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We critically review the ΛΛ dynamics by examining Λ–Λ and Λ–nucleon phe-
nomenological potentials in the study of the bound state properties of double-Λ
hypernuclei 6

ΛΛHe, 10
ΛΛBe, 14

ΛΛC, 18
ΛΛO, 22

ΛΛNe, 26
ΛΛMg, 30

ΛΛSi, 34
ΛΛS, 38

ΛΛAr, 42
ΛΛCa, 92

ΛΛZr and
142
ΛΛ Ce, 210

ΛΛ Pb in the framework of (core+Λ+Λ) three-body model. An effective ΛN
potential is obtained by folding the phenomenological ΛN potential into the density
distribution of core nuclei. The former two cases (i.e. 6

ΛΛHe and 10
ΛΛBe) are revisited

to justify the correctness of the present potential model. Assuming the same po-
tential model, we predicted some of the structural properties of heavier double-Λ
hypernuclei. The hyperspherical harmonics expansion method, which is an essen-
tially exact method, has been employed for the three-body system. A convergence
in binding energy up to 0.25% for Kmax = 20 has been achieved. In our calculation
we have made no approximation in restricting the allowed l-values of the interacting
pairs.
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1. Introduction

The study of the structure of light exotic hypernuclei has become an area of
particular interest since the discovery of this species in the early sixties [1-3]. Im-
portant members of this new species are the nuclei 5

ΛHe, 9
ΛBe, 13

Λ C, 6
ΛΛHe, 10

ΛΛBe and
13
ΛΛB [1-8]. Discovery of these double-Λ hypernuclei opened a new avenue to extract
important informations about the ΛΛ interaction. Again, since hyperons as well as
nucleons both have qqq structure (e.g., p→ uud, n→ udd, Λ0 → uds etc., where u,
d and s are up, down and strange quarks, respectively), the interaction among them
as well as with nucleons should give important inputs in the knowledge of strong
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(qq) interactions. That in turn enhances the range of ones imagination on possible
existence of multistrange hypernuclei and derivation of true hyperon-hyperon and
hyperon-nucleon interactions. In the early stages, the emulsion experiments pro-
vided a source of information on hypernuclei, which was limited to binding energies
of Λ-particle in the light hypernuclei and the decay rates (life times) [2]. The bind-
ing energy data provided physicists with some qualitative informations about the
Λ–nucleon (ΛN) interaction and single-particle potential strength for Λ-particle in
hypernuclei [9]. The hyperon nucleon scattering experiments have also been per-
formed but they are still in primary stages and do not provide detailed phase shifts
to construct the potential reliably. Some Λ–N and Σ–N total cross-sections and
very few angular distribution at low energies have been measured [10-15], but they
are not sufficient to allow the phase-shift analysis. Nevertheless, the bound-state
properties of single-Λ and double-Λ hypernuclei can give valuable indirect informa-
tion about ΛN and ΛΛ interactions. One can, for example, take phenomenological
forms of ΛN and ΛΛ interactions and see if they reproduce the observables of the
hypernuclei. Alternatively, one can adjust the parameters of the empirical potential
to reproduce the bound state properties and thus predict the effective ΛN and ΛΛ
interactions. Earlier attempts in this direction [16-20] used variational and approx-
imate few-body calculations for the hypernucleus treated as a few-body system.

In the present work, we test our potential model (i.e., the ΛΛ and the effective
ΛN potential which we obtained by folding the phenomenological ΛN potential into
the density distribution of the core nuclei) by studying the general state properties
of double-Λ hypernuclei 6

ΛΛHe and 10
ΛΛBe for which the ground state binding energy is

known experimentally. We then apply our potential model to investigate the ground
state structural properties of double-Λ hypernuclei 14

ΛΛC, 18
ΛΛO, 22

ΛΛNe, 26
ΛΛMg, 30

ΛΛSi,
34
ΛΛS, 38

ΛΛAr, 42
ΛΛCa, 92

ΛΛZr, 142
ΛΛ Ce and 210

ΛΛ Pb (for which the experimental data are not
available) treating them as core+Λ+Λ three-body system. (No ΛΛ bound state has
been reported). We employ hyperspherical harmonics expansion (HHE) method
to solve such a three-body system. This method is a powerful tool for the ab initio
solution of the few-body Schrödinger equation for a given set of interaction poten-
tials among the constituent particles. This method has been used for bound states
in atomic [21-38], nuclear [39-50] and particle physics [51-53]. Attempts have been
made to use it in scattering problems as well [54]. In this method, the wave function
is expanded in a complete set of hyperspherical harmonics (HH), which are, for a
three-body system, the six-dimensional analogue of ordinary spherical harmonics,
which are the angular part of eigenfunctions of 3-dimensional Laplacian operator.
The resulting Schrödinger equation is a set of coupled differential equations which
are solved numerically by the renormalized Numerov method (RNM) [55-56]. The
HHE method is essentially an exact one and more reliable than other methods. It
involves no approximation other than an eventual truncation of the expansion basis.
By gradually expanding the expansion basis and checking the rate of convergence,
any desired precision in the binding energy can, in principle, be achieved. However,
the number of coupled differential equations and, therefore, the complexity in the
numerical solution increases rapidly as the expansion basis is increased by includ-
ing larger hyperangular-momentum quantum numbers. Computer limitations set
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an ultimate limit to the precision attainable. Thus in this approach, the attainment
of desired convergence in physical observables are of great importance.

