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1. Introduction

Over the past few years considerable attention has been turned to the effect
of quenched random dilution on the phase transitions. Although the quenched
randomness has for a long time been primarily discussed in the context of antifer-
romagnetic models, spin glasses, and competing interactions, a renewed interest has
emerged for quenched disorder in models with purely ferromagnetic interactions.
Many questions are still open, such as the consequences of strong disorder, the
possibility of new disorder fixed points, and the related critical behaviour, to the
extent that even the question of the critical behaviour of the dilute Ising model still
has not been settled [1]). One of the problems which drew the attention recently is
the striking effect of the change from the first- to second-order phase transition in
presence of disorder.

From the experimental point of view the study of quenched random dilution is
of obvious interest for understanding properties of the diluted magnetic materials,
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and, more generally, for dealing with the random inhomogeneities existing in all
real materials. However, these studies were recently motivated by intensive and
growing experimental activity focused on the phase transitions of fluids in confined
media such as the aerogels, the highly porous silica glasses [2]. Such systems may
be described with models where the particles of aerogel play the similar role as the
quenched non-magnetic impurities within magnetic materials. Among other new
phenomena, the broadening of the first-order phase transition, or its change to the
second-order one was observed in extensive studies of the isotropic to nematic phase
transition in nCB liquid crystals in aerogels [3] and also in the 3He – 4He mixtures
in aerogels [4].

The idea that quenched disorder may change the first-order transition signif-
icantly and even lead to a continuous one was already formulated by Imry and
Wortis in 1979 [5]. The Harris criterion [6], usually applied to determine the rele-
vance of weak disorder to the second-order phase transitions from the positive sign
of α, the critical exponent of the specific heat in the pure case, is not applicable
when the transition in pure model is of the first order.

A phenomenological argument [7,8] which explains the onset of a second-
order phase transition induced by randomness was presented for the case of a
temperature-driven first-order phase transition with symmetry breaking. The un-
derlining mechanism is the suppression of the interface free energy by a quenched
disorder and is exactly opposite to the mechanism which explains the onset of
the first-order phase transition in the pure q-state Potts model, by introducing
vacancies as an annealed disorder [9,10]. The argument was supported by the
renormalisation-group calculations [11,7] and also by independent rigorous results
by Aizenman and Wehr [12]. Both approaches also show that the effect strongly
depends on dimensionality d of the system, and that, in discrete models, an infinites-
imal amount of disorder is sufficient to produce the conversion to the second-order
transition when d ≤ 2. In higher dimensions the conversion is still produced, but
provided that some threshold amount of disorder is present.

These works have opened an intriguing question about the critical properties of
the new second-order phase transition and its class of universality.

Among the arguments of general type, there is a rigorous result by Chayes et
al. [13], derived on similar grounds as the Harris criterion, but which concerns the
disorder fixed point instead. It requires that, in presence of disorder, the correlation
length critical exponent ν obeys the inequality 1/ν ≤ d/2.
The new transition was further explored in series of works, which were almost

all done in two dimensions and on the Potts model, which is often taken as a
paradigm in studies of a temperature-driven first-order phase transition. Its advan-
tage in 2d are the analytic solutions for the pure case and the exact expressions for
the critical temperature Tc and the critical exponents [14]. Furthermore, self-dual
transformations for this model give the exact expression for Tc even for certain
classes of random interactions [15]. For these reasons most of the studies were per-
formed for a bimodal random bond distribution. However, the choice between site,
or bond randomness, or random dilution, should not be of relevance for the critical
behaviour alone as long as the frustration is absent.
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The early Monte-Carlo (MC) simulations that have reproduced the effect on
the 2d 8-state Potts model [16] support, together with some other works [17–19],
the assumption that the new critical behaviour should be Ising-like, irrespective of
the underlying symmetry.

More detailed analyses of the same models performed by MC simulations in
combination with finite-size scaling (FSS) [20,21], by renormalisation-group (RG)
[22,23], or by transfer-matrix and conformal invariance techniques [24–30] contra-
dict this statement. They obtain clear continuous variation with q of the magnetic
critical exponent β/ν, responsible for the correlation function decay at Tc, while
the temperature critical exponent ν depends on q very weakly and is quite close to
the Ising value, within the error limits.

