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We consider a family of structurally closely related fully-benzenoid hydrocarbons of
increasing number of fused benzene rings. Local and global aromatic properties of
such molecules are investigated with a particular interest in investigating the role of
the finite size of such molecules in modelling the high-polymer or even graphite. An
interesting alternation of local properties for benzene rings in a similar environment
was observed.

1. Introduction

Realistic models of infinite systems usually require extensive computation and
are often sparse in offering simple interpretation of the results of computation.
An illustration of this are ab initio calculations, which, when possible, produce
an overwhelming amount of detail about the wave function of the system from
which it is difficult to extract information that can be visualized. On the other
hand, simple models while not necessarily presenting computational difficulties and
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offering simple interpretations, often lead to numerical results which are unreliable
or do not correlate well with experimental data. An illustration of this is the tight-
binding model, such as exemplified by the Hückel MO computations, that is easy
to visualize but often of meager quantitative significance.

There is yet another relatively simple, yet not overly simplistic, approach to the
study of large systems. If one wishes to develop a realistic but simple model, one
pays a price through restrictions imposed by the model. In such modelling one can
often obtain quantitative results of a satisfying quality but for selected properties
only. If the interest of a study is restricted to a limited number of questions about
the system, one can obtain very reliable results with a relatively simple model. This
is the case of the conjugated-circuit model [1-7] which leads to surprisingly reliable
and accurate predictions for aromatic stabilities of polycyclic conjugated systems,
particularly those having no 4n-membered rings. If properly parametrized [8,9], the
conjugated-circuit model can reproduce molecular resonance energies of SCF MO
accuracy (say for a Pariser-Parr-Pople-like model [10,11] treated by Dewar’s MO
methodology [12]).

In this contribution we apply the conjugated-circuit model and consider a family
of fully-benzenoid systems of increasing size illustrated in Fig. 1.

Fig. 1. The initial five members of the fully-benzenoid family investigated.

Our motivation is to learn about the role of the end groups of carbon atoms
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on the local properties in more distant areas and to see how well finite models can
simulate properties of infinite polymers and eventually the properties of graphite.

2. Conjugated-circuit model

This model is based on the set of Kekulé valence structures as the basis for
a representation of polycyclic conjugated systems built from sp2 carbon atoms.
Numbers of (especially smaller) conjugated circuits averaged over all Kekulé va-
lence structures are to be enumerated. The graph-theoretical analysis of Kekulé
structures produced the notion of conjugated circuits. A conjugated circuit is the
circuit within the individual Kekulé structure in which there is a regular alterna-
tion of formal single and double carbon-carbon bonds. Hence, the conjugated cir-
cuits are necessarily of even length. The circuit decomposition of individual Kekulé
structure of a benzenoid hydrocarbon gives only conjugated circuits of sizes 4n+2
(n=integer). Linearly independent, linearly dependent and disjoint conjugated cir-
cuits are possible. Linearly independent conjugated circuits are those that cannot
be represented as a superposition of circuits of smaller size. Linearly dependent
conjugated circuits are those which can be expressed as a linear combination of
circuits of smaller size. Disjoint conjugated circuits are composites of two or more
single circuits, no pair of which share a site. We consider only linearly independent
conjugated circuits. Conjugated circuits of sizes 4n + 2 are denoted by Rn. For
example, the conjugated-circuit count for two isomeric benzenoids, anthracene and
phenanthrene, is: 6R1 + 4R2 + 2R3 and 10R1 + 4R2 + 2R3, respectively.

Efficient algorithms for enumeration of conjugated circuits have been described
in the literature. They are based on the transfer-matrix approach [13] in which
individual Kekulé valence structures are represented by a product of various possible
matrices that connect the repeating cells of fused benzenes (utilizing erasure of a
fragment as a benzene ring or several fused such rings) from the full graph [7], or
they are based on a “many body” scheme [14], utilizing an antisymmetric adjacency
matrix S with the count of conjugated circuits obtained from subdeterminants
(corresponding to various cycles) of the inverse S−1.

