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The domain-wall concept is employed to derive the relaxation time of the macro-
scopic quantum tunneling in small magnetic particles as a function of temperature
and magnetic field. The result is used to analyze the recently reported experimental
data.

The relaxation rate of the magnetization has recently been measured1,2) in
small, weakly interacting ferromagnetic particles of Tb0.5Ce0.5Fe2 of mean diame-
ter ≈ 15 nm, at low temperatures (from 10 K down to ≈ 50 mK) and for relatively
high magnetic fields (≤ 0.6 T). The measurements of the frequency-dependent mag-
netic susceptibility of small-size (≈ 7 nm) antiferromagnetic particles of a natural
protein3) revealed a sharp peak at the resonance frequency ≈ 103 kHz, at very
low temperatures (≈ 30 mK) and low magnetic fields. Similar results on the re-
laxation time have also been reported4,5) in Fe/Sm magnetic multilayer systems.
These data raise the interesting question of magnetic quantum tunneling over a
macroscopic scale6−9) in the limit of low temperatures. The non-thermal relax-
ation of the magnetization, corresponding to the quantum tunneling between two
locally-stable states, is described in the present paper by the equivalent picture of
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the domain-wall motion, as to allow for the finite-size effects (domain-wall width
and particle-size length scales). Together with the thermal relaxation of the mag-
netic excitations of the domain wall, this enables one to derive the relaxation time
of the magnetization as a function of both the temperature and the magnetic field.
The result is used to discuss the experimental data mentioned above.

As soon as the size d of the magnetic particles becomes comparable to the
lattice constant a, the magnetization is never saturated across the particle, i.e.
there is no single domain over the whole size of the particle10). The deviation of
the magnetization from its saturated value across the particle size may be viewed
as a domain wall, whose width may vary between the extreme value of the lattice
constant a (extremely narrow domain wall), as in the case of strong anisotropy
and non-linearity of the magnetic interactions11), and a value which may be much
larger than the particle size d, as in the case of very thin particles3). Within this
picture, the quantum tunneling of the magnetization between two locally-stable
states (as, for example, between two axes of easy magnetization) amounts to the
motion of the domain wall along a distance of the order of the particle size d. In the
presence of the magnetic field the energy of the domain wall is a slowly decreasing
function ω(H) which saturates at high values of the field H, as indicated also by the
saturation of the sample magnetization1−5). Consequently, above a threshold field
H0, which may be taken as the maximum coercitive field, one may approximate by
ω(H) ∼= ω(H0) ≡ ω0. Having the energy fixed in this way one can easily estimate
the velocity of the domain wall, as being of the order v ∼ ω0a, where a is taken for
the domain-wall width. Generally, this velocity has to be reduced by the probability
p of the domain-wall motion across the particle-size length d, as for including the
pinning effects, for example. A free motion of the domain wall corresponds to p = 1,
while the complete pinning of the domain wall corresponds to p = 0. The relaxation
time of the magnetization is now readily obtained within this picture, as

τ0 = d/v ≈ d/(apω0) . (1)

It corresponds to the non-thermal relaxation (Casimir limit in the phonon physics),
and is what one usually computes in the quantum tunneling theory12−18); when the
(real) space motion of the magnetization is included. One should emphasize at this
point that (1) is nothing else but the rewriting of the non-thermal relaxation time
of the quantum magnetic tunneling in terms of the domain-wall motion. Pursuing
this picture further, one should notice that at lower values of the magnetic field
the energy ω(H) begins to differ sensibly from ω0. This deviation can be obtained
by expanding ω(H) in powers of δ(1/H) = 1/H − 1/H0 and retaining, to the first
approximation, only the first term of the series,

