(E)k2s + f2(E)k2z , (2a)

where the notations are defined in the above reference. The modified electron en-
ergy spectrum of AII

3 B
V
2 materials under arbitrary magnetic quantization can be

expressed as

γ(E) = A±(n,E,Θ) + a(E,Θ)(k′z)
2, (2b)
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where

A±(n,E,Θ) = 2eBh̄−1

(

n+
1

2

)

[

f1(E)
{

f1(E) cos2 Θ+ f2(E) sin2 Θ
}]

±eBh̄Eg

6

[

Eg +∆⊥

m∗
⊥

(

Eg + (2/3)∆⊥

)

]1/2




(

E + Eg + δ +
∆2

‖ −∆2
⊥

3∆‖

)2

×
∆2

‖ cos
2 Θ(Eg +∆⊥)

m∗
⊥

(

Eg + (2/3)∆⊥

) + (E+Eg)
2∆2

⊥ sin2 Θ(Eg+∆‖)

{

m∗
‖

(

Eg+
2

3
∆‖

)}−1
]1/2

,

a(E,Θ) = f1(E)f2(E)
[

f1(E) cos2 Θ+ f2(E) sin2 Θ
]1/2

,

and k′z = kz cos θ + kx sin θ is the direction of application of B which makes an
angle θ with kz direction and lies in the kx–kz plane.

Using Eqs. (1) and (2) we get

m∗
SB =

12h̄3π2n0ε0
eBkBT

[

nmax
∑

n=0

ln |x2(n) + y2(n)|
]−1

, (3)

where x(n) = [1 + (cosλ0) exp(η)], λ0 = Γ/kBT , Γ is broadening parameter11),
η = (EF −E)/kBT , EF is the Fermi energy in the presence of quantizing magnetic
field as measured from the edge of the conduction band in the absence of any
quantization, E is the root of Eq. (2b) when k′z = 0, kB is the Boltzmann constant,
T is temperature and y(n) = (sinλ0) exp(η).

It appears, then, that the determination of ESM from Eq. (3) as a function of
electron concentration n0 requires an expression of electron statistics which can in
turn, be expressed, using Eq. (2b), as

n0 =
eB

2π2h̄

nmax
∑

n=0

[α1 + α2] , (4)

where

α1 = Re
{[

a−1(E∗
F ,Θ){γ(E∗

F )−A±(n,E
∗
F ,Θ)}

]1/2}
,

E∗
F = EF + iΓ, i =

√
−1, α2 =

S
∑

r=1

∇r[α1] ,

∇r = 2(kBT )
2r(1− 21−2r)ζ(2r)− d2r

dE2r
F

.
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r is the set of positive integers and ζ(2r) is the zeta function12) of order 2r.

Special cases:

(1) Under the special conditions δ = 0, ∆‖ = ∆⊥ = ∆ (the isotropic spin-orbit
splitting parameter) and m∗

‖ = m∗
⊥ = m∗ (the isotropic electron mass at the edge

of the conduction band), Eq. (2b) assumes the form

[

E(E + Eg)(E + Eg +∆)

(

Eg +
2

3
∆

)][

Eg(Eg +∆)

(

E + Eg +
2

3
∆

)]−1

=

(

n− 1

2

)

h̄ω0 +
h̄2k2z
2m∗

+
eBh̄∆

m∗

(

E + Eg +
2

3
∆

)−1

, (5)

where ω0 = eB/m∗. Equation (5) is the well-known magneto-dispersion relation
for the three-band Kane model13).

Under the above substitutions the basic forms of Eqs. (3) and (4) the remain
same, where

α1 = Re

[

[

2m∗

h̄2

{

E∗
F (E

∗
F + Eg)(E

∗
F + Eg +∆)

(

Eg +
2

3
∆

)

E−1
g (Eg +∆)−1

×
(

E∗
F − Eg +

1

2
∆

)−1

−
(

n+
1

2

)

h̄ω0 ±
eBh̄∆

5m∗

×
(

E∗
F + Eg +

1

2
∆

)−1
}]]

.