In this report we use the latter approach. After all conjugated circuits of dif-
ferent sizes were enumerated, one can write down an expression for the molecular
resonance energy (RE) as the parametrized size-weighted average of conjugated
circuits:

RE =
∑

n≥1

rnRn/K,

where K is the Kekulé-count for a benzenoid hydrocarbon, Rn is the parameter
corresponding to 4n + 2 conjugated circuits and rn is the total count of Rn. The
above formula is valid only for benzenoids, because in this class of conjugated sys-
tems only 4n+2 circuits appear. This formula gives the overall molecular resonance
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energy. However, one can restrict attention to an individual ring and count only
conjugated circuits involving the selected ring. In this way one arrives at a descrip-
tion of local aromaticity associated with individual benzene rings [15]. To obtain
numerical values, one has to select a parametrization which establishes the relative
role of conjugated circuits of different sizes [8] and, if desired, of different shape
[16].

Since the smaller conjugated circuits give the major contributions to the molec-
ular RE, we consider only the two smallest circuits, that is R1 and R2. Hence, the
above formula reduces to a rather simple form:

RE = (r1R1 + r2R2)/K.

We should also add that the conjugated-circuit model is similar to the differently
motivated resonance theory model of Herndon [17], as pointed by Schaad and Hess
some time ago [18]. Herndon’s model can be viewed as an extension of the early work
of Simpson [19]. The conjugated-circuit model follows classical chemical bonding
ideas such as exemplified in the work of Clar [20]. Finally we should mention that
the conjugated-circuit model (as well as Herndon’s resonance theory) can be related
to standard quantum-mechanical models [16,21].

3. Triphenylene - tetrabenzanthracene family

In Fig. 1 we show several smaller members of a family of fully-benzenoid systems
which can be viewed as higher members of a family that starts with triphenylene and
tetrabenzanthracene. Individual symmetry-nonequivalent rings in these molecules
have been labeled as shown in Fig. 2, beginning with A as the terminal ring.

In Fig. 3 we illustrate a few initial steps of the count of conjugated circuits (for
rings A and B) for the next member in the sequence triphenylene, tetrabenzan-
thracene.

We start with the ring A which is labeled as “1” (corresponding to conjugated
circuits R1 or n = 1). After removal of this ring, the remaining structure consists
of a benzene ring (K = 2) and tetrabenzanthracene (K = 40) connected by an
essentially single carbon-carbon (CC) bond (structure a in Fig. 3). Here K is the
number of Kekulé valence structures for the indicated fragments. Essentially, single
bonds are CC bonds which are single in all Kekulé valence structures (like the
central bonds in perylene). Such bonds can be deleted and we obtain the count of
the Kekulé valence structures for the fragment K = 80. This has to be multiplied
by two, since the benzene ring A itself has two Kekulé structures. Thus we obtain
A(R1) = 160 for the count of the conjugated circuits R1 for the ring A.
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Fig. 2. Two alternative ways of labeling the individual rings in polymer extension
of the family of fully-benzenoids considered.

Next we inscribe “2” in the ring A which implies label “1” for the ring B as only
in this way the terminal ring A can be involved in a conjugated circuit R2. This
step permits the assigment of CC double bonds in the other two rings adjacent to
ring B. When one deletes the assigned CC bonds, one obtains a subgraph with a
benzene ring connected by an essentially single CC bond to triphenylene (structure
b in Fig. 3). This gives A(R2) = 18 for the R2-count at A.

The process continues untill all symmetry-nonquivalent rings have been consid-
ered. In the next step one considers B(R1), and we can immediately conclude (see
structure c in Fig. 3) that B(R1) = 2 A(R2), with the factor of two coming from
the two Kekulé structures for the B-ring.

Table 1 shows the data for the first six members of the family having 18, 30,
42, 54, 66 and 78 carbon atoms, respectively. The table gives the count of linearly
independent conjugated circuits. The largest possible conjugated circuits for the
family are R6.
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Fig. 3. Illustration of graphical enumeration of the smallest conjugated circuits in
one of fully-benzenoid system studied (the third structure in Fig. 1).

