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We have studied the formation of envelope soliton in a electron-positron plasma.
The deduced nonlinear Schrödinger equation yields information about the modu-
lational instability of the system for the different ranges of the plasma parameters.
It is important to note that the modulational stability depends on the positron-
electron density ratio. The theory is applicable to solitary waves in space plasmas.
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1. Introduction

It has been observed recently that nonlinear waves in electron-positron plasma
behave differently from those in plasma with electrons and ions [1]. The electron-
positron plasma occured in the early universe [2], and is present in active galactic
nuclei [3] and in pulsar magnetosphere [4]. The different nature of an electron-
positron plasma is due to the fact that the constituents have almost the same mass.
People have already observed small amplitude solitons in plasma with significant
percentage of positrons [5]. Here we study the formation of the envelope solitons in
an electron-positron plasma. This is done with the help of a methodology advocated
earlier by Fried and Ichikawa [6] and Roy Chowdhury et al. [7]. In this approach,
one first derives a nonlinear dispersion relation which is then utilised to deduce
the nonlinear Schrödinger (NLS) equation. The NLS equation so deduced yields
the explicit form of the envelope soliton and also yields information about the
modulational stability.
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2. Formulation

We consider a plasma consisting of electrons, positrons and positive ions. It
is also assumed that the usual hydrodynamic description is valid. Let nα (α =i,
e, p) stand for the ion, electron and positron density and vα (α =i, e, p) be
their respective velocities. Let φ denote the electrostatic potential, (x, t) the space

and time coordinates, respectively, normalized by kBTe/e, λD =
√
ε0kBTe/(n0e2)

the Debye length, and ω−1i =
√
ε0mi/(n0e2) the ion plasma period. The ion and

electron velocities are normalized to the sound velocity Cs =
√
kBTe/mi, where kB

is the Boltzmann constant.

The continuity equation and equation of motion for the electrons are

∂ne

∂t
+
∂

∂x
(neve) = 0 , (1)

(
∂

∂t
+ ve

∂

∂x
)ve − ∂φ

∂x
= 0 . (2)

We assume that the positrons form a background with density np,

np = α exp(−φ/β) . (3)

The ions are described by

∂ni

∂t
+
∂

∂x
(nivi) = 0 , (4)

(
∂

∂t
+ vi

∂

∂x
)vi +

1

Q

∂φ

∂x
= 0 . (5)

The Poisson’s equation is given by

∂2φ

∂x2
= ne − np − ni . (6)

Though the species electron and positron are very similar in nature, yet the
main reason for the assumption (3) is to simplify the complexity of the problem.
Otherwise, we would have two more equations of motion for the positrons, and the
whole analysis would be very complicated.

To study the general problem of slow amplitude variation due to nonlinear
effects, we proceed along the line of Fried and Ichikawa [6]. Before proceeding to the
actual problem, we discuss in short the basics of the approach under consideration.

To start with, we assume the existence of a suitable nonlinear dispersion relation

ε(k, ω, A) = 0 , (7)
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k being the wave vector, ω the frequency and A the amplitude. Therefore, ε denotes
the functional relation between k, ω and A for the plasma under consideration.
When there is no dependence on A, the relation becomes the usual linear dispersion
relation. If initially the wave amplitude of the electrostatic potential φ is φ(x, 0),

φ(x, 0) =

∫
dk φk exp(ikx) + c.c. , (8)

with φk being peaked around k = k0. In the usual linear theory, the long-time
behaviour is given as

φ(x, t) =

∫
dk φk exp{i(kx− ωt)} + c.c . (9)

In the basic formulation of Fried and Ichikawa [6], it was assumed that one can
still use (9) in some approximation. We consider the situation when the amplitude
and the spread of k values are small. Then, it is meaningful to talk about an
expansion of the dispersion relation both in A2 and k̄ = k − k0. So

ε(k, ω, A) = ε(k, ω, 0) +A2
∂ε

∂A2
+ . . . = 0 . (10)

For ω, we have

ω = Ω(k) +MA2 = ω0 +Γ , (11)

and

Γ = vg k̄ + v
′
g

k̄2

2
+MA2 , (12)

Ω (k) being the solution of the linear dispersion relation

ε[k,Ω(k), 0] = 0 ,

ω0 = Ω(k0), vg =
∂Ω

∂k

∣∣∣∣
k=k0

, (13)

v′g =
∂2Ω

∂k2

∣∣∣∣
k=k0

, M =
∂ω

∂A2

∣∣∣∣
k=k0

, ω = ω0, A = 0 .

Equations (10) and (11) were used by Fried and Ichikawa [6] to deduce the nonlinear
Schrödinger equation

i

(
∂φ

∂t
+ vg

∂φ

∂x

)
+
v′g
2

∂2φ

∂x2
+ q1φ |φ|2 = 0 , (14)
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q1 = −M = − ∂ω
∂A2

.