In the present calculation, we achieved a convergence in the binding energy
to within 0.25%. In addition to the two-Λ separation energy (BΛΛ) and ΛΛ bond
energy (∆BΛΛ), which are defined as

BΛΛ( A
ΛΛZ) = [M(A−2Z) + 2MΛ − M( A

ΛΛZ)]c2 (1)

and

∆BΛΛ = BΛΛ( A
ΛΛZ) − 2BΛ(A−1

Λ Z) , (2)

we have also studied the size, density distribution and correlation among the core
and the valence Λ-hyperons.

This paper is organized as follows: In Sect. 2, we review the HHE method for a
three-body system consisting of non-identical particles. Results of calculation and
discussion are presented in Sect. 3. Finally, in Sect. 4 we draw our conclusions.

2. HHE method

We label the core as particle no ‘1’ and the two valence Λ-particles as particles
‘2’ and ‘3’, respectively (see Fig. 1). For pairwise interactions, we can treat any one
of the three particles as the spectator, remaining two being the interacting pair.
Thus there are three possible partitions labelled ‘i’ (i=1, 2, 3). In the partition ‘i’,
particle numbered ‘i’ is the spectator and particles numbered ‘j’ and ‘k’ form the
interacting pair (i, j, k = 1, 2, 3, cyclic). Now, for a given partition ‘i’, the Jacobi co-
ordinates ( which are proportional to the relative separation between the interacting
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Fig. 1. Choice of Jacobi coordinates for the partition ’1’.
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pair and the relative separation between the spectator and the centre of mass of
the interacting pair, respectively) are defined as

xi = ajk(rj − rk) ,

yi = a(jk)i

(
ri − mjrj + mkrk

mj + mk

)
,

R =
1
M

(miri + mjrj + mkrk) .

(3)

The coefficients ajk and a(jk)i are defined as ajk =
[
mjmkM/{mi(mj + mk)2}]1/4

and a(jk)i =
[
mi(mj + mk)2/{mjmkM}]1/4 (i, j, k=1, 2, 3 cyclic), where mi, ri

are the mass and position of the ith particle, M = mi + mj + mk is the total mass
and R is the centre of mass of the system. The sign of xi is fixed by the condition
that ‘i’, ‘j’, ‘k’ form a cyclic permutation of (1, 2, 3). In the transformation (2),
the six dimensional volume element is conserved (i.e., the Jacobian is unity) and
the centre of mass motion is automatically separated. The relative motion of the
three-body system is described by the Schrödinger equation

[
− h̄2

2µ
(∇2

xi
+ ∇2

yi
) + Vjk(xi) + Vki(xi,yi) + Vij(xi,yi) − E

]
Ψ(xi,yi) = 0 (4)

where µ = [mimjmk/M ]1/2 is an effective-mass parameter and Vij is the interac-
tion potential between ith and jth particles. We next introduce the hyperspherical
variables defined by [50]

xi = ρ cos φi

yi = ρ sin φi ,
(5)

where ρ =
√

x2
i + y2

i is the global length (also called the hyper-radius), which is
invariant under the three-dimensional rotations and permutations of the particle
indices. Thus, ρ is the same for all three partitions. The five other hyperspherical
variables include the hyperspherical angle φi = tan−1(yi/xi) and the polar angles
(θxi

, φxi
) and ( θyi

, φyi
) giving orientations of xi and yi, respectively. These are

collectively denoted by

Ωi ≡ {φi, θxi
, φxi

, θyi
, φyi

} (6)

and are called the “hyperangles”. The six-dimensional volume element is given by

dV6 = ρ5 dρ cos2 φi sin2 φi dφidΩxi
dΩyi

, (7)

where
dΩxi

= sinθxi
dθxi

dφxi

dΩyi
= sinθyi

dθyi
dφyi

.
(8)
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In terms of the hyperspherical variables, the Schrödinger equation becomes[
− h̄2

2µ
{ 1
ρ5

∂

∂ρ
(ρ5 ∂

∂ρ
) − K̂2(Ωi)

ρ2
} + V (ρ,Ωi) − E

]
Ψ(ρ,Ωi) = 0 , (9)

where V (ρ,Ωi) = Vjk(xi)+Vki(xi,yi)+Vij(xi,yi) is the total interaction potential
expressed in terms of the hyperspherical variables, and K̂2(Ωi) is the square of the
hyperangular-momentum operator given by [50]

K̂2(Ωi) = − ∂2

∂φi
2 − 4 cot 2φi

∂

∂φi
+

1
cos2 φi

l̂2(x̂i) +
1

sin2 φi

l̂2(ŷi), (10)

where l̂2(x̂i) and l̂2(ŷi) are the squares of ordinary orbital angular-momentum op-
erators associated with xi and yi motions. The operator K̂2 satisfies the eigenvalue
equation [50]

K̂2(Ωi)YKαi
(Ωi) = K(K + 4)YKαi

(Ωi) , (11)

where αi is an abbreviation for the set of four quantum numbers {lxi
, lyi

, L,M}
and K, the hyperangular-momentum quantum number (which is not a conserved
quantity for the three-body system) is given by K = 2ni + lxi

+ lyi
(ni being a

non-negative integer). The number K is the degree of the homogeneous harmonic
polynomials ρKYKαi

(Ωi) in the Cartesian components of xi and yi. Note that
the quantum number K is invariant under the change of partition and hence does
not involve the partition label. The eigenfunctions of K̂2 are called hyperspherical
harmonics (HH) and are given by

YKαi
(Ωi) = (2)PK

lyi
lxi (φi)

[
Ylxi

(x̂i) Ylyi
(ŷi)

]
LM

, (12)

where

(2)PK
lyi

lxi (φi) = NK
lxi

,lyi (cos φi)lxi (sin φi)lyi Pni

lyi
+1/2,lxi

+1/2 (cos 2φi) . (13)

The normalization constant N
lxi

,lyi

K is given by

N
lxi

,Lyi

K =
[

2 ni! (K + 2)(ni + lxi
+ lyi

+ 1)!
Γ(ni + lxi

+ 3/2) Γ(ni + lyi
+ 3/2)

] 1
2

(14)

and Pα,β
n (x) is the Jacobi polynomial [57]. The HH’s {YKαi

(Ωi)} form a complete
orthonormal set in the angular hyperspace (Ωi).

