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By considering three alternative generalizations of the Bose-Einstein statitstics, we
calculate the corrections that each of these generalizations have on the black body
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1. Introduction
Probably one of the most mysterious and ad-hoc principles of quantum theory

is the Pauli principle and the spin-statistics connection [1,2]. Geroch and Horowitz
[3] have pointed to the fact that the exclusion principle is not related to the space
time properties of field theory, but is a result of topological properties in spin
space. Some of original attempts at generalizing Bose-Fermi symmetry go back to
Gentile [4] who considers the statistics that allows up to k particles in a state,
and attempts by Green [5], Govorkov [6] and Greenberg [7] who generalize the
commutation relations to read

aia
+
j − qa+

j ai = δij (q /=1) .

Experimental limits on such violations are extremely small [8,9]. More recently at-
tempts to generalize Bose-Fermi symmetry include the work of Wu [10] and Haldane
[11] who developed a statistics interpolating between Bose and Fermi statistics, the
work of Medvedev [12] who ascribed the Fermi-Bose nature to each particle and
the work of Tsallis [13] who generalized Bose statistics to take into account the
multi-fractal relation of energy levels and embodied notions of self-similarity and
scale invariance. In three previous studies [14–16], we have calculated the modified
black body spectrum that each of these approaches implies. The purpose of the
present note is to compare the high frequency tail of each of these modified ap-
proaches with the intent of comparing with the more precise measurements of the
black body radiation in the future.
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2. Modification of the high frequency tail of the black body
energy distribution

We begin by briefly discussing the statistics introduced by Haldane (Ref. [11]).
Here we write for the number of ways of realizing Ni particles in gi cells

ωi =
[gi + (Ni − 1)(1 − α)] !

Ni ! [gi − αNi − (1 − α)] !
. (1)

For the entropy
S = k lnπiωi . (2)

In Eq. (1), if α = 0, we have Bose-Einstein (BE) statistics, if α = 1, we
have Fermi statistics. If we maximize Eq. (2) with the constraints ΣNi = const,
ΣNiεi = const, we find for small α (small deviation from BE statistics) (Ref. [14])

Ni =
gi(1 + α)

exp(hν/τ) − 1
− gi exp(hν/τ)α

(exp(hν/τ) − 1)2
(µ = 0 for chemical potential) . (3)

where τ = kT and εi = hν is the photon energy. From Eq. (3) and gi =
8πp2dp/h3(per unit volume) = 8πν2dν/c3, we have for the energy per unit fre-
quency range

dU(ν) =
8πhν3dν

c3

[
(1 + α)

exp(hν/τ) − 1
− α

exp(hν/τ)
(exp(hν/τ) − 1)2

]
. (4)

We now consider hν/(kT ) > 1. If we expand Eq. (4) in powers of exp(−hν/τ), we
obtain

dU(ν) =
8πhν3dν

c3
dν

[
1 + (1 − α)e−hν/(kT ) + (1 − 2α)e−2hν/(kT )

+(1 − 3α)e−3hν/(kT )
]
e−hν/(kT ) . (5)

Equation (5) gives a precise high-frequency expansion of dU(ν) in powers of
e−hν/(kT ) and the parameter α.

We next consider the ambiguous statistics of Medvedev (Ref. [12]). For Nj

particles, we consider Nj − k Fermion states and k Boson states. For the number
of ways of realizing k Bosons and Nj − k Fermions, where k varies from 0 to Nj ,
we have [17]

ωj =
Nj∑
k=0

gj !
(Nj − k) ! (gj − Nj + k) !

(gj + k − 1) !
(gj − 1) ! k !

Nj !
(Nj − k) ! k !

P k
b P

Nj−k
f . (6)
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Here Pb is the probability of a particle being a Boson and Pf the probability of
a particle being a Fermion. We then construct ω = πωj and maximize S = k lnω,
subject to

∑
Nj = const and

∑
Njεj = const, and the result is [12]

Nj

gj
=

Pf + Pb

(x + Pf )(x − Pb)

[
1 +

√
(Pf − Pb)2(x + Pf )(x − Pb)
(Pf + Pb)2x(x + Pf − Pb)

]
, (7)

where x = exp((εj − µ)/τ), µ is the chemical potential and τ = kT . If we let
Pb = 1 − ε and Pf = ε, then after the expansion of Eq. (7) to the order ε, we find
[15]

Nj

gj
=

1
x − 1

− ε

x − 1

(
1
x

+
1

x − 1

)
+

2
√

ε

x − 1

(
1 +

1
4(x − 1)

− 1
4x

)
. (8)

In the limit hν/(kT ) À 1, Eq. (8) becomes

Nj

gj

∼= e−hν/(kT ) − 2ε e−2hν/(kT ) + 2
√

ε e−hν/(kT ) − . . . .