It has been pointed out by many authors that in all the approaches used the
important role is played by the disorder strength, which can be partially accounted
for the contradictory results. The recent thorough analyses by Picco [25] show
crossover effects due to the competition between the stable disorder fixed point and
the two unstable fixed points corresponding to the pure system or the percolation
limit [31] when the disorder strength is varied.

Although it has been shown that the new transition is a genuine second-order
phase transition it has some peculiarities due to disorder. One of them is the
lack of self-averaging of certain thermodynamic quantities at Tc [32–36], the effect
otherwise characteristic for the low-temperature phase of spin-glasses. This has
several consequences not yet completely investigated.

It was argued [34, 35] that, in the case of absence of self-averaging, the rigor-
ous inequality by Chayes et al. may not hold since it is related to the finite-size
correlation length and not the actual correlation length.

The absence of self-averaging leads also to the multifractality of local operators,
which in the 2d Potts model with quenched randomness is found both for q < 4
[37–39] and for q > 4 [40]. In this later case, Olson and Young present, on the
example of 8-state Potts model, the multi-fractal behaviour of the magnetic critical
exponent and only a single temperature exponent ν , close to the Ising value.

Cardy and Jacobsen [23, 41] have given an appealing and new prospect to the
problem of the first-order transition with quenched disorder by mapping it to the
random-field Ising model, in general dimension. They have studied the interface
energy by the perturbation RG approach establishing the correspondence between
the latent heat and the magnetisation of these models, respectively. The fact that
the random field destroys the spontaneous magnetisation for d ≤ 2 [42] then ex-
plains the results of Aizenman and Wehr and Hui and Berker. In higher dimensions,
where the latent heat may coexist with a finite amount of disorder this approach
leads to the correspondence between the critical behaviour of the two models in the
limit of the strong first-order transition (q >> 1).

In contrast to all this variety of results for d = 2 very roughly sketched above, in
three dimensions very few calculations exist, although this case is much closer to the
real systems that we have mentioned earlier. In three dimensions there are no exact
results for the pure case, and the approximate approaches are technically more
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complicated. Monte Carlo simulations, although requiring significant numerical
effort, since the computing time grows with linear size as L3, are thus a useful tool
there.

In three dimensions MC simulations have been applied [43] to the Blume-Emery-
Griffiths model in order to reproduce the altering of the multi-critical phase diagram
observed experimentally in 3He – 4He binary mixtures in aerogel [4]. The same
result was later reproduced by the renormalisation-group calculations [44].

The MC study of the three- and four-state Potts model was undertaken [45]
for the realistic model of aerogel obtained numerically by diffusion-limited cluster-
cluster aggregation. The study has reproduced the onset of the second-order phase
transition both for the aerogel type disorder and for simple dilution. In both cases
it occurs above a certain threshold concentration. The extension of these studies to
the calculation of critical exponents of the induced continuous transition requires
intensive MC calculations with a more appropriate algorithm. We present here our
first results in this direction.

2. Diluted Potts model

The diluted Potts model is described by the Hamiltonian

H = −J
∑

i,j

ni nj δσi,σj , (1)

where σi denotes q-state Potts variable at lattice site i, J > 0 is a ferromagnetic
coupling and the summation is taken over the nearest neighbors of the 3d cubic
lattice. The dilution is introduced by the quenched random variables ni which
take values 0 or 1 for empty or occupied sites, respectively. They can represent
simple vacancies, or impurities, which do not interact either with the Potts degrees
of freedom, or with each other. Dilution obeys the canonical constraint, i.e. the
number of empty sites N0 is fixed. The concentration of non-occupied sites is then
c = N0/L

3, where L is the linear size of the lattice.

In a pure case (c = 0), the three-dimensional Potts model exhibits a second-
order phase transition for low values of q, while for q ≥ 3 it is of a first-order. The
threshold separating the two regimes lies slightly below q = 3 [14].

