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The formalism for treating the leading-twist contributions of the two-gluon Fock
components occurring in hard exclusive processes that involve η and η′ mesons is
reviewed. The calculation of the η, η′–photon transition form factor in next-to-
leading order in αs, as well as, the analysis of the g∗g∗η′ vertex and the electro-
and photoproduction of η, η′ mesons are presented. Applications of this formalism
to other relevant quantities such as glueballs are also discussed.
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1. Introduction

Within the framework for analyzing exclusive processes at large momentum
transfer developed in the late seventies [1], the description of hard exclusive
processes involving light mesons is based on the factorization of short- and long-
distance dynamics and on the application of perturbative QCD. The former dynam-
ics is represented by the process-dependent and perturbatively calculable parton-
level subprocess amplitude, i.e. elementary hard-scattering amplitude, in which the
meson is replaced by its Fock states, while the latter is described by the process-
independent meson distribution amplitude (DA), which represents the probability
of finding the corresponding Fock state in a meson and encodes the soft physics.
Although the DA is essentially a nonperturbative quantity, its evolution is sub-
ject to a perturbative treatment. In the standard hard-scattering approach, the
leading-twist contributions are obtained by regarding the meson as consisting only
of valence Fock states, transverse parton momenta are neglected (collinear approx-
imation) as well as the masses.

This work is focused on hard reactions involving η and η′ mesons. In the forma-
lism explained above, these particles are naturally described in terms of the SU(3)F
octet and singlet valence quark-antiquark Fock components and the two-gluon com-
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ponent, which also carries the flavour-singlet quantum numbers. A separate distri-
bution amplitude corresponds to each of the three components. In comparison with
the reactions involving the “pure” flavour-nonsinglet mesons (π, K, . . .), the fol-
lowing novel features should be properly taken into account. First, owing to the
SU(3)F symmetry breaking and U(1)A anomaly, the well-known flavour mixing is
present in the η-η′ system (for a recent review, see Ref. [2]). Second, there are
three valent components that contribute to η and η′ in leading-twist and two of
them are connected by evolution, i.e. the mixing of the singlet and gluon DAs un-
der evolution should be properly taken into account. The latter feature has been
investigated in a number of papers [3 – 6] However, although most of the results
are in agreement [3, 5, 6] up to differences in the conventions used, a consistent set
of conventions necessary for the calculation of both the elementary hard-scattering
amplitude and the DA is not transparent from these works. Recently, the treatment
of the two-gluon component and its mixing with the singlet one has been reexam-
ined in Ref. [7]. A detailed analysis of the next-to-leading order (NLO) calculation
of the η, η′-photon transition form factor was performed, making it possible to
introduce and test the conventions for all ingredients of a leading-twist calculation
for any process that involves η or η′ mesons. The results were then applied to the
η, η′–gluon transition form factor and the electroproduction of η and η′ mesons. In
this work, we briefly review the basic steps of that analysis, stress the important
points occasionally still overlooked in the literature and extend the application of
this formalism to the photoproduction of η and η′ mesons and a possible description
of glueballs.

2. Formalism

As the valence Fock components of the pseudoscalar mesons P= η, η′, we choose
the SU(3)F octet and singlet combinations of quark-antiquark states

|qq8〉 = |(uu + dd − 2ss)/
√

6〉 , |qq1〉 = |(uu + dd + ss)/
√

3〉 , (1)

and the two-gluon state

|gg〉 . (2)

The corresponding DAs are denoted by ΦP8,1,g and parameterized as

ΦP8(x, µ2) =
f8
P

2
√

2Nc

φ8(x, µ2) ,

ΦP1(x, µ2) =
f1
P(µ2)

2
√

2Nc

φ1(x, µ2) , ΦPg(x, µ2) =
f1
P(µ2)

2
√

2Nc

φg(x, µ2) ,

(3)

where the DAs φ8 and φ1 are normalized to unity

1∫

0

dx φi(x, µ2) = 1 . (4)
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However, since 1∫

0

dx φg(x, µ2) = 0 , (5)

there is no such a natural way to independently normalize the gluon DA1. Since
the flavour-singlet quark and gluon DAs mix under evolution, it is convenient to
pull out of the gluon DA the same factor as for the flavour-singlet quark one. In (3)
the particle dependence and the mixing behaviour is solely embedded in the decay
constants, while in a more general approach different distribution amplitudes φP8

and φP1 could be assumed for P= η, η′. The decay constants are parametrized in a
two-angle octet-singlet mixing scheme [9, 8]

f8
η = f8 cos θ8 , f1

η = −f1 sin θ1 ,

f8
η′ = f8 sin θ8 , f1

η′ = f1 cos θ1 . (6)

The numerical values[8] f8 = 1.26fπ, f1 = 1.17fπ, θ8 = −21.2◦, and θ1 = −9.2◦

are used in this work, along with fπ = 0.131 GeV.