To apply the above methodology in the case under consideration, we first of all
deduce the (linear) dispersion relation of the system represented by Eqs. (1) to (6).
For this we set

ne = 1 + n
′
e, ve = v

′
e ,

np = n
0
p + n

′
p, ni = n

0
i + n

′
i , (15)

vi = v
′
i φ = φ′ ,

where each primed variable denotes perturbed quantity which is proportional to
exp{i(kx− ωt)}. Proceeding in the usual manner, we get

ω2 =
1 + (1− α)/Q

α/β
· k2

1 + (β/α)k2
. (16)

So, this is our ε(k, ω, 0). To introduce corrections for small variation of the ampli-
tude, we proceed to a frame of reference moving with velocity V and set ξ = x−V t.
Whence, upon integration, the equations yield

ve = V
ne − 1
ne

− 2V 2ne − 1
ne

+ V 2
(ne − 1)2
n2e

− 2φ = 0 , (17)

vi = V
ni − 1 + α
ni

,

from which one can solve for ne and ni

ni =
1− α√

1− 2φ/(QV 2) , ne =
1√

1 + 2φ/(V 2)
. (18)

The Laplace equation leads to

∂2φ

∂x2
= ne − np − ni = 1√

1 + 2φ/V 2
− αe−φ/β − 1− α√

1− 2φ/(QV 2) . (19)

Expanding the right-hand side of Eq. (19) in powers of φ, we get

∂2φ

∂x2
= F1φ+ F2φ

2 + F3φ
3 , (20)

where

F1 =
α

β
− 1 + (1− α)/Q

V 2
,
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F2 =
3

2

1− (1− α)/Q2
V 4

− α

2β2
, (21)

F3 =
α

6β3
− 5
2

1 + (1 − α)/Q3
V 6

.

We now try to analyse Eq. (20) by a Fourier decomposition of φ,

φ =

∞∑
−∞
φn exp(inkx), φn = φ

?
−n . (22)

Whence, we get a set of equations of the following form

−n2k2φn = F1φn + F2
∑
p+m=n

φpφm + F3
∑

p+m+l=n

φpφmφl . (23)

Furthermore, it is assumed that each of the Fourier modes φn can be expanded in
powers of ε as

φn =

∞∑
1

εpφpn, λ = −k2 =
∞∑
0

εpλp , (24)

where ε represents a scale length. We are actually computing the perturbative
corrections to φn and k

2 in different orders of ε. Here, for convenience, we have set
λ = −k2. Whence, we get in various powers of ε

φ1±1 = 1, φ(1)n = 0, n /=± 1 ,

λ0 = F1 = α/β − {1 + (1− α)/Q}/V 2 ,

φ
(2)
0 = −2F2/F1 , (25)

φ
(2)
±2 = +F2/(3F1) ,

λ2 = 2F2
(
φ22 + φ

2
0

)
+ 3F3 .

From this information one can at once calculate the nonlinear (q1) and disper-
sive (v′g/2) coefficients appearing in the nonlinear Schrödinger equation (14). One
obtains.

q1 = −1
2

α/β ·G{1 + (1− α)/Q}
(α/β + F1)

2 , (26)

p1 = +
v′g
2
=
1

2

∂2ω0

∂k2
= −3
2
k

√
1 +
1− α
Q

√
α

β
+ k2 . (27)

where G = 2F2(φ
2
2 + φ

2
0) + 3F3.
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3. Discussion

It is now a well-known fact that the modulational instability can be studied
very simply by looking at the product p1q1 and analysing its variation with re-
spect to the plasma parameters. In our case, the most important parameter is α
which is equal to np0/n0, the ratio between the equillibrium densities of positrons
to electrons. In Figs. 1 and 2, we show the variation of p1 and q1 as functions of
α. Two cases may arise, either α > 1 or α < 1. The two situations are exhibited
in Figs. 1a and b, and 2a and b, respectively. The case when α > 1 shows that
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Fig. 1. Variation of a) p1 and b) q1 (see text) for α > 1.
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Fig. 2. Variation of a) p1 and b) q1 (see text) for α < 1.

both p1 and q1 are of same sign and hence the product p1q1 is always positive. On
the other hand, for the case α < 1, the situation as depicted in Figs. 2a and b,
turns out to be different. Here we observe that for 0.1 < α < 0.2, the function p1
is negative and sharply changes to positive as α becomes greater than 0.2. But q1
remains positive althrough. So, here we observe a change of stability. Depending
upon the relative concentration of the electrons and positrons, a stable situation
may turn to be an unstable one. Due to the existence of a large amount of electrons
and positrons in the space plasma, it is always possible to have a practical situation
where such conditions can occur.
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ANVELOPNI SOLITONI I MODULACIJSKA NESTABILNOST U
ELEKTRONSKO-POZITRONSKOJ PLAZMI

Proučavamo stvaranje anvelopnih solitona u elektronsko-pozitronskoj plazmi. Izve-
dena nelinearna Schrödingerova jednadžba daje podatke o modulacijskoj nesta-
bilnosti sustava za razna područja parametara plazme. Važno je primijetiti kako
modulacijska nestabilnost ovisi o omjeru gustoće elektrona i pozitrona. Teorija se
može primijeniti na solitonske valove u svemirskoj plazmi.
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