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A new kind of the relativistic equations for the three-fermion systems are suggested.
These equations are derived in the framework of the standard field-theoretical S-
matrix approach in the time-ordered three-dimensional form. Therefore the corre-
sponding relativistic covariant equations are three-dimensional from the beginning
and the considered formulation is free of the ambiguities which appear due to a
three-dimensional reduction of the four-dimensional Bethe–Salpeter equations. The
solutions of the considered equations satisfy automatically the unitarity condition,
and for the leptons, these equations are exactly gauge invariant even after the trun-
cation over the multiparticle (n > 3) intermediate states. Moreover, the form of
these three-body equations does not depend on the choice of the model Lagrangian
and it is the same for the formulations with and without quark degrees of freedom.
The effective potential of the suggested equations is defined by the vertex functions
with two on-mass shell particles. It is emphasized that these INPUT vertex func-
tions can be constructed from experimental data. Special attention is given to the
comparison with the three-body Faddeev equations. Unlike these equations, the
suggested three-body equations have the form of the Lippmann-Schwinger–type
equations with the connected potential. In addition, the microscopical potential
of the suggested equations contains the contributions from the three-body forces
and from the particle creation (annihilation) mechanism on the external particles.
The structure of the three-body forces, appearing in the considered field-theoretical
formulation, is analyzed.
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Keywords: three-fermion systems, relativistic equations, Faddeev equations, Lippmann-
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1. Introduction

The purpose of this paper is to focus on the three-body equations with the
particle creation and annihilation phenomena. The most popular tool for this in-
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vestigation is the three-body generalization of the Bethe-Salpeter equations [1,2].
Unfortunately, in this four-dimensional formulation arises a set of complications
which require the use of some serious approximations. For instance, due to the
three-dimensional reduction of the four-dimensional Bethe-Salpeter equations arise
the ambiguities regarding the choice of the form of the three-dimensional Green
functions and the three-dimensional effective potentials. Next, the difficulties with
the unitarity and the gauge invariance require the use of the tree approximation
for the effective potentials and the one-particle propagators for the practical cal-
culation. In addition, the potential of the Bethe-Salpeter equation is constructed
through the three-variable vertex functions, which are required as the “input” func-
tions. Therefore, in the calculations based on the Bethe-Salpeter equations or their
quasipotential reductions, the off-mass shell variables in the vertex functions are
usually neglected or a separable form for all three variables is introduced.

We consider another way of derivation of the three-body field-theoretical equa-
tions which allows to avoid the above difficults and which can be solved with a
considerably smaller number of approximations. The organization of this paper
is as follows. First I consider the three-body spectral decomposition equations
(which have the form of the off shell unitarity conditions [3,4]) for the amplitudes
of the three-fermion systems. These equation form a base for the derivation of the
Lippmann–Schwinger type equation [3,4]. After separation of the connected and
disconnected parts in the amplitudes and effective potentials in these three-body
spectral decomposition equations, one can separate the three-body equations for
the connected and disconnected parts in the three-body amplitudes. Next, after
linearization of these three-body equations we will get the three-body Lipmann-
Schwinger equations for the connected part of the three-body amplitudes. The
major difference between these equations and the Faddeev equations will also be
discussed. Afterwards, I consider the structure of the three-body potentials for the
three-fermion (three-electron or three-nucleon, or for the electron-deuteron scatter-
ing, etc.) systems. Finally, a short summary will be presented.

2. The three-body Lippmann–Schwinger type equations for

the three-fermion scattering reactions

The problem of the relativistic description of particle interactions in the frame-
work of a potential picture is usually solved by relativistic generalization of the
Lippmann–Schwinger type equation of the nonrelativistic collision theory [3,4]. As
the basis for the derivation of the Lippmann–Schwinger type equations in the
collision theory, one can use the following quadratically nonlinear integral
equations [4]

Tαβ(Eβ) = Vαβ +
∑

γ

Tαγ(Eγ)
1

Eβ − Eγ + iǫ
T ∗

βγ(Eγ)

+
∑

d3

Tα,d3(Ed3)
1

Eβ − Ed3
T ∗

β,d3(Ed3), (1)
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where Tαβ(Eβ) is the transition amplitude between the channels α and β. The
α, β, γ denote the pure three noninteracting fermion channels or the one-fermion
+ two-body cluster states. For example, for the three nucleon systems α =NNN or
Nd, for the two-electron and nucleon α =eeN or ed etc., d3 relates to the three-body
bound states.