We note here that alternatively to the octet-singlet basis (1) and the two-angle
octet-singlet mixing scheme (6), the phenomenologically better suited quark-flavour

basis (|qq〉 = |(uu + dd)/
√

2〉 and |ss〉) and quark-flavour mixing scheme [8] were
recently suggested. However, since the two-gluon state carries the flavour-singlet
quantum numbers and mixes under evolution with the flavour-singlet component,
octet-singlet basis turns out to be the natural one for the hard-scattering leading-
twist analysis which includes the two-gluon components as well. When the two-
gluon states are taken into account, the DA evolution introduces the appearance of
“opposite” Fock components in the quark-flavour basis states2, making the calcula-
tion unnecessarily difficult and untransparent. Furthermore, one has to remember
that the one-angle quark-flavour mixing scheme has been derived under the as-
sumption that the OZI violating effects, and among them the contributions of the
two-gluon components, can be neglected [2]. Hence, for the calculations involving
two-gluon states, one should use the octet-singlet basis. The mixing should then
be implemented by the two-angle octet-flavour mixing scheme whose relation to
the quark-flavour scheme is demonstrated in Ref. [8]. On the other hand, from
the phenomenological success of the quark-flavour mixing scheme and the approx-
imate validity of the OZI rule, one should expect that the effects of the two-gluon
components are not excessively large in the η-η′ system.

The evolution of the octet DA φ8, being fully analogous to the pion case, is
governed by the evolution equation of the form

µ2 ∂

∂µ2
φ8(x, µ2) = V (x, u, αS(µ2)) ⊗ φ8(u, µ2

F) , (7)

1As we shall explicitly see later on, the DAs satisfy the following symmetry properties in respect
to the longitudinal momentum fractions x: φi(x, µ2) = φi(1 − x, µ2), φg(x, µ2) = −φg(1 − x, µ2)

2For details, see Sec. III of Ref. [7].
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while the singlet and gluon DAs mix under evolution and the evolution equation
takes the matrix form

µ2 ∂

∂µ2

(
φ1(x, µ2)

φg(x, µ2)

)
=

(
Vqq Vqg

Vgq Vgg

)
(x, u, αS(µ2)) ⊗

(
φ1(u, µ2)

φg(u, µ2)

)
. (8)

Here ⊗ denotes the usual convolution symbol, kernels V possess a well defined
expansion in αS and in this work we are interested only in the leading-order (LO)
evolution3.

The solutions of the LO evolution equation (7) are given in terms of expansion

in Gegenbauer polynomials C
3/2
n

φ8(x, µ2) = 6x(1 − x)

[
1 +

∑

n=2,4,...

B 8
n (µ2) C 3/2

n (2x − 1)

]
, (9)

where the coefficients B 8
n (µ2) evolve according to [1]

B 8
n (µ2) = B 8

n (µ2
0)

(
αs(µ

2
0)

αs(µ2)

)γ(0)
n

/β0

. (10)

γ
(0)
n are LO anomalous dimensions, while B 8

n (µ2
0) represent nonperturbative input

at the scale µ2
0. The LO solutions of (8) take the more involved form

φ1(x, µ2) = 6x(1 − x)

[
1 +

∑

n=2,4,...

B1
n(µ2) C3/2

n (2x − 1)

]

φg(x, µ2) = x2(1 − x)2
∑

n=2,4,...

Bg
n(µ2) C

5/2
n−1(2x − 1) , (11)

where

B 1
n (µ2

F) = B(+)
n (µ2

0)

(
αs(µ

2
0)

αs(µ2
F)

)γ (+)
n

/β0 + ρ (−)
n B(−)

n (µ2
0)

(
αs(µ

2
0)

αs(µ2
F)

)γ (−)
n

/β0

,

B g
n (µ2

F) = ρ (+)
n B(+)

n (µ2
0)

(
αs(µ

2
0)

αs(µ2
F)

)γ (+)
n

/β0

+ B(−)
n (µ2

0)

(
αs(µ

2
0)

αs(µ2
F)

)γ (−)
n

/β0

.