δω = ω1δ(1/H) = ω1(1/H − 1/H0) , (2)

where ω1 is the derivative of ω0 with respect to 1/H at H = H0. The additional
contribution to the energy given by (2) may be viewed as corresponding to the
“elementary excitations” of the domain wall, i.e. the excitations associated with the
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small deviations of the magnetization from its domain-wall equilibrium value. They
are delocalized waves, obeying the Bose-Einstein statistics, with a group velocity
v ≈ ω0a (to the first approximation), and, therefore, with a thermal mean-free path

Λ ≈ a/nth ≈ aeω1δ(1/H)T , (3)

where, again, a has been taken for the domain-wall width. The corresponding
thermal relaxation time is now easily obtained as

τth = Λ/v ≈
1

ω0
eω1δ(1/H)T . (4)

The usual Matthiessen rule,
1

τ
=

1

τ0
+

1

τth
, (5)

can be employed now, for τ0 given by (1) and τth given by (4), to interpolate
between thermal and non-thermal regimes. One obtains, in this way, the relaxation
time of the magnetization

ln(1/τ) = lnω0 + ln
[

ap/q + e−ω1δ(1/H)T
]

, (6)

which will be used below to discuss the experimental data of magnetic tunneling.

First, one should notice that ln(1/τ) given by (6) corresponds, as a function of
δ(1/H), to a bundle of straight lines for H close to H0 (low values of δ(1/H)) all
of them passing through the fixed point of coordinates (1/H0, lnω0), and having
the slopes −ω1/T ; this part of ln(1/τ) corresponds to the thermal regime (when
ap/d ≪ 1), and is currently obtained in the experiments1,2,5). All these thermal
straight lines terminate, according to (6), with a horizontal tail 1/τ = ω0ap/d
corresponding to ω1δ(1/H)/T ≫ 1, i.e. at very low temperatures and towards
weaker magnetic fields. The presence in the experimental data of this horizontal
tail (or, equivalently, a plateau in 1/τ) is an indication of non-thermal regime
corresponding to the quantum tunneling. The bundle of thermal strangth lines
reported in Refs. 1 and 2 is fitted by (6) for 1/H0 = 1.5 T−1, ω0 = 109 s−1 ∼= 10−2

K and ω1 = 73.5 KT. A refined analysis of the low-temperature data of Refs. 1, 2
and 5 would enable one to decide whether or not these data exhibit the non-thermal
horizontal tail, indicative of magnetic tunneling.

This tail is clearly exhibited by the frequency-dependent magnetic suscepti-
bility reported in Ref. 3. Indeed, the resonance frequency of the magnetic tun-
neling corresponds to 1/τ given by (6). In the limit of vanishing magnetic field
and zero temperature (≈ 30 mK), (6) reduces to the non-thermal contribution
1/τ0 = ω0ap/d = 103 kHz. This frequency increases with increasing magnetic
field3), such that, for H → ∞ one obtains from (6) 1/τ ≡ ω0(ap/d + 1), a result
which should be equated to ≈ 104 kHz from Ref. 3. From these two equations one
easily obtains ω0 ≃ 9×103 kHz and ap/d ≃ 0.1. According to the data in Ref. 3, the
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width of the domain wall in these antiferromagnetic protein particles is larger than
the particle size, therefore a/d ≥ 1, whence one gets p ≤ 0.1, which is consistent
with the probability of this parameter (0 < p < 1). Actually, p may be lower, as
we underestimated the value of ω0 by assuming that the resonance frequency 104

kHz corresponds to H going to infinity. Nevertheless, one should emphasize that
the experimental H-dependence of the resonance frequency reported in Ref. 3 for
the temperature T ≈ 30 mK is quite well followed by the theoretical dependence
predicted by (6). The ω1 parameter in (6) is difficult to be estimated from these
experimental data (Fig. 2a in Ref. 3), since (6) is highly sensitive to the magnetic
field; in order to get a reliable value of ω2, the accuracy of the experimental data
should be sensibly improved.