The gradual effect of finite concentrations of disorder is illustrated in Fig. 1. It
was obtained by MC simulations for a 4-state Potts model, where ni’s are set ac-
cording to the realistic model of aerogel structure obtained numerically by diffusion-
limited cluster-cluster aggregation. The figure represents plots of the free energy
versus energy at the critical temperature calculated from single disorder config-
urations for three different concentrations. For c = 0.05 it has two pronounced
maxima which correspond to the coexistence of the ordered and disordered phases.
The barrier between them which increases with lattice size L represents the inter-
face free energy which scales as a surface and is the evidence for the first-order
phase transition. For c = 0.15 the barrier disappears with increasing L and for the
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still higher concentration c = 0.3 the barrier is absent as an indication of the onset
of the continuous transition.

This illustrates the existence of the finite threshold for the onset of the second-
order phase transition in three dimensions.
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Fig. 1 Metropolis results for the free energy FL(E) versus E/Emax (Emax is the
energy at T = 0) of the four-state Potts model for three different concentrations
of aerogel. Thin, dashed, and thick line denote lattice sizes L = 12, 15 and 20,
respectively.

While the results of Fig. 1 refer to the random but strongly correlated dilution
characteristic for an aerogel, qualitatively similar behaviour is obtained for the
simple random dilution.

We present in the following paragraphs the recent MC simulations focused on
the critical behaviour of the disorder-induced second-order transition and performed
for the case of simple random dilution.

We consider the three-dimensional three-state Potts model. Due to the small
latent heat, the continuous phase transition sets on there at low dilution, which is
of technical convenience to reduce the dispersion of data by disorder.

3. Simulations and finite-size scaling

The Monte Carlo simulations were performed on the L×L×L simple cubic lat-
tices with fully periodic boundary conditions by using the Swendsen-Wang cluster
algorithm [46], efficient in suppressing the critical slowing down at criticality.

Starting with an arbitrary configuration of spins, it consists of two steps: (i)
identification of all clusters by the following rule: two neighbouring spins belong
to the same cluster if they are in the same state and if the link between them is
active. The later is completed with the probability padd = 1 − exp(−J/kbT ). (ii)
all clusters are independently flipped to randomly chosen states. Single spins are
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considered as clusters. In order to obtain a good statistics, one has to perform at
least 105 such Monte Carlo swaps (MCS) of the system. For quenched disorder, it
is also necessary to perform independent MC runs for a large number of individual
realisations of disorder and average over the calculated thermodynamic quantities
in the end. In the present paper we denote this average by [...], while the thermal
average is denoted by 〈...〉.
Simulations provide the distributions of energy and order parameter, but also

those related to the clusters, since the Swendsen-Wang algorithm gives a direct
insight into the cluster statistics.

Thermodynamic quantities of interest are then expressed through the moments
of energy and the order parameter.

The specific heat is expressed by

CL(T ) =
L3

kBT 2
[ 〈E2〉L − 〈E〉2L ], (2)

where the moments of energy are given by

〈Ek〉L =
∑

E

Ek PL(E), (3)

where E =
∑
<l,l′> δσl ,σl′ and PL(E) is the energy probability distribution. The

label L denotes the finite size.

The order parameter of the Potts model is usually defined as

M = (q〈max{mα}〉 − 1)/(q − 1); mα =
∑

i

δσi,α, α = 1, 2, 3. (4)

In simulations, the average is taken over the largest components max{mα} of each
configuration in order to break the symmetry in a finite system.

Instead of using the expression (4) we calculate the order parameter as an aver-
age over the largest cluster. It follows from the graph expansion by Kasteleyn and
Fortuin [47], the very basis of the Swendsen-Wang algorithm, that the distribution
of clusters constructed from active bonds can also be used to calculate the ther-
modynamic properties [48,49] in a similar way as the purely geometric clusters are
used to describe geometrical transitions like percolation.

The probability of the largest cluster is defined by

PL(nmax) =
1

mcs
NL(nmax) (5)

where NL(nmax) is the total number of occurrences of the largest cluster of the size
nmax during mcs Monte Carlo swaps.

