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It is shown that for any exactly solvable potential considered here, belonging to
the class of the first generation, there are always posibilities to construct the class
of second generation potentials, which are either exactly solvable or quasi-exactly
solvable. The alternatives exactly solvable or quasi-exactly solvable depend on the
choice of the “base” related to the set of excited eigenstates corresponding to the
first generation potentials.
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1. Introduction

Exactly solvable potentials are referred to those for which the Schrödinger equa-
tion can be solved analytically, generating the sets of eigenvalues, En, and eigen-
functions, φn.

For quasi-exactly solvable potentials, only part of these sets can be reached
analytically, the remaining must be dealt by other means, mostly numerical.

The interest in investigating the second-generation potentials is to wonder what
would be the possible links between these two classes of potentials, or, in other
words, would it be possible to construct the second generation potentials which are
exactly or quasi-exactly solvable from the first ones?

During the past decade, one may observe the first attempts in that direction,
undertaken from different angles of attack, by taking advantage of the recent ad-
vances in supersymmetry (SU(2)) [1–6].

Assumig that the couple of partner potentials are exactly solvable and defined
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by

V (1)∓ = u2 ∓ u′ ,

where u(x) is the usual superpotential, the second generation potentials are defined
by

V (2)∓ = v(2)2 ∓ v(2)′ , (1)

where v(2) is the second generation superpotential,

v(2) = u − φ′
n

φn
, (2)

while φn represents the nth excited eigenstate related to V (1)−.
When n = 0 (the ground state), this definition does not bring anything new, but

when n > 0, the second-generation potential v
(2)
n must contain singularities which

reflect the presence of the “nodes” of the eigenstates (theorem of Sturm-Liouville).
As a consequence, the second-generation potentials V (2)∓ will also involve singu-
larities. Thus, the next question which arises naturally is what can one expect from
the construction in Eq. (1)?

The present work will focus on two aspects which may serve for future reseach
work:

(1) How and to which extent the second-generation potential V (2)∓ is solvable?

(2) In the context of SU(2), how the concept of shape invariance and double
degeneracy, which is associated with the first generation, can be conserved or
broken with the second generation?

Since it will be convenient to approach this problem within the frame of the
theory of mixing function, it is useful to devote the first part of this work to the
methodological aspect with a brief reminder of the guidelines. The details can be
found in earlier references [7–10].

In the second part, these results will serve to analyse the situation by showing
that one must discern two categories of the “bases”, for which the second-generation
potentials may either be exactly or non-exactly solvable, with partial or total break-
ing of the symmetry, and conservation or non-conservation of the shape invariance.

In order to show how the theory can be implemented, the third part describes
the details of an example. The case of the harmonic oscillator is chosen because of
its potential role in various models of many fields of physics.

Next, returning to more general considerations, in the last part, the proof of
a theorem will be given according to which, under certain conditions, it is always
possible to construct a new type of quasi-exactly solvable potentails, regardless of
the choice of the “base”.
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2. Theory

Let the first-order differential matrix equation

φ′ + Fφ = 0, with φ = (φ1, φ2)+ and F =
(

u d
0 u

)
, (3)

u(x) and d(x) being arbitrary analytic functions. By construction,

φ2 ' exp
(∫

−u dx

)
.

Let the mixing function be

X(x), with φ1 = Xφ2 . (4)

It has already been shown that if X is a solution of the second-order differential
equation

X ′′ − 2uX ′ − EnXn = 0 , (5)

with En constant, the Schrödinger equation corresponding to the first component
φ1

φ′′
1 − V (1)−φ1 = Enφ1 , with φ1 = Xn exp

(
−

∫
udx

)
(6)

must be exactly solvable with eigenspectrum {En} and eigenfunctions {φ1,n}.
Likewise, let

φ̄′ + F̄ φ̄ = 0, with φ̄ = (φ̄1, φ2) and F̄ =
( −u d̄

0 u

)
, (7)

and introduce a second mixing function Y , with φ̄1 = Y φ2, then the Schrödinger
equation

φ̄′′
1 − V (1)+ φ̄1 = Ēφ̄1 (8)

is also exactly solvable if Y satisfies the second differential equation

Y ′′ − 2uY ′ − (2u′ + Ē)Y = 0 . (9)

Noting that Eq. (9) is simply the result of differentiation of Eq. (5), one can infer

Y = X ′
n and Ē = En . (10)

In the context of SU(2), u(x) is playing the role of the superpotential of the first
generation. The second condition in Eq. (10) merely expresses the double degener-
acy of V (1)− and V (1)+.
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3. The second generation

Let |n〉 be any excited state of the first component V (1)−. The second generation
couple can be constructed according to Eqs. (1) and (2). The following results are
obtained and already described in earlier references:

(a) The first component of the second generation couple V (2)−, up to a constant,
is similar to V (1)−, i.e.,

V (2)− = V (1)− + const ,

which means that regardless of the choice of the base, if V (1)− is exactly
solvable, so will be V (2)−, too.