TABLE 1.
The contributions of different rings to the molecular resonance energy for the six

initial members of the fully-benzenoid family considered.

R1 R2 R3 R4 R5 R6 R1 R2 R3 R4 R5 R6

N = 1 N = 5

A 8 1 A 3 168 356

B 26 6 3 1 B 712 1 068 1 148 516 80

N = 2 C 2 848 676

A 36 4 D 640 960 1 112 624 170 18

B 8 12 13 6 1 E 3 204 320

C 32 8 F 2 880 644

N = 3 G 648 972 1 116 612 160 16

A 160 18 H 3 200 324

B 36 54 58 26 4 N = 6

C 144 34 A 14 096 1 584

D 32 48 56 32 9 1 B 3 168 4 752 5 108 2 296 356

E 162 16 C 12 672 3 008

N = 4 D 2 848 4 272 4 948 2 776 756 80

A 721 80 E 14 256 1 424

B 160 240 258 116 18 F 12 816 2 864

C 640 152 G 2 880 4 320 4 964 2 728 716 72

D 144 216 250 140 38 4 H 14 240 1 440

E 720 72 I 12 800 2 880

F 648 144
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TABLE 1. (cont.)

N = 1
RE = (3A+B)/9 = (26R1 + 6R2 + 3R3 +R4)/9

REPE = 0.16049R1 + 0.037037R2 = 0.1486eV
N = 2

RE = (4A+ 2B + C)/40 = (192R1 + 48R2 + 26R3 + 12R4 + 2R5)/40
REPE = 0.16R1 + 0.04R2 = 0.1489eV

N = 3
RE = (4A+ 2(B + C) +D + E)/178 = (1994R1 + 292R2 + 172R3 + 84R4

+17R5 +R6)/178
REPE = 0.159711R1 + 0.039058R2 = 0.1484eV

N = 4
RE = (4A+ 2(B + C +D + E) + F )/792 =(6824R1 + 1824R2 + 1016R3

+512R4 + 112R5 + 8R6)/792
REPE = 0.1595585R1 + 0.0426487R2 = 0.1492eV

N = 5
RE = (4A+ 2(B + C +D + E + F ) +G+H)/3524
RE = (37088R1 + 10056R2 + 5636R3 + 2892R4 + 660R5 + 52R6)/3524

REPE = 0.1594607R1 + 0.0432360R2 = 0.1493eV
N = 6

RE = (4A+ 2(B + C +D + E + F +G+H) + I)/15680
RE = (189760R1 + 53376R2 + 30040R3 + 15600R4 + 3656R5 + 304R6)/15680

REPE = 0.1551543R1 + 0.0436421R2 = 0.1456eV

4. Global molecular properties

From the information in Table 1 we can extract molecular RE by summing
the contributions of the individual rings. For the first few members (N=1 being
triphenylene) we obtain the following simple expressions:

• N=1 RE = {3 Re(A )+ Re(B)}

• N=2 RE = {4 Re(A )+ 2 Re(B) + Re(C)}

• N=3 RE = {4 Re(A )+ 2 Re(B) + 2 Re(C) + Re(D) + Re(E)}

• N=4 RE = {4 Re(A )+ 2 Re(B) + 2 Re(C) + 2 Re(D) + 2 Re(E) +
Re(F)}

• N=5 RE = {4 Re(A )+ 2 Re(B) + 2 Re(C) + 2 Re(D) + 2 Re(E) +
Re(F)}

• N=6 RE = {4 Re(A )+ 2 Re(B) + 2 Re(C) + 2 Re(D) +
2 Re(E) + 2 Re(F) + 2 Re(G) + 2 Re(H) + Re(I)}.

Here RE signifies total molecular resonance energy and Re signifies a local (ring)
contribution to the molecular resonance energy. When the results from the count of
conjugated circuits are substituted in the above expressions we obtain the resonance
energies as shown in Table 1, which also include the resonance energy per electron
REPE, corresponding to the resonance energy per site in benzenoid polymers.
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5. Local aromatic properties

It is of considerable interest to see how the benzenoid character of correspond-
ing individual rings varies with molecular size. One expects that as the molecule
increases in size, the role of the terminal rings, i.e., the boundary, will be less and
less pronounced. From Table 2 in which the resonance energies of individual rings
are listed we see indeed that the changes in the resonance contributions of the in-
dividual rings decrease. Here m is the position of the terminal ring starting with
m = 1 in A, m = 2 in E, etc. (see Fig. 2).