The related moments

〈nkmax〉L =
∑

nmax

nkmaxPL(nmax). (6)
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are used to express the order parameter as

〈nmax〉L =
∑

nmax

nmaxPL(nmax) (7)

and the susceptibility, by the second moment, as

χL(T ) = L
3 [ 〈n2max〉L − 〈nmax〉2L ] (8)

In the thermodynamic limit, the quantities CL(T ) and χL(T ) have a singularity
at the critical temperature Tc. For the first-order phase transition it is trivial and
given by the δ function, while for the second order phase transition the singularities
have the form power-laws described by the critical exponents α and γ, respectively.
In the finite-size quantities CL(T ) and χL(T ) these singularities are rounded, with
the finite maxima near Tc and the finite-size scaling (FSS) analysis (see e.g. [50])
is used to recover the critical exponents. In the case of δ function the maxima will
scale as Ld. In the case of a second-order phase transition the maxima scale as Lα/ν

and Lγ/ν for CL(T ) and χL(T ), respectively.

4. Results

The simulations were performed on lattices of linear sizes L = 10, 12, 15, 20 and
30 by considering two cases: the pure model (c = 0) and the diluted model in the
regime of a second-order phase transition (c = 0.3).

Results for c = 0 are obtained with runs between 105 and 106 MCS, those
for c = 0.3 with 105 MCS. For the diluted case, all the plots versus temperature
presented in figures below (for CL(T ), χL(T ) and RL(T )) have been obtained by
averaging over 30 realisations of disorder. The data used for the FSS fits (given in
the insets of these figures) have been averaged over 300 configurations of disorder.
The total computing time consumed for the presented material is approximately
six months of CPU time on a 400MHz Pentium II processor.

4.1. Specific heat

The plots of the specific heat versus temperature are presented for various sizes
in Figs. 2a and 2b for the pure and the diluted case, respectively.

According to the FSS arguments [50] for the 1st-order phase transition the
maxima should scale as Ld, while for the 2nd-order one they scale with Lα/ν. The
data of the specific heat maxima CLmax(TcL) were fitted to the power-law form
with an additional constant term present to eliminate nonsingular contributions to
CL(T ).

For c = 0, the fitted value 2.461 is quite distant from d = 3. The major reason
for the discrepancy comes from the extremely weak first-order character of this
transition, which requires very large lattice sizes to be detected correctly.
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For c = 0.3, the scaling exponent is drastically lowered as a clear indication of
the disappearance of the 1st-order phase transition. Since it is very close to 0, we
limit here to examine only its sign by drawing the plot of the maxima of the CL(T )
versus ln(L). As it can be seen from the inset of the Fig 2b, the data are almost
linear in ln(L), while the restriction to larger sizes suggests a positive exponent α.
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Fig. 2. Plots of the specific heat CL(T ) versus temperature compared for the pure
and diluted models. (a) the pure model (c=0). The inset gives plot of the maxima
versus size: the fit to the form CL(T ) = C0 + C1 ∗ Lx contains C0 = 2.223,
C1 = 0.0046, x = 2.461; (b) diluted model (c = 0.3): The inset contains the plot of
the maxima of the CL(T ) versus lnL.

4.2. Susceptibility

The plots of the susceptibility (Eq. (8)) versus temperature are presented for
the pure and the diluted case, in Figs. 3a and b, respectively. In the insets of the
two figures are illustrated the log-log plots of the maxima χLmax(TcL) versus size.

For c = 0 the scaling exponent is equal to 2.82± 0.05. The discrepancy from
d = 3 should again be attributed to the weak first-order transition, as discussed
earlier.

The slope of the log-log plot for c = 0.3 gives the ratio γ/ν = 1.92± 0.02, or,
expressed by the correlation function exponent, η = 0.08± 0.02.

4.3. The ratio of moments

The thermal critical exponent ν may be derived directly from the moment ratio

RL =
〈n4max〉
〈n2max〉2

(9)

related to the Binder’s fourth-order cumulant [51]. Similar to the Binder’s fourth-
order cumulant for magnetisation, it is almost size-independent at Tc. Consequently,
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all finite-size curves for RL(T ) versus T cross at the same point which corresponds
to the critical temperature (see Fig. 4).
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Fig. 3. Plots of susceptibility χL(T ) versus temperature compared for pure and
dilute models with q = 3. In the insets are the log-log plots of the maxima versus
size. (a) c = 0: the log-log plot in the inset gives the slope 2.82; (b) c = 0.3: the
log-log plot in the inset gives the slope 1.92.
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Fig. 4. Plots of moment ratio RL versus temperature. The curves for all sizes L
have the common crossing at T = 1.245.