In conclusion, one should add two further remarks. First, the relaxation time
given by (6) predicts a cross-over temperature

Tc =
ω1

ln(d/ap)
δ(1/H) , (7)

which depends on the magnetic field and separates the thermal from non-thermal
regime. According to (7), the non-thermal behaviour can be obtained at higher
temperatures for lower magnetic fields; however, from (6) one can see that in this
case the relaxation time is extremely long. In order to have the relaxation time
values within the “experimental window” one should look for non-thermal effects
at higher magnetic fields, in which case the cross-over temperature is extremely
low. In any case, the value of this temperature depends on the parameter values
ω1, d/ap which are specific to each experimental situation. Finally, one remarks
that the non-thermal relaxation time τ0 given by (1) tends to infinity for the bulk
sample, i.e. the magnetization gets frozen in this case, as expected.

References

1) C. Paulsen, L. C. Sampaio, B. Barbara, D. Fruchart, A. Marchand, J. L. Tholence and
M. Uehara, Phys. Lett. A 161 (1991) 319;

2) C. Paulsen, L. C. Sampaio, B. Barbara, D. Fruchart, A. Marchand, J. L. Tholence and
M. Uehara, Phys. Rev. Lett., submit. (1992);

3) D. D. Awschalom, J. F. Smyth, G. Grinstein, D. P. DiVicenzo and D. Loss, Phys. Rev.
Lett. 68 (1992) 3092;

4) L. L. Balcells, X. X. Zhang, F. Badia, J. M. Ruiz, C. Ferrate and J. Tejada, J. Mag.
Mag. Mat. 109 (1992) L 159;

5) X. X. Zhang, L. L. Balcells, J. M. Ruiz, J. L. Tholence, B. Barbara and J. Tejada, J.
Phys. Cond. Mat. 4 (1992) L 163;

6) A. Caldeira and A. J. Leggett, Ann. Phys. 149 (1983) 374;

7) A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. A. P. Fisher, A. Garg and W. Zwerger,
Rev. Mod. Phys. 59 (1987) 1;

8) E. M. Chudnovskry and L. Gunther, Phys. Rev. Lett. 60 (1988) 661;

9) E. M. Chudnovskry and L. Gunther, Phys. Rev. B 37 (1988) 9455;

234 FIZIKA A 1 (1992) 3, 231–235



apostol: on the non-thermal relaxation time in . . .

10) A. Aharoni, IEEE Trans. Mag. 27 (1991) 4775;

11) J. J. Niez, P. G. Averbuch, J. C. Fanton and J. Lajzerowicz, J. Phys. C 11 (1978)
3715;

12) B. Barbara, G. Fillion, D. Gignoux and R. Lemaire, Solid State Commun. 10 (1972)
1149;

13) M. Enz and R. Schilling, J. Phys. C 19 (1986) L 711;

14) A. Garg and G. H. Kim, Phys. Rev. Lett. 63 (1989) 2512;

15) I. V. Krine and O. B. Zaslavskii, J. Phys. Cond. Mat. 2 (1990) 9457;

16) B. Barbara and E. M. Chudnovskry, Phys. Lett. A 145 (1990) 205;

17) P. C. E. Stamp, Phys. Rev. Lett. 66 (1991) 2802;

18) A. Garg and G. H. Kim, Phys. Rev. B 45 (1992) 12921.

O TOPLINSKOJ VODLJIVOSTI IDEALNOG KRISTALA

MARIAN APOSTOL

Centre de Recherches sur les Très Basses Températures, CNRS, BP 166 X,
38042 Grenoble-Cedex 9, France

UDC 538.955

Originalni znanstveni rad

Koristeći koncept domenskih zidova odred–eno je relaksaciono vrijeme za makroskop-
sko kvantno tuneliranje u malim magnetskim česticama kao funkcija temperature i
magnetskog polja. Rezultati su iskorǐsteni za analizu najnovijih rezultata mjerenja.

FIZIKA A 1 (1992) 3, 231–235 235