TABLE 2.
The resonance energy of the individual rings for higher members of the
fully-benzenoid family considered. N stands for a higher member of a

fully-benzenoid family and m for the terminal ring in the benzenoid studied.

m

N 1 2 3 4 5 6 7

6 0.89897959 0.90918367 0.90816327

7 0.89897948 0.90918473 0.90815274 0.90826740

8 0.89897949 0.90918462 0.90815380 0.90825688

9 0.89897949 0.90918463 0.90815369 0.90825794 0.90824636

10 0.89897949 0.90918463 0.90815370 0.90825784 0.90824742

11 0.89897949 0.90918463 0.90815370 0.90825785 0.90824732 0.90824899

12 0.89897949 0.90918463 0.90815370 0.90825785 0.90824733 0.90824838

13 0.89897947 0.90918463 0.90815370 0.90825785 0.90824733 0.90824839 0.90824827

14 0.89897949 0.90918463 0.90815370 0.90825785 0.90824733 0.90824839 0.90824828

One can clearly differentiate three kinds of rings: the terminal rings which show
the highest content of R1, the “central” rings (of successive anthracene units) which
also have a high albeit lesser R1 content, and the branching rings with little R1

content and consequently much reduced local aromatic character. The first two
rings are the so-called Clar rings, signifying localized π-sextets, while the last are
the so-called “empty” rings of Clar [20].

A closer look at Table 2 indicates an oscillatory behaviour of the local aromatic
character of successive terminal rings. For example, when we increase a molecule
by a single triphenylene unit and consider the sequence of terminal rings A, E, H,
etc. (see Fig. 2), we see that the successive terminal rings give smaller and larger
contributions to the molecular RE. The difference between the individual successive
rings decrease, the largest increase in Re is between the A rings and E rings. The
oscillatory behaviour of the local ring Re suggests a relatively fast convergence for
the contributions of the individual rings, a phenomenon that has already been used
in theoretical computations such as the modeling of graphite by structures with
torus-like boundary conditions [22]. In order to judge better the degree of such
oscillatory behaviour within a family of compounds, we extend the computations
but only for selected rings.
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6. Recursions

In order to extend the considerations to much larger systems we need expres-
sions for the ring Re in a recursive manner. One of the present authors [23] has
derived general recursive expressions for the count of conjugated circuits in poly-
meric structures or within family of structurally related molecules. For the R1 we
obtain the following relation:

∂KN+1 = 2a∂KN + (2b− a2)∂KN−1 − 2ab∂KN−2 − b2∂KN−3.

Here a and b are the coefficients occurring in the recursion for Kekulé valence
structure count: KN+1 = aKN + bKN−1 and ∂ is the graph-theoretical equivalent
of the differential operator, e.g., the operator of deleting rings. The above recur-
sion formula for ∂KN+1 is obtained from the coefficients of its “characteristic”
polynomial:

{f(x)}2 = x4 − 2ax3 + (a2 − 2b)x2 + 2abx+ b2

where f(x) is characteristic polynomial of the recursionKN+1−aKN−bKN−1 =
0, that is, f(x) = x2 − ax− b.

A similar intriguing and interesting relationship between the calculus (as it
involves differentiation) and the discrete graphs (fragment erasure) has already
been reported by Clarke [24] between the characteristic polynomial of the adjacency
matrix of a graph and the characteristic polynomials for its Ulam subgraphs. It
allows the construction of the characteristic polynomials of some cyclic graphs [25].