∑
γ stands for the integration over the momenta and the summation

over the quantum numbers of the complete set intermediate γ ≡ |γ〉-channel states.

If we suppose, that there exists the full hermitian Hamiltonian H which has the
complete set of the eigenfunctions H|Ψγ〉 = Eγ |Ψγ〉, then one can easily reduce
Eq. (1) to the Lippmann–Schwinger type equations

Tαβ(Eβ) = Vαβ +
∑

γ

Vαγ
1

Eβ − Eγ + iǫ
Tγβ(Eβ), (2)

where we have used the decomposition formula of the full Green function G(E) =
1/(E−H + iǫ) over the complete set of the functions |Ψγ〉, and we have taken into
account the connection formula between an amplitude, a multichannel potential
and a wave function Tαβ(Eβ) = 〈α|V |Ψβ〉 [3,4].

The three-body equations (1) are well defined after separation of the connected
(T c

αβ ; V c
αβ) and disconnected (V dc

αβ ; V dc
αβ) parts of amplitudes and potentials. There-

fore we split the complete amplitude and the complete potential in Eq. (1) into two
corresponding parts

Vαβ = V c
αβ + V dc

αβ , and Tαβ(Eβ) = T c
αβ(Eβ) + T dc

αβ(Eβ) . (3)

The disconnected parts of the two-body and three-body amplitudes are depicted
in Fig. 1. The disconnected part of the three-body amplitudes is independent from
the connected part of these amplitudes, because the two-body clusters with the
asymptotic free third particle is independent of the three-particle interacted clus-
ters. This is the usual requirement for the independence of the asymptotic clusters.
The independence of the equations for the disconnected part of Eq. (1) can be easy
demonstrated in the quantum-field formulation [8]. As a result, Eq. (1) is split into
two sets of independent equations

T dc
αβ(Eβ) = V dc

αβ +
∑

γ

T dc
αγ(Eγ)

1

Eβ − Eγ + iǫ

[
T dc

βγ(Eγ)
]
∗

, (4)

T c
αβ(Eβ) = Wαβ +

∑

γ

T c
αγ(Eγ)

1

Eβ − Eγ + iǫ

[
T c

βγ(Eγ)
]
∗

+
∑

d3

Tα,d3(Ed3)
1

Eβ − Ed3
T ∗

β,d3(Ed3) , (5)

where
Wαβ = V c

αβ +
∑

γ

T c
αγ(Eγ)

1

Eβ − Eγ + iǫ

[
T dc

βγ(Eγ)
]
∗

+
∑

γ

T dc
αγ(Eγ)

1

Eβ − Eγ + iǫ

[
T c

βγ(Eγ)
]
∗

. (6)
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Fig. 1. The disconnected parts of the two-fermion and the three-fermion S-matrix
elements. The label d stands for the two-fermion bound state. The shaded circle
corresponds to the two-body scattering amplitude.

The effective potential (6) in the field-theoretical formulation wα,β is not hermitian
due to the particle propagators in the intermediate states. Nevertheless, we have
shown in Refs. [8] and [11] that the quadratically nonlinear equations (5) are equiv-
alent to the following Lippmann–Schwinger type equations

Tαβ(Eβ) = Uαβ(Eβ) +
∑

γ

Uαγ(Eβ)
1

Eβ − Eγ + iǫ
Tγβ(Eβ) , (7)

where, for the sake of simplicity in above equations, we have omitted the delta
function for the total three-momentum conservation, (2π)3δ(Pβ −Pγ). The explicit
form of the linear energy depending potential