(b) The eigenspectrum of the second generation couple is

E(2)
m = E(1)

m − E(1)
n , (11)

where E
(1)
m and E

(1)
n are eigenvalues corresponding to the first component.

(c) The second component V (2)+ of this second generation couple is of the form

V (2)+ = V (1)+ + 2
X ′

n

Xn

(
X ′

n

Xn
− 2u

)
− En . (12)

Its eigenfunction can be written as

φ̄
(2)
1,m = Ym exp

(
−

∫
udx

)
, (13)

where

Ym = X ′
m − X ′

n

Xn
Xm . (14)

The solution is not defined for m = n, and normalisation requirements will
put further constraints on this solution.

For instance, the presence of the singularity contained in the analytic expressing
of Eq. (14) can be removed only if some kind of “factorisation” is possible in the
sense

Xm = XnFn(x) .

Fn(x) is an unspecified function.
When this is not the case, while the first component V (2)− is always exactly

solvable for the reasons invoked in (a), the second component V (2)+ is not because
relation (14) becomes invalid. The singularities appearing in V (2)+ are generally
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“strong” in the sense of Eq. (12), which, on the other hand, require that at the
locations of these singularities (x = xi), φ̄(2)(xi) = 0.

The whole situation radically changes furthermore when one introduces another
parameter t and constructs the second-generation superpotential v

(2)
t as

v
(2)
t = u − t

X ′
n

Xn
.

The couple becomes

V (2)− = V (1)− + t(t − 1)
(

X ′
n

Xn

)2

+ tEn ,

V (2)+ = V (1)+ + t(t + 1)
(

X ′
n

Xn

)2

− 4tu
X ′

n

Xn
− tEn .

(15)

Note that when t = 1, the relation (12) is recovered. The problem becomes even
more complicated because neither potential is exactly solvable, except perhaps for
some very special choices of the base.

Thus, before engaging oneself in this direction, it will be useful to return to the
simplest case when t = 1, in order to see how the theory can be implimented in
practice.

4. Example

Consider the case of the harmonic oscillator potential for which the superpo-
tential of the first generation can be defined as

u(x) =
1
2
x .

Obviously, the solutions of Eq. (5) can be represented by the usual Hermite poly-
nomials Xn = Hn(z). Since the study of the first component V (2)− does not bring
anything new, the second component, V (2)+, is more interesting. Its analytic ex-
pression for the first values of n of the bases are

n = 1 V
(2)+
1 =

1
4
x2 +

2
x2

− 1
2

n = 2 V
(2)+
2 =

1
4
x2 +

4x2

x2 − 1

(
2

x2 − 1
− 1

)
− 3

2

n = 3 V
(2)+
3 =

1
4
x2 + 6

x2 − 1
x2 − 3

(
3
x2

x2 − 1
x2 − 3

− 1
)
− 5

2
. . .

(16)

Below are some interesting remarks which may be useful in practice. Some of them
have already been mentioned in Ref. [6].

FIZIKA B 11 (2002) 1, 9–18 13



cao xuan chuan: on quasi-exactly solvable potentials

(a) V
(2)+
n (−x) = V

(2)+
n (x) (even parity).

(b) At infinity, they all tend to the classical harmonic-oscillator potential.

(c) If one chooses the base n = 1, then it can be verified that V
(2)−
1 and V

(1)−
1

differ only by a constant.

(d) The couple V
(2)−
1 and V

(2)+
1 is shape-invariant when t /= 1, while it is not

when t = 1.

The discussion will now be focused on the special case t = 1, with n = 1 (i.e.,
Xn = Hn). The eigenfunctions of V

(2)−
1 can be written as

φm = NmXm exp
(
−

∫
u dx

)
,

where Nm is the normalization constant, with the eigenspectrum E
(2)
m = E

(1)
m −E

(1)
n

in a general case. Depending on the choice of the base |n〉, one thus may have
negative eigenvalues. For instance, if n = 1, one has only one such state. The
existence of such states was pointed out earlier [1], and it is beleived to have an
impact on the construction of certain field theories.

For V
(2)−
1 , the running index m in Eq. (16) may be any integer (m = 0, 1, 2, . . .),

but for V
(2)+
1 , only the solutions with m odd (m = 1, 3, 5, . . .) can be accepted,

because the validity of Eq. (14) can be assured only in this case.

Therefore, the pairings of the eigenstates of V
(2)−
1 and V

(2)+
1 are reduced to one

half.
This constitutes an example of partial pairing of the states, for which the usual

definition of the Witten index, specifying a clear-cut distinction between breaking
and non-breaking of symmetry, would become inadequate. On the other hand, for
this case, the principle of “nodal structure” [12,13] will be more appropriate.