(2) Under the condition ∆ → ∞, Eq. (5) takes the form14)

E(1 + αE) =

(

n+
1

2

)

h̄ω0 +
h̄2k2z
2m∗

± 1

2
g∗µB , α = 1/Eg , (6a)

where g∗ = m0/m
∗, m0 is the free-electron mass and µ is the Bohr magneton. Thus

for the two-band Kane model, the basic results Eqs. (3) and (4) will be unaltered,
where

α1 = Re

{

[

2m∗

h̄2

{

E∗
F (1 + αE∗

F )−
(

n+
1

2

)

h̄ω0 ±
1

2
g∗µB

}]1/2
}

.
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We wish to note that neglecting spin and broadening, together with the condition
EF /Eg ≪ 1, the expression of electron concentration in accordance with the two-

band Kane model assumes the form14)

n0 = NcΘ

nmax
∑

n=0

a−1/2

[(

1 +
3αb

2

)

F−1/2(η
′) +

3

4
αnF1/2(η

′)

]

, (6b)

where the notations are defined in the above reference.

(3) Under the condition a → 0, (6a) simplifies to the well known form14) as

E =

(

n+
1

2

)

h̄ω0 +
h̄2k2z
2m∗

± g∗µB . (7)

Thus for parabolic energy bands, the forms of Eqs. (3) and (4) will be unaltered
where

α1 = Re

{

[

2m∗

h̄2

{

E∗
F −

(

n+
1

2

)

h̄ω0 ± g∗µB

}]1/2
}

.

(4) Finally, neglecting spin and broadening, the expressions for ESM and n0 for
isotropic parabolic energy bands can be written as

m∗
SB =

3π2h̄3n0ε0
eBkBT

[

nmax
∑

n=0

F0(η)

]−1

(8)

and

no = NcΘ

[

nmax
∑

n=0

F−1/2(η)

]

, (9)

where

η =
1

kBT

[

EF −
(

1 +
1

2

)

h̄ω0

]

.

3. Results and discussion

Using Eqs. (3) and (4) and taking the paramerets9)

∆‖ = 0.25eV, ∆⊥ = 0.28eV, δ = 0.08eV, m∗
‖ = 0.03m0,

m∗
⊥ = 0.05m0, n0 = 2.28× 1022 m−3, Γ = 2× 10−4eV, Θ = 60◦,

and T = 4.2 K, we have plotted the ESM in degenerate n-Cd3P2 as a function
of quantizing magnetic field as shown in Fig. 1. In the same figure the curves
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Fig. 1. Plot of the normalized ESM as a function of 1/B at 4.2 K by using (a)
our proposed dispersion relation, (b) the isotropic three-band Kane model, (c) the
isotropic two-band Kane model and (d) the parabolic energy bands. The dashed
curve e corresponds to δ = 0.

correspond to the isotropic three-band Kane model (taking ∆ = 0.3 eV and m∗ =
0.04m0 for the purpose of numerical computation), the two-band Kane model and
that of parabolic energy bands are also shown. Using the same parameters as used
in obtaining Fig. 1, we have plotted the normalized ESM as functions of n0 and θ
as shown in Figs. 2 and 3 in which all simplified cases have further been shown. In
all figures the dotted curves correspond to δ = 0. From these figures and the above
discussion the following features follow:

(i) As can be seen in Fig. 1 the ESM oscillates with 1/B. The oscillatory de-
pendence is due to the crossing over of the Fermi level by the sub-bands in steps,
resulting in a successive reduction in the number of occupied Landau levels as the
magnetic field is increased. The origin of the oscillations in ESM is the same as that
of SdH oscillations. Besides, the ESM computed by using our proposed dispersion
relation, exhibits greater numerical values as compared to all other limiting cases.