In the present method, the wave function Ψ(ρ,Ωi) is expanded in the complete
set of HH corresponding to a given partition (say partition ‘i’)

Ψ(ρ,Ωi) =
∑
Kαi

UKαi
(ρ)

ρ5/2
YKαi

(Ωi). (15)
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The factor ρ−5/2 is included in order to remove the first-order derivative with
respect to ρ in Eq. (9). Substitution of Eq. (15) in Eq. (9) and the use of the
orthonormality of HH leads to a set of coupled differential equations (CDE) in ρ

[
− h̄2

2µ

(
d2

dρ2
− LK(LK + 1)

ρ2

)
− E

]
UKαi

(ρ)

+
∑

K′α ′
i

< Kαi | V (ρ,Ωi) | K ′α ′
i > UK′α ′

i
(ρ) = 0,

(16)

where LK = K + 3/2 and

< Kαi|V (ρ,Ωi)|K ′α′
i > =

∫
Ωi

Y∗
Kαi

(Ωi)V (ρ,Ωi)YK′α′
i
(Ωi)dΩi. (17)

Since the expansion (15) is, in principle, an infinite one, the CDE, Eq. (16), are
also an infinite set. For practical purposes, the expansion (15) has to be truncated
to a finite set, leading to a finite set of CDE. Restrictions arising out of symmetry
requirement and imposition of conserved quantum numbers (e.g., total angular
momentum, parity etc.) can reduce the expansion basis further and consequently
a smaller set of CDE is to be solved.

Evaluation of the matrix elements of the type < YKαi
(Ωi)|Vjk(xi)|YK′α′

i
(Ωi) >

(for central interactions) is straightforward, while those for the matrix elements
of the type < YKαi

(Ωi)|Vki(xj)|YK′α′
i
(Ωi) > and < YKαi

(Ωi)|Vij(xk)|YK′α′
i
(Ωi) >

become very complicated even for central interactions, since both xj or xk are
expressed as linear combinations of xi and yi, hence xj and xk depend on the
polar angles of xi and yi (i.e. x̂i, ŷi) (see Eq. (2)). But the calculation of these
matrix elements will be quite simple in the partitions ‘j’ or ‘k’, respectively, since
in these partitions xj or xk are independent of yj and yk, respectively. Since the
choice of a particular partition is arbitrary, the HH basis corresponding to any
chosen partition ‘i’ forms a complete set spanning the same hyperangular space.
One can then relate the HH basis for two different partitions ‘i’ and ‘j’ through a
unitary transformation. Then a particular element, YKαi

(Ωi), in the partition ‘i’
can be expanded in the HH basis corresponding to partition ‘j’ as

YKαi
(Ωi) =

∑
lxj

lyj

< lxi
lyi

| lxj
lyj

>KL YKαj
(Ωj), (18)

where the transformation coefficients < lxi
lyi

| lxj
lyj

>KL are called the Raynal
Revai coefficients (RRC) [58]. Since K, L and M are independent of the partition,
the sum is over lxj

and lyj
only, subject to the restrictions lxi

+ lyi
= L = lxj

+ lyj
.

These coefficients can be computed easily [38]. Since the RRC’s do not involve ‘ρ’,
they are calculated once only and stored. That reduces the CPU time significantly.
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In terms of the RRC’s, the matrix elements of Vki in the partition ‘i’ can be
writen as

〈YKαi
(Ωi)|Vki(xj)|YK′α ′

i
(Ωi)〉 =

∑
l′xj

l′yj
lxj

lyj
< lxi

lyi
|lxj

lyj
>∗

KL

× < l ′
xi

l ′
yi

| l ′
xj

l ′
yj

>K′L

× 〈YKαj
(Ωj)|Vki(xj)|YK′α′

j
(Ωj)〉.

(19)

The matrix element on the right side of Eq. (19) has the same form as the matrix
element of Vjk in the partition ‘i’ (preferred partition) and can be evaluated in a
simple way. Thus by computing the RRC’s involved in Eq. (19), the matrix element
of Vki in the partition ‘i’ can be evaluated easily. Similar technique can be employed
for the calculation of the matrix element of Vij .