Keeping the same base (n = 1), but with t /=1, the principle of shape invariance
mentioned above in (d) can be explicitly written as

V
(2)+
1 (t − 1, x) = V

(2)−
1 (t, x) + t − 1 . (17)

Both V
(2)−
1 and V

(2)+
1 are exactly solvable with the solutions expressed in terms of

the generalized Laguerre polynomials Ln
m, providing the parameter t be an integer

[14,15].
When both t and n are different from 1, the presence of singularities of type

“strong” mentioned above, will split the domain of the definition of them into
separated and unrelated regions, implying, therefore, different Hilbert spaces. One
can, therefore, expect total breaking of symmetry.

However, the situation is not so dim since some information can still be extracted
with the proof of the following theorem concerning the quasi-exact solvability of
the first component V (2)− under certain conditions, while the second component
must be approached in another way.
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5. Quasi-exact solvability

Theorem: If equation X ′′ − 2uX ′ − EnXn = 0 (Eq. (5)) is exactly solvable
with the set of solutions {Xn}, then, regardless of the choice of the base, the same
equation in which u is substituted by v(2)(t, x), t being a parameter, will have at
least two exact solutions.

Proof: The equation can be written in the form

X ′′ − 2
(

u − t
X ′

n

Xn

)
X ′ − Ē X = 0 , (18)

Ē being a constant.

(a) Obviously, the first solution is X = const which leads to Ē = 0.

(b) The second solution has the form X = X1−2t
n . By substitution into Eq. (18)

and after simplification, one obtains

(1 − 2t)X1−2t
n

[
En − Ē

1 − 2t

]
= 0 ,

which implies that Ē = (1 − 2t)En.

Note that this derivation is independent of the choice of |n〉.

Alternatively, one may also use the method described earlier [8] by letting X =
F (x)/Xs

n, F (x) being an unspecified function and s a parameter. Then, Eq. (5)
can be cast into the form

X ′′ − 2uX ′

X
= A(x) + B(x) , (19)

where

A(x) =
1

Xs
n

[
F ′′ − 2uF ′] − sF

Xs+1
n

[
X ′′

n − 2uX ′
n

]
,

and

B(x) = 2(t − s)
F ′

F

X ′
n

Xn
− s(s + 1 − 2t)

(
X ′

n

Xn

)2

.

Requiring B(x) = 0, one obtains a relationship between s and t, F (x) = Xq
n, where

q is arbitrary. Therefore, the simplest case will be q = 1, or F (x) = Xn. The two
parameters, s and t, must satisfy the constraint

s(s + 1 − 2t) = 2(t − s) , (20)
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which can be solved with the two following real solutions

s+ = 2t, and s− = 1 .

In this case, the eigenvalues are

E+ = (1 − 2t)En and E− = 0 ,

with
A+ = 2t ,

corresponding to the two solutions mentioned above.

6. Application

In the context of the present discussion, the above theorem can be used by
returning to the system (1) in which the quantity u(x) is replaced by v

(2)
n (x).

With the above results, one can see that the Schrödinger equation is solvable if
the function X satisfies Eq. (19)

φ′′
1,± − V (2)− φ1,± = Eφ1,± .

The two eigenfunctions can be written as

φ1,+ = X1−t
n exp

(∫
−u dx

)
and φ1,− = Xt

n exp
(∫

−u dx

)
.

Normalisation requires that 0 < t < 1.
Extension. The condition of exact solvability of Eq. (5) is sufficient but not

necessary, which means that the function X must not be limited to the set of usual
orthogonal functions of mathematical physics. The details of this aspect will be
presented later in another report.

7. Conclusion

Several facets of the use of the method of mixing functions are discussed. Par-
ticularly, it is quite adapted for analysing the problem of singular potentials of
the second generation, which are constructed from the first ones that are assumed
supersymmetric and exactly solvable.

For the special choice of the base, both components of the second generation,
V (2)− and V (2)+, are exactly solvable, but with the loss of shape and a partial
pairing of the states.
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For that example, but with the parameter t /= 1, the concept of the shape in-
variance remains valid, and for the same choice, both components are also exactly
solvable under specific conditions of this parameter.

But for other choices of the base, both components are not solvable exactly with
a complete breaking of the symmetry.

However, under certain different specific constraints on this parameter, the first
component V (2)− can be made quasi-exactly solvable, with an exact “doublet”,
regardless of the base.
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KVAZI-EGZAKTNO RJEŠIVI POTENCIJALI

Pokazuje se da za svaki ovdje razmatrani egzaktno-rješivi potencijal, koji pripada
razredu prve generacije, uvijek postoji mogućnost složiti razred druge generacije
potencijala koji su ili egzaktno rješivi ili kvazi-egzaktno rješivi. Inačice egzaktno
rješivi ili kvazi-egzaktno rješivi ovise o izboru “baze” koja se odnosi na skup vǐsih
svojstvenih stanja koji je vezan s prvom generacijom potencijala.
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