(12)

Here the coefficients B±
n (µ2

0), i.e., B
q,(g)
n (µ2

0), represent nonperturbative input at

scale µ2
0, while γ

(±)
n , ρ

(+)
n , ρ

(−)
n , are defined in terms of LO anomalous dimensions

3The evolution of the singlet decay constant f1
P

is also to be neglected in that case.
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(see, for example, Ref. [7]): γqq
n = γ

(0)
n , γgg

n , and

γqg
n = CF

n(n + 3)

3(n + 1)(n + 2)
, γgq

n = nf
12

(n + 1)(n + 2)
. (13)

Finally, note that, in the limit µ2 → ∞, the octet and singlet DAs evolve into the
asymptotic form φ(x) = 6x(1 − x) and the gluon one to zero.

When calculating the elementary hard-scattering amplitude, the projection of
a collinear qq̄i state onto a pseudoscalar meson state is achieved by replacing the
quark and antiquark spinors by

Pi,q
αβ,rs,kl = Ci,rs

δkl√
Nc

(
γ5/p√

2

)

αβ

, (14)

where α (r, k) and β (s, l) represent Dirac (flavour, colour) labels of the quark and
antiquark, respectively, and p denotes the meson momentum (p2 = 0). The flavour

content is taken into account by the matrices C8 = λ8/
√

2 and C1 = 1f/
√

nf , where
nf = 3 denotes the number of flavours contained in qq̄1.

The projection of a collinear gg state onto a pseudoscalar meson state is achieved
by replacing the gluon polarization vectors ǫµ(xp, λ) and ǫν((1 − x)p,−λ) by

Pg
µν,ab =

i

2

√
CF

nf

δab√
N2

c − 1
ǫµναβ nαpβ

n · p
1

x(1 − x)
, (15)

where a, b represent colour indices, and any vector having the space components op-
posite to p can be taken as n here. The projector (15) corresponds to the definition
of φg, i.e. the anomalous dimensions γqg

n and γgq
n , given by (13).

Owing to (5), there exists a freedom in defining the gluon DA. Suppose we
change φg by a factor σ

φσ
Pg = σ φPg . (16)

Inspection of Eq. (8), (or equivalently of Eqs. (11-12) ) reveals the following. Since
the singlet and gluon DA are connected by evolution and in order to leave the
quark DA φ1 unchanged, the change of the definition of the gluon DA (16) has to
be converted into a change of Vqg and Vgq, or equivalently into a change of the off-

diagonal anomalous dimensions γqg and γgq and the B
(−)
Pn . Hence, (16) is equivalent

to
γ qg,σ

n =
1

σ
γ qg

n , γ gq,σ
n = σ γ gq

n , (17)

and B
(−) σ
Pn (µ2

0) = σB
(−)
Pn (µ2

0), which then implies B g σ
Pn (µ2) = σ B g

Pn (µ2) and
B q σ

Pn (µ2) = B q
Pn (µ2). On the other hand, since any physical quantity must be

independent of the choice of the convention, any change of the definition of the
gluon DA is naturally accompanied by a corresponding change in the elemen-
tary hard-scattering amplitude. Namely, the projection (15) of the gg state onto a
pseudoscalar meson state is to be modified by a factor 1/σ, i.e.

Pg σ
µν =

1

σ
Pg

µν , (18)
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and the elementary hard-scattering amplitude becomes altered accordingly. In the
literature [3, 5, 6] one encounters various conventions for γqg

n and γgq
n , but the

corresponding definition of the gluon projector Pg was often omitted, and it is
crucial that these two ingredients of the leading-twist calculation are consistently
defined. In Ref. [7] a consistent set of conventions (13) and (15) was fixed and tested
on the NLO calculation of the η, η′-photon transition form factor. The relations
(17) and (18) then enable us to make a connection with other conventions (note

that the input coefficients B
(−)
n (µ2

0), i.e. Bg
n(µ2

0), are also convention dependent).