Calculation of the potential matrix elements in the preferred partition (in which
the pair interaction potential is a function only of the corresponding x of the
partition) can be further simplified by introducing a multipolar expansion [39] of
the potential. For a matrix element in the preferred partition, say partition ‘i’, the
potential Vjk(xi), is expanded in an appropriate subset of corresponding HH

Vjk(xi) =
∑

K′′α′′
v
(jk)
K′′α′′(ρ)YK′′α′′(Ωi) , (20)

where v
(jk)
K′′α′′(ρ) is called the potential multipole and can be evaluated by the use

of the orthonormality of HH

v
(jk)
K′′α′′

i
(ρ) =

∫
Vjk(xi)Y ∗

K′′α′′
i
(Ωi)dΩi. (21)

The matrix element thus becomes

< YKαi
(Ωi)|Vjk(xi)|YK′α′

i
(Ωi) >=

∑
K′′α′′

i

v
(jk)
K′′α′′

i
(ρ) < Kαi|K ′′α′′

i |K ′α′
i > (22)

where

< Kαi | K ′′α′′
i | K ′α′

i >=
∫

Y ∗
Kαi

(Ωi)YK′′α′′
i
(Ωi)YK′α′

i
(Ωi)dΩi (23)

are called the geometrical structure coefficients (GSC). They are independent of
ρ and the interaction. Hence, these coefficients need to be calculated once only
and stored, resulting in a fast and efficient algorithm. The GSC’s involved in Eq.
(22) can be calculated by the standard numerical integration. However, they can
be calculated in a very elegant manner [59] by using the completeness property
of the HH basis. Finally, the set of CDE’s, Eq. (16), is to be solved numericaly
subject to appropriate boundary conditions to get the energy E and the partial
waves UKαi

(ρ).
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3. Results and discussion

In the present calculation we have taken the core to be structureless. Since the
core (4He, 8Be, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 90Zr, 140Ce or 208Pb)
contains only nucleons and no Λ-particles, there are no symmetry requirements
under exchange of the valence Λ-particles with the core nucleons. The only sym-
metry requirements are (i) antisymmetrization of the core wave function under the
exchange of the nucleons and (ii) antisymmetrization of the three-body wave func-
tion under exchange of the two Λ-particles. The former is implicitly taken care of
in the choice of the core as a building block. The latter is correctly incorporated
by restricting the lx1 values, as discussed in detail in the following. Thus, within
the three-body model, the symmetry requirements are correctly satisfied without
the use any approximation. The ground state of all experimentally known double-Λ
hypernuclei have a total angular momentum J = 0 and positive parity. We assume
this to be true for all double-Λ hypernuclei with cores having N = Z = even. The
possible total spin (S) of the three-body system (core+Λ+Λ) can take two values
0 or 1 since the spin of the core in all the above cases is equal 0. Thus the total
orbital angular momentum L can be either 0 or 1, corresponding to S = 0 or 1,
respectively. Hence, the ground state of all the above double-Λ hypernuclei is an
admixture of the states 1S0 and 3P0. Since the core is spinless, the spin singlet
state (S = 0) corresponds to the zero total spin of the valence Λ-particles (i.e.
S23 = 0). Hence the spin part of the wave function is antisymmetric under the ex-
change of the spins of the two Λ-particles. Thus the spatial part must be symmetric
under the exchange of the two Λ-hyperons. The symmetry of the spatial part is
determined by the hyperspherical harmonics, since the hyper-radius ρ and hence
the hyper-radial partial waves (UKα(ρ)) are invariant under the permutation of the
particles. Under the pair exchange operator P23, which interchanges particles 2 and
3, x → −x and y remains unchanged (see Eq. (2)). Consequently, P23 acts like
the parity operator for the pair (23) only. Choosing the two valence Λ-hyperons
to be in spin singlet state (spin antisymmetric), the space wave function must be
symmetric under P23. This then requires lx1 to be even. For the spin singlet state,
the total orbital angular momentum is L = 0, hence we must have lx1 = ly1 = even
integer. Since K = 2n1 + lx1 + ly1 , where n1 is a non-negative integer, K must be
even and

lx1 = ly1 = 0, 2, 4, ....,K/2 if K/2 is even

= 0, 2, 4, ...., (K/2 − 1) if K/2 is odd .
(24)

Again, for the triplet state (S = 1), the two valence Λ-hyperons will be in the
spin triplet state (S23 = 1, spin symmetric). Hence the space wave function must
be antisymmetric under P23. This then requires lx1 to be odd. For the spin triplet
state, the total orbital angular momentum L = 1, hence ly1 may take values lx1 and
lx1 ± 1, but the parity conservation allows ly1 = lx1 only. Since K = 2n1 + lx1 + ly1 ,
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where n1 is a non-negative integer, K must be even and

lx1 = ly1 = 1, 3, 5, ....,K/2 if K/2 is odd

= 1, 3, 5, ...., (K/2 − 1) if K/2 is even .
(25)

For a practical calculation, the HH expansion basis (Eq. (15)) is truncated to a
maximum value (Kmax) of K. For each allowed K ≤ Kmax with K=even inte-
gers, all allowed values of lx1 (=0,1,2,3,4,.....,K/2) are included (if tensor forces
are considered). The even lx1 values correspond to L = 0, S = 0 and the odd lx1

values correspond to L = 1, S = 1. This truncates Eq. (16) to a set of N coupled
differential equations, where

N =
(

1
2Kmax + 1

) (
1
4Kmax + 1

)
if K/2 is even

=
(

1
4Kmax + 2

) (
1
2Kmax + 2

)
if K/2 is odd .

(26)

The truncated set of CDE has been solved by the hyperspherical adiabatic approx-
imation (HAA) [60].