The ratio RL(T ) also satisfies the scaling relation [48, 49]

RL(τ ) = L
x f(L1/ν τ ), τ =

T − Tc
Tc

. (10)

The critical exponent ν can be determined by collapsing the curves with precision
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up to a few percent. In Fig. 5 are shown the curves collapsed by scaling the reduced
temperature τ with L1/ν. The scaling exponent was found to be equal to 1.50±0.08,
so that the resulting exponent is estimated as ν = 0.67 ± 0.05. Within the given
error limits, this value is consistent with the behaviuor obtained for the specific
heat.
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Fig. 5. The collapsed curves of the moment ratioRL when ploted versus the reduced
temperature scaled with L1.5.

5. Discussion and conclusion

The effect of dilution on the critical behaviour of ferromagnetic models is a com-
plex problem which still rises a number of fundamental questions: the difference
between weak and strong randomness, the degree of universality of the disorder crit-
ical exponents, in particular when a new second-order phase transition is induced
by disorder from a first-order one.

We have presented new results for the critical behaviour of the second-order
phase transition induced by random dilution in 3d three-state Potts model. The
critical exponents α, η and ν were studied by the FSS analysis of the moments of
energy and the largest cluster. As expected, the maxima of the pure model (c = 0)
do not scale so well with d, due to the weak first-order character of the transition.
This, in contrast, presents an advantage for the diluted case. Clear evidence for
the second-order phase transition has been obtained for the diluted case when
c = 0.3. As it concerns the critical exponents, two mayor points should be discussed.
The first one is the possible crossover effect dependent on the concentration c.
As pointed out in 2d [25], for very low or very high concentrations, the obtained
critical exponents can be influenced by the unstable fixed points corresponding
to these two respective limits. Since the concentration studied in this paper is
rather low, further calculations with higher concentrations are needed to examine
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the possible crossover effects. The second point is the possible comparison to the
critical exponents of other models related to the problem, in particular those for the
pure 3d Ising model (ν = 0.63, η = 0.037, α = 0.11) [52], the diluted 3d Ising model
(ν = 0.684, η = 0.0375) [53] and for the percolation in 3d (ν = 0.875 and η = 0.051)
[54]. According to the early conjectures, the new exponents should be compared
to those of the pure Ising model, or, since the pure Ising model has α > 0, with
those of the diluted Ising model. The percolation exponent should be important
in the limit of large c close to the percolation threshold. The calculated exponents
are clearly different from the percolation exponent, which is not unexpected. As
for the other two cited classes of universality, the present calculation cannot give
a conclusive answer, since all the three values involved are close to each other, the
difference between them being smaller than the error margins. The results are also
inconclusive with respect to possible violation of the Chayes inequality. Although
the Chayes inequality is a rigorous result, it may be interpreted as a consequence
of the way of averaging [34] and this does not excludes the possibility that the
exponent α eventually indeed turns out to be positive.

The presented numerical approach may be extended along several directions.
The work is in preparation including a systematic FSS analysis of a larger number of
quantities, which, together with some additional data, should improve the accuracy
in the calculation of the exponents [55]. In future it would be interesting to examine
the dependence of the calculated exponents on the number of Potts states. Another,
more important question, in particular for the present approach, is to examine the
possible crossover effects in the model by varying the concentration of dilution.
A more difficult task for the Monte Carlo approach would be to find the critical
exponents of the tricritical point for large values of q and compare them to the to
the corresponding exponents of the random field Ising model.
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FAZNI PRIJELAZ DRUGOG REDA IZAZVAN ZAMRZNUTIM NASUMIČNIM
RAZRJEDENJEM U 3D

Raspravlja se učinak nasumičnog, zamrznutog razrjedenja na feromagnetske pri-
jelaze, posebice na promjenu iz prijelaza prvog u onaj drugog reda. Prikazani su
novi rezultati za razrijedeni trodimenzijski Pottsov model s tri stanja. Kritični ek-
sponenti faznog prijelaza drugog reda izazvanog neredom izvedeni su ljestvičnom
analizom momenata energije i najvećeg grozda, dobivenih Monte Carlo simulaci-
jama.
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