For our family of graphs we have already seen that Kekulé numbers form the
sequence:

40, 178, 792, 3524, 15680, ...

which satisfy the recursion:

KN = 4KN−1 + 2KN−2

with K1 = 9 and K2 = 40. Hence in our case a = 4 and b = 2. In fact one can
start with benzene K0 = 2 and triphenylene K1 = 9 and continue the recursion.
Note that the above recursion formula is a special case of a recursion formula for
the matching polynomial derived by Babić et al. [26]. The Kekulé structures are
the constant terms in the matching polynomial. However, in this special case our
method is much faster then the method proposed by Babić et al. In Table 3 we list
the K-values for the first 15 members of the series.
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TABLE 3.
The Kekulé-structure count for the initial members of the fully-benzenoid family

considered.

K0 = 2 K6 = 15 680 K12 = 121 676 672
K1 = 9 K7 = 69 768 K13 = 541 399 104
K2 = 40 K8 = 310 432 K14 = 2 408 949 760
K3 = 178 K9 = 1 381 264 K15 = 10 718 597 248
K4 = 729 K10 = 6 145 920 K16 = 47 692 288 496
K5 = 3 524 K11 = 27 346 208

The recursion for K can be derived directly by considering consecutive mem-
bers of the family, or alternatively, it can be derived using the regression analysis.
We know in advance that the recursion is linear and involves only two consecutive
smaller members, because there are only two possible ways of distributing CC dou-
ble bonds across the connecting bonds between successive members in the family.
In other words the transfer matrix has only two rows.

In Table 4 we list all the recursion relations for individual rings for the first six
members of the family.

TABLE 4.
The recursions for the ring contributions of various conjugated circuits expressed

in terms of the Kekulé-structure counts.

Ring A R1 Kn = 4Kn−1 Ring E R1 Kn = 18Kn−2

R2 Kn = 2Kn−2 R2 Kn = 8Kn−3

Ring B R1 Kn = 4Kn−2 Ring F R1 Kn = 72Kn−3

R2 Kn = 6Kn−2 R2 Kn = 8Kn−3 + 36Kn−4

R3 Kn = 6Kn−2 + 2Kn−3

R4 Kn = 2Kn−2 + 2Kn−3 Ring G R1 Kn = 36Kn−4

R5 Kn = 2Kn−3 R2 Kn = 108Kn−4

R3 Kn = 116Kn−4 + 36Kn−5

Ring C R1 Kn = 16Kn−2 R4 Kn = 44Kn−4 + 72Kn−5

R2 Kn = 2Kn−2 + 8Kn−3 R5 Kn = 8Kn−4 + 44Kn−5

R6 Kn = 8Kn−5

Ring D R1 Kn = 16Kn−3

R2 Kn = 24Kn−3 Ring H R1 Kn = 80Kn−3

R3 Kn = 26Kn−3 + 8Kn−4 R2 Kn = 36Kn−4

R4 Kn = 12Kn−3 + 16Kn−4

R5 Kn = 2Kn−3 + 10Kn−4

R6 Kn = 2Kn−4

This Table clearly indicates to several regularities of the relative contributions
of individual rings to the molecular resonance energy within a single molecule, or

70 FIZIKA A 3 (1994) 2, 61–75
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between corresponding rings in molecules of different size. The regularities allow
one to write a general formula for the number of 6-membered conjugated circuits
in terminal rings for a molecule of arbitrary size:

Re(ring m) = 2Km−1KN−m.

For the first few rings this gives:

m = 1 Re(A) = 2K0KN−1

m = 2 Re(E) = 2K1KN−2

m = 3 Re(H) = 2K2KN−3

m = 4 Re(K) = 2K3KN−4

m = 5 Re(N) = 2K4KN−5.

The recursion for the central rings is slightly different. Except for the constant
factor 2(K0)

2, it combines the product of the Kekulé valence counts for two non-
consecutive members:

m = 1 Re(A) = 2(K0)
2K0KN−2

m = 2 Re(E) = 2(K0)
2K1KN−3

m = 3 Re(H) = 2(K0)
2K2KN−4

m = 4 Re(K) = 2(K0)
2K3KN−5

m = 5 Re(A) = 2(K0)
2K4KN−6.

It is not difficult to see that for all N , the Km KN−(m−1) product is always
smaller then the product Km−1 KN−m−1. Hence the π-sextets of the terminal rings
show a greater local aromaticity than the central π-sextets.