3.1. Two-body potentials

A number of phenomenological as well as meson-exchange motivated forms were
used for the ΛΛ interaction in earlier attempts. Based on the available data, some
selection was made between Nijmegen potential models [61-62]. Since knowledge of
ΛΛ scattering is still quite inadequate, it is not possible to establish realistic ΛΛ
potentials at this stage. Instead, we adopt here a purely phenomenological strategy.
We used the three-term Gaussian ΛΛ potential model D proposed by the Nijmegen
group [63]. They proposed OBE potential models D and F based on the NN, ΛN
and ΣN data along with the SU(3) symmetry. The Nijmegen D ΛΛ potential given
by Refs. [61] and [62]

VΛΛ(r) =
3∑

i=1

Vi exp(− r2

β2
i

) (27)

without any restriction over l values. The parameters of the ΛΛ interaction are listed
in Table 1. The core–Λ potential is obtained by folding phenomenological Λ-nucleon
potential (assumed one-term Gaussian) into the nuclear density distribution of the

Table 1. Parameters of ΛΛ interaction from Refs. [61] and [62]. (ND stands for
Nijmegen potential D.)

i 1 2 3

βi (fm) 1.5 0.9 0.5

Vi (ND) -8.967 -226.800 880.700
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core which is chosen to have an Wood-Saxon shape given by

ρ(r) =
ρ0

1 + exp(
r − c

a
)

(28)

with c = r0A
1/3
c fm, a = 0.60 fm, r0 = 1.1 fm (where c is termed the half density

radius and a the skin thickness), and the density constant ρ0 is determined by the
condition ∫

ρ(r)d3r = Ac, (29)

where Ac is the mass of the core in units of nucleon mass. The values of a and r0

are chosen following suggestions in the literatutre [6,8]. The phenomenological ΛN
potential is given by

VΛN (r) = V0 exp(−r2/χ2) (30)

with V0 adjusted to reproduce the Λ binding energy (BΛ) (experimental or em-
pirical, see Table 2) in the core–Λ subsystem and χ = 1.034 fm. Then the core-Λ
potential is given by

VcΛ(r) =
∫

ρ(r1)VΛN (|r − r|)d3r1. (31)

The strength of ΛN potential is expected to be weakened with the increase in mass
of the core due to the screening or shielding effect by neighbouring nucleons within

Table 2. Parameters of the ΛN potential and corresponding Λ separation energy in
different A−1

Λ Z (i.e. core-Λ subsystems).

System ΛN potential parameters BΛ (MeV)
V0 (MeV) χ (fm) Experimental Empirical Calculated

5
ΛHe -71.05 1.034 3.12 ± 0.02 [9] − 3.1214
9
ΛBe -52.04 1.034 6.71 ± 0.04 [9] − 6.7136
13
Λ C -50.32 1.034 11.22 ± 0.08 [71] − 11.2226
17
Λ O -48.88 1.034 − 14.61 ± 1.5 14.6000
21
Λ Ne -45.95 1.034 − 16.24 ± 1.5 16.2401
25
Λ Mg -43.67 1.034 − 17.42 ± 1.5 17.4237
29
Λ Si -41.88 1.034 − 18.32 ± 1.5 18.3322
33
Λ S -40.41 1.034 − 19.04 ± 1.5 19.0440

37
Λ Ar -39.21 1.034 − 19.62 ± 1.5 19.6224
41
Λ Ca -38.19 1.034 − 20.11 ± 1.5 20.1158
91
Λ Zr -31.35 1.034 22.10 ± 0.30 [62] − 22.1668

141
Λ Ce -30.73 1.034 24.50 ± 1.00 [62] − 24.5028
209
Λ Pb -30.62 1.034 26.30 ± 0.50 [62] − 26.3107
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the core when the interacting nucleon is embedded in the core. The π-mesic decay of
Λ-hyperon (Λ → N + π) is predominant in free space but tends to be suppressed in
hypernucleus by the Pauli-exclusion principle and instead non-mesic weak process
(Λ + N → N + N) becomes dominant with increasing mass number [64-69]. Thus
we actually get an effective ΛN interaction by the folding process. The parameters
of this effective ΛN potential are listed in Table 2. A plot of effective ΛN poten-
tial strength against mass of the core is shown in Fig. 2. As evident from Eq. (26),

-100
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-50

-40

-30

0 5 10 15 20 25 30 35 40 45 50

Mass of core (Ac) 

V
0 

(M
eV

) 

Calculated data    * * 

Fitted  data ______

Best Fit:  V0(Ac) = 12.7458 ln(Ac) - 84.1403

Plot of effective lambda-N potential
 strength against mass of the core

Fig. 2. Plot of the strength (V0) of ΛN effective potential against mass of the core
Ac. (Data taken from Table 2).

the number of basis states and hence the size of CDE increases rapidly as Kmax

increases. The truncated set of CDE takes the form

[
− h̄2

2µ

(
d2

dρ2
− LK(LK + 1)

ρ2

)
− E

]
UKlx1LS(ρ)

+
∑Kmax

K′=0,2,..

∑
l′x1

(allowed)

∑
(L′S′)=(0,0),(1,1)〈Klx1 |V (ρ,Ω1)|K ′l′x1

〉UK′l′x1
L′S′(ρ) = 0

(32)
(allowed l′x1

= 0, 2, ... only for S = 0, L = 0, otherwise l′x1
= 1, 3, ... for S =

1, L = 1). Note that the subscripts ly1 (=lx1) or l′y1
(=l′x1

) have been suppressed
for brevity.

The calculated values of binding energy (BE), ΛΛ bond energy (∆BΛΛ) for
Kmax = 20 for the ground states of 6

ΛΛHe, 10
ΛΛBe, 14

ΛΛC, 18
ΛΛO, 22

ΛΛNe, 26
ΛΛMg, 30

ΛΛSi, 34
ΛΛS,

38
ΛΛAr, 42

ΛΛCa, 92
ΛΛZr and 142

ΛΛ Ce, 210
ΛΛ Pb are shown in Table 3. The empirical Λ binding
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energy BΛ of Table 3 has been calculated using the empirical formula

BΛ(A) = [(27.0 − 81.9 A−2/3) ± 1.5] MeV (33)

where A is the mass number of the single-Λ hypernuclei [9]. The calculated binding
energy, BΛΛ, of 6

ΛΛHe agrees fairly well with the experimental value 10.90±0.50 MeV
[2] within the experimental error limit. But that for 10

ΛΛBe is slightly larger than the

Table 3. The calculated Λ binding energy (BΛ), two-Λ separation energy (BΛΛ)
and the ΛΛ bond energy (∆BΛΛ) for different Λ- and double-Λ hypernuclei.