For the energy per unit frequency, we have

dU(ν) ∼= 8πhν3

c3

[
e−hν/(kT )

(
1 + 2

√
ε
) − 2ε e−2hν/(kT ) − . . .

]
dν . (9)

Note that Eq. (9) gives a diminuation in the factor e−2hν/(kT ), while Eq. (5) gives
a positive coefficient of the factor e−2hν/(kT ).

For the third modification of statistics, we consider the non-extensive statistics
of Tsallis [13] that applies to any system with a long-range gravitational influence
or to a system with non-Markovian memory. Since the cosmic microwave back-
ground may retain some memory of times when matter and radiation were strongly
coupled, this might lead to a Tsallis like statistics for photons [18]. Starting with
the expression

S =
kN

q − 1

(∑
Pi −

∑
P q

i

)
, with Pi =

Ni

N
(10)

for the entropy of N particles, we find after using the constraints∑
Ni = N and

∑
Niεi = U ,

the following expressions for the number of oscillators with energy εI [16]

Ni =
N

e
e
µ0−εi

τ + α
N

e


 1

2τ2
e
µ0−εi

τ

∑
e
µ0−εi

τ (µ0 − εi)2∑
e
µ0−εi

τ
− e

µ0−εi
τ (µ0−εi)2

2τ2


 ,

(11)
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where µ0 is the zeroth-order chemical potential, τ = kT , α = (q − 1) where q /=1
is the Tsallis parameter. When we evaluate < ε > (average energy of an oscillator
with the frequency ν), we obtain from Eq. (11)

< ε >=
h̄ω

eh̄ω/τ − 1
− 1

8
α

(h̄ω)3

τ2
+

1
8
α

(h̄ω)2

τ
. (12)

The vacuum energy was subtracted. In deriving Eq. (12), we replaced the sum over
all oscillators by an integral over Ni [εi = (i+1/2)h̄ω]. We also assume h̄ω/τ >> 1.
If instead we assume that just the first excited state contributes to < ε >, we obtain

< ε >=
h̄ω

e
h̄ω
τ −1

+ α

(
1−e−

h̄ω
τ

)
(h̄ω)3

τ2


1

4

(
1+3e−

h̄ω
τ

]
e−

h̄ω
τ

1 + e
h̄ω
τ

− 3
4
e−

h̄ω
τ


. (13)

The dominant contribution to Eq. (13) is

< ε >=
h̄ω

e
h̄ω
τ − 1

− α
e−

h̄ω
τ (h̄ω)3

τ2
(ω = 2πν) . (14)

For the energy distribution per unit frequency, we obtain from Eq. (14)

dU(ν) =
8πν2dν

c3


 h̄ω

e
h̄ω
τ − 1

− α
e−

h̄ω
τ (h̄ω)3

τ2


 . (15)

Actually, Eq. (14) is a better approximation to < ε > at high ν since if hν/τ À 1,
we expect only the lowest states to contribute in Eq. (11).

3. Conclusion

In Eq. (5), Eq. (9) and Eq. (15), we obtained corrections to the usual black-body
energy-density formulae due to the Haldane statistics, the ambiguous statistics of
Medvedev and the Tsallis statistics, respectively. Another modification would be
due to the possible finite number of oscillator components leading to an average
oscillator energy of

< ε >=
∑N

n=0

(
n + 1

2

)
h̄ωe−(n+ 1

2 ) h̄ω
τ∑

e−(n+ 1
2 ) h̄ω

τ
=

h̄ω

2
+ h̄ω

(
x + 2x2 + 3x3 + 4x4

1 + x + x2 + x3 + x4

)

for N = 4, where x = e−
h̄ω
τ . The deviation from the usual B.E. energy would be

δε = h̄ω

(
x + 2x2 + 3x3 + 4x4

1 + x + x2 + x3 + x4
− x

1 − x

)
=

−5hν e−5hν(h̄ω/τ)

(1 − x)(1 + x + x2 + x3 + x4)
.
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Such a cutting-off of the number of oscillator states might be due to axion-
photon oscillations [19], or the strongly coupled phase of QED [20]. Also deviations
from the usual black body spectrum of the CBR might be the result of heavy
neutrino decays [21], Higgsino decays [22], or the decay of particles with me ≈ 1 eV
[23]. Since the CMB temperature is only known to an accuracy of (2.73 ± .01) K
[24], and effects such as reionization and foreground contamination create a margin
of error in measurements, it could very well be that the corrections included in Eq.
(5), Eq. (9) and Eq. (15) would be hidden by these larger experimental fluctuations.