In Table 5 we show the numerical results for the relative aromaticity of the
terminal rings by extending calculations to N = 15.
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TABLE 5.
The numerical results for the relative aromaticities of the terminal rings.

N
m 6 7 8 9 10
1 14 096 62 720 279 072 1 241 728 5 525 056
2 14 256 63 432 282 240 1 255 824 5 587 776
3 14 240 63 360 281 920 1 254 400 5 581 440
4 63 368 281 952 1 254 544 5 582 080
5 1 254 528 5 582 016

N
m 11 12 13 14 15
1 24 583 680 109 384 832 486 706 680 2 165 596 416 9 635 799 040
2 24 862 752 110 626 560 492 231 744 2 190 180 096 9 745 183 872
3 24 834 560 110 501 120 491 673 600 2 187 696 640 9 734 133 760
4 24 837 408 110 513 792 491 729 984 2 187 947 520 9 735 250 048
5 24 837 120 110 512 512 491 724 288 2 187 922 176 9 735 137 280
6 24 837 152 110 512 640 491 724 864 2 187 924 736 9 735 148 672
7 491 724 800 2 187 924 480 9 735 147 520
8 9 735 147 648

Table 5 clearly shows the oscillatory behavior of terminal rings as one moves
from the periphery towards the central region of the molecule.

7. Discussion

Benzenoid polymers continue to receive considerable attention in the literature
[27]. One can think of at least two important reasons for this continuing interest.
Computations on such polymers offer insights on models for graphite and other
closely related structures, such as recently discussed bucky tubes [28] and elemen-
tal benzenoids [29,30]. On the other hand, such polymers may include cases of
unusual conductive properties and may become important for potential applica-
tions. Recently Seitz and Schmalz [27] examined 30 different benzenoid polymers
built by fusing four or fewer hexagons per monomer unit. These are all possi-
ble polymers of that size according to the proposed graph-theoretical classification
scheme for fused benzenoid polymers [31,32]. They reported resonance energies per
electron (REPE). Only two of the polymers considered, T(1,2)-phenanthrene (Fig.
4) and T (1, 1)-tetracene (Fig. 5) which has also been called also polyphenanthreno-
phenanthrene [33] are fully-benzenoid. Their REPE values are 0.152 and 0.155 eV,
respectively. These numerical values are based on the exact count of 6 and 10-
membered conjugated circuits and the use of the standard values of parameters R1

(0.869 eV) and R2 (0.247 eV) [1-4]. The above values compare well with the REPE
values reported here for the fully-benzenoid systems that we considered.
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Fig. 4. Diagram of T (1, 2)-phenanthrene.

Fig. 5. Diagram of T (1, 1)-tetracene.

Recently Zhu and Klein [34] examined a dozen benzenoid polymers among
several nonbenzenoid and nonalternant polymers. Of those considered only
polyphenanthreno-phenanthrene was fully-benzenoid, i.e., having only rings to
which π-sextets are assigned and no CC double bonds appear separately. It is
interesting to see that this benzenoid polymer among all reported has the largest
REPE value (0.1553 eV). From the results of Zhu and Klein one can also obtain
local ring aromaticities:

exposed ring A Re = 2 { 0.34929 R1 + (0.10757 R2+ 2 · 0.08863 R2)}
internal ring B Re = 2 {0.10757 R1 + 0.10757 R2 }.

When the numerical values for the parameters R1 and R2 are substituted, we
obtain for ring resonance energies the following values: Re(A) = 0.7478 eV and
Re(B) = 0.2401 eV, respectively.
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Razmatrana je skupina strukturno vrlo sličnih potpunih benzenoidnih ugljikovodika.
Studirana su lokalna i globalna svojstva ovih molekula, a naročita je pažnja
posvećena ulozi konačne veličine studiranih molekula u modeliranju benzenoidnih
polimera ili čak grafita. Opažena je interesantna pojava da lokalna svojstva ben-
zenskih prstenova alterniraju u sličnom okolǐsu, iako razlike u veličinama opadaju
rastom veličine molekule.
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