Hyper- BΛ Hyper- BΛΛ ∆BΛΛ ∆BExpt
ΛΛ

nuclei (MeV) nuclei (MeV) (MeV) (MeV)
5
ΛHe 3.1214 6

ΛΛHe 10.8936 4.6508 4.7 ± 0.60 [2]
9
ΛBe 6.7136 10

ΛΛBe 18.8567 5.4295 4.3 ± 0.40 [1]
13
Λ C 11.2226 14

ΛΛC 28.4294 5.9842 -
17
Λ O 14.6000 18

ΛΛO 35.3013 6.1013 -
21
Λ Ne 16.2401 22

ΛΛNe 38.4235 5.9433 -
25
Λ Mg 17.4237 26

ΛΛMg 40.5915 5.7441 -
29
Λ Si 18.3322 30

ΛΛSi 42.1986 5.5342 -
33
Λ S 19.0440 34

ΛΛS 43.4290 5.3410 -
37
Λ Ar 19.6224 38

ΛΛAr 44.4146 5.9547 -
41
Λ Ca 20.1158 42

ΛΛCa 45.1995 4.9679 -
91
Λ Zr 22.1668 92

ΛΛZr 47.7106 3.3770 -
141
Λ Ce 24.5028 142

ΛΛ Ce 51.6452 2.6446 -
209
Λ Pb 26.3107 210

ΛΛ Pb 54.9813 2.3599 -

experimental value 17.7 ± 0.40 MeV [1]. The ΛΛ, ΛN effective, Λ-core folded and
(ΛΛ)-core effective three-body potentials for 6

ΛΛHe hypernucleus are shown in Fig.
3 as a representative case. The variation of the two-Λ separation energy with mass
number A for Ac ≤ 40 is displayed in Fig. 4 and the same for mass number Ac ≥ 40
is shown in Fig. 5. The two-Λ separation energy BΛΛ shows saturation in the heavy-
mass region. Having obtained the wave function by the HHE approach, some of the
observables of the three-body system have been calculated. These include the root
mean square (r.m.s.) radius of the three-body system

RA =
[
AcR

2
c + mΛ < r2

13 + r2
12 >

Ac + 2mΛ

]1/2

, (34)

whereAc, mΛ are the masses of the core and the Λ-hyperon (in units of the nu-
cleon mass) and Rc is the matter radius of the core determined by the relation
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Rc = r0A
1/3
c with r0 = 1.1 fm. The r.m.s. core–Λ separation is defined as

RcΛ =
[
< r2

13 + r2
12 > /2

]1/2
. (35)
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Fig. 3. Plot of the ΛΛ, ΛN and effective core–Λ potentials for 6
ΛΛHe. (a) ΛΛ po-

tential, (b) ΛN effective potential, (c) core–Λ folded potential and (d) (ΛΛ)–core
three-body effective potential. For graphs (a)-(b), r is the relative separation and
for (d) it is the hyper-radial separation in the same scale.
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Fig. 4. Plot of the two-Λ binding energy BΛΛ against mass A (A ≤ 42) of the
double-Λ hypernuclei. (Data taken from Table 3.)
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The expectation value of the observables < r2
13 + r2

12 > is obtained by the expression

< r2
13 + r2

12 >=
∑

KK′lx1LS

∫ ∞

0

ρ2dρUKlx1LS(ρ)UK′lx1LS(ρ)∫ π/2

0

(2)PK
lx1 ,lx1 (φ) (2)PK′

lx1 ,lx1 (φ)

[
1

2a2
23

cos2 φ +
2

a2
(23)1

sin2 φ

]
cos2 φ sin2 φdφ.

(36)
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Calculated data   + +  
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Plot of two lambda separation energy, E
 against mass number, A (A>=42)

Best Fit: E(A) = 42.2471 + 0.0674699*A - 3.00996E-005*A**2

Fig. 5. Plot of the two-Λ binding energy BΛΛ against mass A (A≥ 42) of the
double-Λ hypernuclei. (Data taken from Table 3.)

The r.m.s. separation between the valence Λ-hyperons (RΛΛ) is given by the ex-
pression

RΛΛ =
[
< r2

23 >
]1/2

, (37)

where

< r2
23 > =

1
a2
23

∑
KK′lx1LS

∫ ∞

0

ρ2dρUKlx1LS(ρ)UK′lx1LS(ρ)

×
∫ π/2

0

(2)PK
lx1 ,lx1 (φ) (2)PK′

lx1 ,lx1 (φ) cos4 φ sin2 φdφ.

(38)

The r.m.s. separation between the core (4He, 8Be, 12C etc.) and the C.M. of ΛΛ
pair is given by the expression

R(ΛΛ)c =< r2
(23)1 >1/2, (39)
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where

< r2
(23)1 > =

1
a2
(23)1

∑
KK′lx1LS

∫ ∞

0

ρ2dρUKlx1LS(ρ)UK′lx1LS(ρ)

×
∫ π/2

0

(2)PK
lx1 ,lx1 (φ) (2)PK′

lx1 ,lx1 (φ) cos2 φ sin4 φdφ.