(ii) As can be seen in Fig. 2 the ESM increases with increasing surface electron
concentration and the tetragonal crystal field affects the ESM quite significantly
in AII

3 B
V
2 materials. Furthermore, for a fixed value of the electron concentration,

the ESM is greater as compared to that in the absence of δ for the whole range of
concentrations considered. Though ESM also increases nonlinearly with n0 for all
limiting cases, the rates of increases are totally band structure dependent.
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Fig. 2. Plot of the normalized ESM as a function of n0 at 4.2 K by using (a) our
proposed dispersion law, (b) the isotropic three-band Kane model, (c) the isotropic
two-band Kane model and (d) the parabolic energy bands. The dashed plot (e)
corresponds to δ = 0 (B = 2 T and θ = 60◦).

Fig. 3. Plot of the normalized ESM as a function of θ at 4.2 K by using (a)
our proposed model, (b) the isotropic three-band Kane model, (c) the isotropic
two-band Kane model and (d) the parabolic energy bands. The dashed curve e
corresponds to δ = 0 (B = 2 T and n0 = 2.28 1022 m−3.

FIZIKA A 1 (1992) 3, 197–205 203



ghatak: on the electric susceptibility mass . . .

(iii) As can be seen in Fig. 3, the ESM also exhibits oscillatory dependence with
θ. In the absence of anisotropics, the ESM turns out to be independent of θ for all
other cases excluding δ = 0 since the basic dispersion relation becomes spherical
instead of being ellipsoidal. Thus the ESM for the three-band Kane model, the
two-band Kane model and that of parabolic energy bands becomes independent of
θ.

We must note that the many-body effects should be taken into account for a
more complete treatment. However the basic qualitative features of our simplified
analysis will not be altered even after the above modification. Though the experi-
mental verification of the basic content of our paper is not available in the literature
(to the best of our knowledge), the importance of ESM is already well-known. The
basic aim of the present work is to formulate a simplified expression of the ESM
in the AII

3 B
V
2 semiconductors under arbitrary magnetic quantization by including

spin and broadening, respectively.

We wish to note that we have taken AII
3 B

V
2 semiconductors as an example of

narrow-gap compounds having non-parabolic and non-standard energy bands. By
incorporating the anisotropic crystal potential to the Hamiltonian together with
anisotropic spin-orbit splitting parameters and the anisotropic effective electron
masses, we have formulated the magneto dispersion relation of conduction elec-

trons in the bulk specimen of the same semiconductor within the framework of ~k ·~p
theory. In the absence of crystal field splitting and with the assumptions of isotropic
effective electron mass and isotropic spin-orbit splitting parameter, Eq. (2b) con-
verts into Eq. (5) which is the result of the magneto three-band Kane model13).
The three-band Kane model is the best model for III-V semiconductors but must
be used as such for studying the magneto-transport of n-InAs where the spin-orbit
splitting parameter (∆) is of the order of band gap (Eg). For many important
semiconductors ∆ ≫ Eg (i.e. n-InSb, Hg1−xCdxTe etc.). Under this condition,
Eq. (5) gets simplified into Eq. (6a) which is the result of the well known two-band
Kane model14). Finally under the condition Eg → a, Eq. (6a) assumes the form of
Eq. (7), which is widely used to study the electronic properties of relatively wide
band gap semiconductors. Thus we can conclude that our study of ESM covers
various semiconductors having different band structures.
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Razmatrana je električna susceptibilna masa elektrona u AII
3 B

V
2 materijalima uz

proizvoljnu magnetsku kvantizaciju ukjučujući utjecaj spina i širenja Landauovih
nivoa. Nad–eno je, koristeći n-Cd3P2 kao primjer, da masa oscilira s inverzom mag-
netskog polja te takod–er s kutom orijentacije polja. Pored toga, masa raste poras-
tom degeneracije nosilaca naboja. Parametar cijepanja kristalnog polja povećava
brojčanu vrijednost u sve tri varijacije. Kao posebni slučajevi općenitog razma-
tranja rezultati su primijenjeni na Kaneov model s dvije i tri vrpce, te na model
paraboličnih energetskih vrpci.
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