Uαβ(E) = Aαβ + E Bαβ , (8a)

with hermitian matrices A and B

Aαβ = A∗

βα , Bαβ = B∗

βα (8b)

is considered in the next section. Uαβ(E) is simply connected with the Wαβ-
potential (6)

Uαβ(Eα) = Wαβ . (9a)
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Therefore, for any potential Wαβ , one can unambiguously construct Uαβ(E). Solu-
tions of equations (5) and (7) coincide on the energy shell

Tαβ(Eβ = Eα) = T c
αβ |Eβ=Eα

, (9b)

and in the half on energy shell region, these amplitudes are simply connected

Tαβ = Wαβ +
∑

γ

Wαγ
1

Eβ − Eγ + iǫ
T c

γβ(Eβ) . (10)

The Lippmann–Schwinger type equations (7) are our final equations for the
three-fermion scattering amplitudes. On the other hand, Eq. (1) can be linearized
without the separation of the connected and disconnected parts, and from the
Lippmann–Schwinger equation (2), one can derive the Faddeev type equations [3].
The advantage of Eq. (7) is that it does not need the splitting into four pieces

Vαβ =
∑3

i=1 V
i
αβ + V c

αβ in order to take into account the disconnected parts in

the perturbation series. Besides, Eqs. (7) are free from the over-counting prob-
lem which appears due to special disconnected diagrams and which generates the
corresponding modification of the effective potentials [1,2].

3. The three-dimensional three-body field-theoretical

equations

In the standard formulation of the quantum field theory [5 – 7], the S-matrix ele-
ment between the asymptotic three-body states α = 1′, 2′, 3′, f ′d′ and β = 1, 2, 3, fd
is connected by the scattering amplitude fα,β

Sα,β = 〈out;α|β; in〉 = 〈out; α̃|bpa
(in)|β̃; in〉 − (2π)4iδ(4)(Pα − Pβ)fα,β , (11)

where f denotes the one-fermion state, d stands for the bound state of two fermions,
Pα ≡ (Eα,Pα) is the complete four-momentum of the asymptotic state α, a and b
corresponds to the one-fermion states extracted from the asymptotic α and β states

α = a+ α̃, β = b+ β̃ , (12)

and the four-momentum of the asymptotic one-fermion states a is pa =(√
m2

a + p2
a,pa

)
≡

(
Epa

,pa

)
. The amplitude fαβ has the form

fαβ = −〈out; α̃|Jpa
(0)|β; in〉 , (13)

where Jpa
(x) is the current operator of the fermion a which is determined by the

Dirac equation Jpa
(x) = Z

−1/2
a u(pa)(iγµ∂

µ
x −ma)ψa(x) with the renormalization

constant Za and Dirac bispinor function u(pa) [5,6].
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Using the well know reduction formulas, we obtain

fαβ = 〈out; α̃|b+pb
(out)Jpa

(0)|β̃; in〉 − 〈out; α̃|
{
Jpa

(0), b+pb
(0)

}
|β̃; in〉

+i

∫
d4x e−ipbx〈out; α̃|T

(
Jpa

(0)Jpb
(x)

)
|β̃; in〉, (14)

where

b+pb
(x0) = Z

−1/2
b

∫
d3x e−ipbxu(pb)γoψb(x) . (15)

Here and afterwards, we use the definitions and normalization conditions from the
Itzykson and Zuber’s book [6].

After the substitution of the complete set of the asymptotic “in” states∑
n |n; in〉〈in;n| = 1̂ between the current operators in expression (14), and after

integration over x, we get

fαβ = Wαβ + (2π)3
∑

γ

fαγ

δ(3)(pb + P
β̃
−Pγ)

Epb
+ P o

β̃
− P o

γ + iǫ
T ∗

βγ (16)

where Wαβ contains all contributions from intermediate states that can appear in
the β → α reaction, except the s-channel three-particle γ = 1′′2′′3′′ exchange states
and one-fermion f + two-fermion bound states d (γ = f+d) exchange terms which
are included in the second part of Eq. (16).