(40)

The computed value of these r.m.s. radii are listed in Tables 4, 5 and 6. Finally, we
computed the correlation coefficient defined as

η = <
r2
(ΛΛ)c

ρ2
>

=
1

a2
(23)1

∑
KK′lx1LS

∫ ∞

0

dρUKlx1LS(ρ)UK′lx1LS(ρ)

×
∫ π/2

0

(2)PK
lx1 ,lx1 (φ)(2)PK′

lx1 ,lx1 (φ) cos2 φ sin4 φdφ.

(41)

A small value of this coefficient will indicate that the two valence Λ-hyperons
are situated on two opposite sides of the α–core (i.e., a cigar shape where the
Λ-hyperons are anti-correlated). A large value (≤ 1) will indicate the possibility of
Λ − Λ correlation.

Table 4. Calculated BE BΛΛ and r.m.s. radii for different Kmax for 6
ΛΛHe hypernu-

cleus.

Kmax BE r.m.s. radii (fm) η

(MeV) RA RcΛ RΛΛ R(ΛΛ)c RCM
c RCM

Λ

0 09.09925 2.0747 2.5327 3.1446 1.9856 0.7405 2.0056 0.3157

2 09.41083 2.0535 2.4860 3.1220 1.9348 0.7216 1.9770 0.3158

4 09.85415 2.0507 2.4798 3.0914 1.9391 0.7232 1.9666 0.3187

6 10.16209 2.0360 2.4472 3.0466 1.9153 0.7143 1.9398 0.3209

8 10.41431 2.0262 2.4251 3.0065 1.9030 0.7097 1.9193 0.3237

10 10.59790 2.0208 2.4131 2.9791 1.8985 0.7080 1.9068 0.3263

12 10.72117 2.0187 2.4085 2.9612 1.8996 0.7085 1.9003 0.3285

14 10.79954 2.0185 2.4079 2.9497 1.9034 0.7099 1.8973 0.3302

16 10.85764 2.0191 2.4092 2.9422 1.9079 0.7116 1.8962 0.3315

18 10.87652 2.0199 2.4111 2.9373 1.9122 0.7132 1.8959 0.3323

20 10.89363 2.0207 2.4129 2.9340 1.9158 0.7145 1.8961 0.3329
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Table 5. Calculated BE BΛΛ and r.m.s. radii for different Kmax for 10
ΛΛBe hypernu-

cleus.

Kmax BE r.m.s. radii (fm) η

(MeV) RA RcΛ RΛΛ R(ΛΛ)c RCM
c RCM

Λ

0 16.85281 2.2092 2.2399 2.9556 1.6833 0.3858 1.9665 0.2848
2 17.24068 2.2030 2.2129 2.8655 1.6865 0.3866 1.9345 0.2955
4 17.65940 2.2007 2.2030 2.8394 1.6845 0.3861 1.9239 0.2975
6 18.00125 2.1951 2.1787 2.8016 1.6687 0.3825 1.9017 0.2997
8 18.29194 2.1916 2.1631 2.7698 1.6616 0.3809 1.8863 0.3024
10 18.50776 2.1899 2.1555 2.7468 1.6613 0.3808 1.8777 0.3050
12 18.65403 2.1894 2.1532 2.7308 1.6649 0.3816 1.8738 0.3072
14 18.74717 2.1895 2.1536 2.7198 1.6700 0.3828 1.8725 0.3089
16 18.80392 2.1898 2.1552 2.7124 1.6750 0.3839 1.8724 0.3102
18 18.83741 2.1902 2.1569 2.7073 1.6792 0.3849 1.8729 0.3110
20 18.85670 2.1905 2.1584 2.7039 1.6825 0.3857 1.8734 0.3116

Table 6. The r.m.s. matter radii and correlation coefficient for different double-Λ
hypernuclei at Kmax = 20.

Hypernuclei r.m.s. radii (fm) η

RA RcΛ RΛΛ R(ΛΛ)c RCM
c RCM

Λ
6
ΛΛHe 2.0207 2.4129 2.9340 1.9158 0.7145 1.8961 0.3329
10
ΛΛBe 2.1905 2.1584 2.7035 1.6825 0.3857 1.8734 0.3116
14
ΛΛC 2.4441 2.0281 2.5638 1.5716 0.2600 1.8340 0.3034
18
ΛΛO 2.6841 1.9966 2.5321 1.5438 0.1998 1.8464 0.3000
22
ΛΛNe 2.8984 2.0191 2.5623 1.5601 0.1659 1.8938 0.2989
26
ΛΛMg 3.0883 2.0477 2.5970 1.5833 0.1428 1.9394 0.2985
30
ΛΛSi 3.2593 2.0827 2.6421 1.6102 0.1261 1.9869 0.2982
34
ΛΛS 3.4150 2.1170 2.6808 1.6386 0.1134 2.0305 0.2985
38
ΛΛAr 3.5583 2.1510 2.7211 1.6660 0.1033 2.0720 0.2988
42
ΛΛCa 3.6912 2.1814 2.7558 1.6911 0.0949 2.1086 0.2990
92
ΛΛZr 4.8833 2.5839 3.2502 2.0089 0.0517 2.5439 0.3014
142
ΛΛ Ce 5.6759 2.8676 3.6100 2.2283 0.0372 2.8388 0.3017
210
ΛΛ Pb 6.4898 3.2602 4.1418 2.5179 0.0285 3.2382 0.3008
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The computed values of this coefficient for various three-body systems are shown
in the last column of Tables 4, 5 and 6. As the value of η is small (≈ 0.30), a cigar
shape is indicated on the average.