3. Applications

First, we turn to the NLO calculation of the η, η′–photon transition form factor,
i.e. to the evaluation of the γ∗γ → η(η′) hard-scattering amplitude. The form factor
can be expressed as a sum

FPγ = F 8
Pγ(Q2) + F 1g

Pγ(Q2) , (19)

where Q2 represents the photon virtuality. The flavour-octet contribution F 8
Pγ(Q2)

can be obtained from the pion–photon transition form factor (see Ref. [10] and
references therein); one only has to take into account the proper flavour factor.
The contributions of the flavour-singlet and two-gluon components contained in

F 1g
Pγ (Q2) =

(
TH,1(x,Q2, µ2

F) TH,g(x,Q2, µ2
F)
)
⊗
(

ΦP1(x, µ2
F)

ΦPg(x, µ2
F)

)
, (20)

were calculated in Ref. [7]. Following the recent analysis of the pion–photon tran-
sition form factor [10], a detailed NLO analysis was performed taking into account
both the hard-scattering part and the perturbatively calculable DA part. The can-
cellation of the collinear singularities present in the parton-subprocess amplitude
with the ultraviolet (UV) singularities appearing in the unrenormalized DAs4 of-
fered the most crucial test of the consistency of our set of conventions for singlet
and gluon DAs and projectors. Using the mixing scheme defined in Eq. (6), the
NLO leading-twist prediction for the η and η′ transition form factors was obtained.
Owing to the quality and quantity of experimental data [11], the Gegenbauer series
(10) and (11) were truncated at n = 2, and the results were then fitted to the data.
For Q2 ≥ 2 GeV2 and µ0 = 1 GeV, the results of the fits read

B8
2(µ2

0) = −0.04 ± 0.04, B1
2(µ2

0) = −0.08 ± 0.04, Bg
2(µ2

0) = 9 ± 12 . (21)

The existing experimental data and their quality allow us to obtain not more than
a constraint on the value of Bg

2 . As expected, we have observed a strong correlation

4Note that the renormalization introduces mixing of the composite operators

Ψ̄(−z) γ+γ5 Ω Ψ(z) and G+α(−z) Ω G̃ +
α (z) in terms of which the quark singlet and gluon DAs

are defined, respectively.

518 FIZIKA B 13 (2004) 2, 513–522
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between B1
2 and Bg

2 . The quality of the fit as well as the sensitivity of the results
on the size of two-gluon components5 can be seen from Fig. 1.
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Fig. 1. η (below) and η′ (above) transition form factors. The shaded area corre-
sponds to the range of B1

2(µ2
0) and Bg

2(µ2
0) given in Eq. (21).

As a next application, the η′–gluon transition form factor, i.e. g∗g∗η′ vertex,
turns to be a natural choice. In contrast to the η, η′–photon transition form factor,
the two-gluon components contribute to g∗g∗ → η(η′) already at LO in αs and
the contribution of the qq̄8 component vanishes. A consequence of the latter is
that the η–gluon transition form factor is much smaller than the η′ one. A reliable
determination of the g∗g∗η′ vertex is of importance for the calculation of a number
of decay processes such as B→ η′X [12], B→ η′K, or of the hadronic production
process pp→ η′X. To leading-twist order the g∗g∗η′ vertex has been first calculated
in Refs. [13]. In Ref. [7], it was reanalyzed using our set of conventions, the previous
calculations were examined and corrected, and the numerical predictions using the
Gegenbauer coefficients (21) were provided. As expected, it was shown that the
g∗g∗η′ vertex is quite sensitive to the two-gluon components.

In Ref. [7], our formalism was applied also to the deeply-virtual and wide-angle
electroproduction of η and η′ mesons with longitudinal photons. It was found that
in the former, the two-gluon contributions were suppressed, while in the latter,
they could be important depending on the value of the Bg

2 coefficient. Here we
have extended this analysis to the photoproduction of η and η′ mesons calculated
in the handbag approach in which the process γp → η(η′)p factorizes in the sub-
process amplitude γq → η(η′)q and soft proton matrix elements. The meson is again
generated by the leading-twist mechanism. As in the case of the wide-angle elec-

5Since B1
2

and B
g

2
are correlated, the shaded area in Fig. 1 corresponds to the change of both

of these coefficients. Nevertheless, the variation of B
g

2
is numerically dominant.
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troproduction, the two-gluon contributions could be substantial and we illustrate
that by displaying the ratio of the gg and qq̄1 contributions (see Fig. 2).
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Fig. 2. Ratio of the gluon and singlet quark amplitudes for the photoproduction
of η′(η) mesons as a function of µ2

F. The shaded area corresponds to the range of
B1

2(µ2
0) and Bg

2(µ2
0) given in Eq. (21).