One application of testing the difference between Eq. (5), Eq. (9) and Eq.
(15) was originally proposed by Sunyaev [25,26] by looking for short wavelengths
less than the Lyman continuum. The method entails the observation of rarefied,
neutral hydrogen in the halo of galaxies and in the bridge between galaxies which
absorbs UV radiation, the presence of neutral hydrogen detected by the 21 cm line.
The differential density of neutral hydrogen atoms around galaxies can be set in
correspondence with the UV flux and input temperatures can be inserted into Eq.
(5), Eq. (9) and Eq. (15) to see which is most compatible with the neutral hydrogen
absorbing UV radiation in a certain windows. In Fig. 1 below, the deviations from
a Bose-Einstein plot are given in the UV region for the three statistics (Haldane,
Medvedev and Tsallis) with parameters listed in the graph. It seems that only the
statistics of Medvedev enhances the spectrum.
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Fig. 1. Additive corrections to the Planck distribution according to the Haldane
(α = 10−5), Medvedev (ε = 10−6) and Tsallis statistics (α = 10−5). The common
multiplicative factor is 8πh

c3 x(kT/h)4).

FIZIKA B 11 (2002) 3, 135–140 139



wolf: corrections to the high frequency tail of the black body . . .

Acknowledgements

I wish to thank the Physics Departments at Williams College and Harvard
University for the use of their facilities. I also wish to thank Adrienne Wootters for
helpful discussions.

References

[1] S. K. Lamoreaux, Int. J. Mod. Phys. 7 (1992) 6691.

[2] F. J. Dyson, J. Math. Phys. 8 (1967) 1538.

[3] R. Geroch and G.T. Horowitz, The Global Structure of Space and Time, in Einstein
Centernary Survey, eds. S. W. Hawking and W. Israel, Cambridge Univ. Press (1979)
p. 217.

[4] G. Gentile, Il Nuovo Cimento 17 (1940) 493.

[5] H. S. Green, Phys. Rev. 90 (1952) 270.

[6] A. B. Govorkov, Phys. Part. Nuclei 24 (1993) 565.

[7] O. W. Greenberg, Phys. Rev. Lett. 64 (1990) 705.

[8] F. Reins and H. W. Sobel, Phys. Rev. Lett. 32 (1974) 954.

[9] M. K. Moe and F. Reins, Phys. Lett. B 140 (1965) 992.

[10] Y. S. Wu, Phys. Rev. Lett. 73 (1994) 922.

[11] F. D. M. Haldane, Phys. Rev. Lett. 67 (1991) 937.

[12] M. V. Medvedev, Phys. Rev. Lett 78 (1997) 4147.

[13] C. Tsallis, J. Statist. Phys. 52 (1988) 479.

[14] C. Wolf, Il Nuovo Cimento B 110 (1995) 1481.

[15] C. Wolf, Apeiron 7 (3,4) (2000) 207.

[16] C. Wolf, Fizika A 9 (3) (2000) 127.

[17] L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd ed., Pergamon Press, N.Y.
(1985).

[18] C. Tsallis, F. C. Sa Berreto and E. D. Loh, Phys. Rev. E 52 (1995) 1447.

[19] C. Wolf, Astron. Nachr. 307 (1986) 255.

[20] D. G. Galdi, Comments on Nucl. and Part. Phys. XIX (No. 3) (1989) 137.

[21] S. A. Bludman, Nucl. Phys. B (Proc. Suppl.) 14 (1990) 149.

[22] M. Drees, J. Ellis and P. Jetzer, CERN-TH 5254/88 (Dec. 1988).

[23] J. Silk and A. Stebbins, Ap. J. 219 (1983) 1.

[24] E. Gawiser and J. Silk, Phys. Rep. 333-334 (2000) 245.

[25] R. A. Sunyaev, Astr. Zh. 46 (1969) 929.

[26] R. A. Sunyaev, Ap. Letters 3 (1969) 33.

POPRAVKE VISOKOFREKVENTNOG DIJELA SPEKTRA CRNOG TIJELA
PREMA TRIMA INAČNIM STATISTIKAMA

Razmatraju se tri poopćenja Bose-Einsteinove statistike i računaju popravke koje
svaka od njih uvodi za spektar crnog tijela u području visokih frekvencija.
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