4. Summary and conclusion
Since hyperons and nucleons have three-quark (qqq) structures (e.g. p→ uud,

n→ udd, Λ0 → uds etc.), interactions among them as well as with nucleons should
give important inputs in the knowledge of strong interactions. But not much atten-
tion has so far been directed to the study of hyperon-hyperon and hyperon-nucleon
interaction through the investigation of hypernuclei. We have undertaken a sys-
tematic study of the bound-state properties of hypernuclei to shed light on the
hyperon-hyperon and hyperon-nucleon interactions. The hyperspherical harmonics
expansion (HHE) method adopted here is an essentially exact method, where cal-
culations can be carried out up to any desired precision by gradually increasing the
expansion basis. This can be seen in the first two columns of Tables 4 and 5 where
the binding energies gradually attain a convergence with increasing Kmax values.
It is also found from Tables 4 and 5 that the convergence in the binding energy
(with respect to increasing Kmax) is relatively slow, whereas the convergence rates
for the other observables are faster. For 6

ΛΛHe, the calculated two-Λ separation en-
ergy BΛΛ at Kmax = 20 (see Table 4) and ΛΛ bond energy ∆BΛΛ (see Table 3)
agrees fairly well with the experimental values 10.90±0.50 MeV [2] and 4.70±0.60
MeV, respectively, and our previous calculation [70] within the allowed error limit.
However, the calculated BΛΛ at Kmax = 20 (see Table 5) and ∆BΛΛ (see Table 3)
for 10

ΛΛBe are slightly greater than the experimental values 17.70±0.40 MeV [1] and
4.30±0.40 MeV [1], respectively. The convergence in the HH expansion is not fully
attained with Kmax = 20, but we do not need higher precision at this stage of the
game, because input data are not that accurate. As discussed earlier, the strength
of the ΛN effective potential decreases as the mass (Ac) of the core nuclei increases
(see Table 2). In the mass region Ac ≤ 40, the ΛN potential strength falls rapidly,
while it falls relatively slowly in the mass region 30 ≤ Ac ≤ 140 and reaches satura-
tion beyond that. Studying the trend of the variation of the ΛN effective potential
with the mass of the core (see Fig. 2) we fitted the empirical relation

V0(Ac) = [12.7458 loge(Ac) − 84.1403] MeV (42)

for Ac ≤ 40. The calculated two-Λ separation energy, BΛΛ, shows the saturation
property in the heavy-mass region and a relatively faster rise in the low-mass region.
Studying the nature of the variation of the calculated BΛΛ with the mass (A) of the
double-Λ hypernuclear systems (see Figs. 4 and 5), we fitted the following empirical
formula for the two-Λ separation energy BΛΛ

BΛΛ(A) = (a0 + a1A + a2A
2 + a3A

3) MeV for Ac ≤ 40

= (b0 + b1A + b2A
2) MeV for Ac ≥ 40

(43)
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with a0 = −11.3234, a1 = 4.19959, a2 = −0.110773, a3 = 0.00101958, b0 = 42.2471,
b1 = 0.0674699and b2 = −3.00996 × 10−5. A relatively small value (≈ 0.32) (see
Tables 4, 5 and 6) of the calculated correlation coefficient indicates that the valence
hyperons are not correlated.

Thus, we conclude that the effective ΛN interaction (between a nucleaon em-
bedded in the core and a valence Λ) can be represented by a single term attractive
Gaussian, whose strength decreases with increasing core mass (Ac). A smooth de-
pendence on Ac over the entire mass range has been found. The gradual decrease
in the strength may be viewed as the effect of screening of the interacting nucleon
embedded in the core, by the surrounding nucleons. One intuitively expects such a
result. As Ac increases, the valence Λ particles are gradually surrounded by other
nucleons and effective ΛN interaction attains it saturation value.
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ISTRAŽIVANJE DINAMIKE ΛΛ I EFEKTIVNOG MED– UDJELOVANJA ΛN U
HIPERJEZGRAMA MALE I SREDNJE MASE

Pažljivo razmatramo dinamiku ΛΛ istraživanjem fenomenoloških potencijala ΛΛ i
Λ-nukleon proučavanjem vezanih stanja hiperjezgri s dvije Λ čestice 6

ΛΛHe, 10
ΛΛBe,

14
ΛΛC, 18

ΛΛO, 22
ΛΛNe, 26

ΛΛMg, 30
ΛΛSi, 34

ΛΛS, 38
ΛΛAr, 42

ΛΛCa, 92
ΛΛZr i 142

ΛΛ Ce, 210
ΛΛ Pb u okviru mod-

ela tri čestice (sredica+Λ+Λ). Djelotvoran potencijal ΛN smo dobili ugradnjom
fenomenološkog potencijala ΛN u prostornu raspodjelu nukleona u sredici. Ponovili
smo ranija dva računa, (tj., 6

ΛΛHe i 10
ΛΛBe) da bismo opravdali ispravnost ovog mod-

ela potencijala. Uz pretpostavku tog modela potencijala, predvidjeli smo strukturu
težih hiperjezgri s dvije Λ čestice. U tim razmatranjima sustava tri tijela primijenili
smo razvoj po hipersfernim harmonicima, što je u biti egzaktna metoda. Postigli
smo konvergenciju točnosti 0.25% za Kmax = 20. U ovim računima nisu primijen-
jena približenja koja bi ograničavala dozvoljene vrijednosti l parova čestica koje
med–udjeluju.
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