Finally, we mention some further applications that can be found in recent litera-
ture: in Ref. [14], the previously explained formalism was applied to the B→ η′K(∗)

process, the process Υ(1S) → η′X was analyzed in [15] obtaining further restric-
tions on the Bg

2 coefficient, while some modifications of the leading-twist formalism
were introduced in Ref. [16].

4. Description of glueballs

Last but not least, we would like to comment on the possible application of this
formalism to the description of glueballs.

The pioneering work was done in Ref. [17], were the pseudoscalar glueballs
were described in the standard hard-scattering approach, while the gluon DA was
obtained from the QCD sum rules. The results were then applied to the γγ → Gπ
(G=glueball) process, but the mixing with the qq̄1 state and the evolution were
neglected. However, in a consistent approach, the mixing of gg and qq̄1 components
under evolution should be taken into account.

Let us examine from the purely theoretical point of view the possible description
of the glueball states in leading-twist formalism. In the pseudoscalar case, one
should describe the glueball using the ΦPg and ΦP1 DAs of the form given by Eqs.
(3) and (11), where P now denotes the pseudoscalar glueball. The decay constant
fP1 as well as the Bg

n and B1
n coefficients are unknown. For simplicity reasons, let
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us again take only n = 2 and then compare φ1 and φg from (11). One can easily
see that in order to have the dominantly glueball state, Bg

2 should be much larger
than 1, i.e., than the “leading” term in the expansion of φ1. This is a condition
which may not be trivially satisfied, especially since Bg

2 decreases with µ2 and, in
the limit µ2 → ∞, the pseudoscalar gluon DA vanishes, leaving us only with the
qq̄1 contribution.

The situation looks more favourable in the scalar case where we describe glue-
balls in terms of ΦSg and ΦS1, S being the scalar glueball state. The equivalent of
Eq. (11) is given for the scalar case by

φS1(x, µ2) = x(1 − x) +
∑

n=2,4,...

B1
Sn(µ2) C

3/2
n−1(2x − 1) , (22)

φSg(x, µ2) = 30x2(1 − x)2

[
1 +

∑

n=2,4,...

Bg
Sn(µ2) C5/2

n (2x − 1)

]
.

One can see that, in a sense, the role of the gluon and quark singlet DAs is
here reversed. The gluon DA is now symmetric and well normalized (compare
1∫
0

dxφSg = 1 and
1∫
0

dxφS1 = 0 with Eqs. (4) and (5)), and in the limit of µ2 → ∞,

the quark singlet DA vanishes, while the gluon one takes the asymptotic form
φg(x) = 30x2(1−x)2. In order to have the dominantly glueball state, it is now suf-
ficient that B1

S2 is sufficiently smaller than 1 and this may be expected, especially
since B1

S2 decreases with µ2.

The analysis of both the pseudoscalar and scalar glueballs along these lines is
underway.

5. Conclusions

In this work we have reviewed the leading-twist hard-scattering formalism for
the description of η and η′ mesons with two-gluon components included. The theo-
retical and numerical results of Ref. [7] have been summarized and applied further
to the photoproduction of η and η′ mesons as well as to the possible description
of pseudoscalar and scalar glueballs. The processes such as g∗g∗ → η′, wide-angle
electroproduction and photoproduction of η and η′ mesons show sensitivity to two-
gluon contributions. Future data should allow to pin down the gluon DA, while the
description of glueballs offers a new interesting area of application of this formalism.
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279 [hep-ph/9810275]; A. V. Belitsky and D. Müller, Nucl. Phys. B 537 (1999) 397
[hep-ph/9804379];
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TVRDE EKSKLUZIVNE REAKCIJE I DVO-GLUONSKE KOMPONENTE
η I η′ MEZONA

Opisuje se formalizam za izračunavanje doprinosa vodećeg “twista” dvo-gluonskih
Fock-ovih komponenti, koje se pojavljuju u tvrdim ekskluzivnim procesima, i koji
uključuju η i η′ mezone. Izlaže se račun η i η′–γ funkcije strukture prijelaza u redu
do vodećeg u razvoju po αs, kao i analiza g∗g∗η′ verteksa, te elektro- i fotoprodukcije
η i η′ mezona. Takod–er se raspravlja primjena ovog formalizma na druge relevantne
veličine poput gluonskih lopti.

522 FIZIKA B 13 (2004) 2, 513–522