Wαβ = −〈out; α̃|
{
Jpa

(0), b+pb
(0)

}
|β̃; in〉

+(2π)3
∑

n=1′′2′′3′′b′′,f ′′d′′,...

〈out; α̃|Jpa
(0)|n; in〉

δ(3)(pb + P
β̃
−Pn)

Epb
+ P o

β̃
− P o

n + iǫ
〈in;n|Jpb

(0)|β̃; in〉

−(2π)3
∑

l=f,fb,...

〈out; α̃|Jpb
(0)|l; in〉

δ(3)(−pb + P
α̃
−Pl)

−Epb
+ P o

α̃
− P o

l

〈in; l|Jpa
(0)|β̃; in〉, (17)

where n = 1′′2′′3′′b′′, f ′′d′′, ... denotes the four-body states with the intermediate
boson b′′ which denotes a photon for the three-lepton system, and b′′ stands for
the intermediate meson for the three-barion systems. The third part of Eq. (17)
describes the u-channel interaction terms which are obtained after crossing of the
a and b particles. The intermediate states of this term contain one fermion l = f
and one-fermion+boson l = f + b states. These diagrams are depicted in Figs. 2a
and 2e.

Equation (16) contains the auxiliary amplitude

Tαβ = −〈in; α̃|Jpa
(0)|β; in〉. (18)
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Fig. 2. The on-mass-shell particle-exchange diagrams which are included in the
effective potential (20) for the three-fermion reactions 1 + 2 + 3 → 1′ + 2′ + 3′.
The empty circle stands for the primary transition amplitude and the dashed circle
corresponds to the following transition amplitude. Fermions with the index ∗ are
extracted from the asymptotic states in the expression (20) or in (17) a ≡ 1′ and
b ≡ 1. For any amplitude in the left side of Eq. (20) or (17). only one particle
(a or b) is considered off mass shell. All of diagrams have the three-dimensional
time-ordered form with the “dressed” vertices. Therefore, in all of the diagrams the
initial hollow circle is depicted on left-hand side and the following circle takes place
in the right-hand side.

In the transition matrix 〈α̃|Jpa
(0)|β〉 with arbitrary α̃ and β states, all particles

except a are on the mass shell. The four-momentum of particle a is expressed
through the four-momenta of other on mass shell particles, i.e. pa = Pβ − P

α̃
.

Therefore, we shall later consider particle a as an off-mass-shell particle in the
corresponding matrix element.

For the one-particle asymptotic state α̃ ≡ 1′ we have f1′+a,β = T1′+a,β , because
〈out; 1′| = 〈in; 1′|. For the three-particle asymptotic state 〈out;α|, the situation is
more complicated, T1′+2′+a,β /=T1′+2′+a,β . We can obtain the analogue to (16) for
Tαβ (18) using the S-matrix reduction formulae

Tαβ = wαβ + (2π)3
∑

γ

Tαγ

δ(3)(pb + P
β̃
−Pγ)

Epb
+ P o

β̃
− P o

γ + iǫ
T ∗

βγ , (19)
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where

wαβ = −〈in; α̃|
{
Jpa

(0), b+pb
(0)

}
|β̃; in〉

+(2π)3
∑

n=1′′2′′3′′b′′,...

〈in; α̃|Jpa
(0)|n; in〉

δ(3)(pb + P
β̃
−Pn)

Epb
+ P o

β̃
− P o

n + iǫ
〈in;n|Jpb

(0)|β̃; in〉

−(2π)3
∑

l=f,fb,...

〈in; α̃|Jpb
(0)|l; in〉

δ(3)(−pb + P
α̃
−Pl)

−Epb
+ P o

α̃
− P o

l

〈in; l|Jpa
(0)|β̃; in〉 . (20)

Using Eqs. (16) and (18), we can find the connection formula between fαβ and Tαβ .
If we suppose, that

Tαβ =
(
wW−1f

)

αβ
(21a)

and

fαβ =
(
Ww−1T

)

αβ
, (21b)

then after insertion of relation (21a) into Eq. (16), we obtain Eq. (18) for Tαβ . And
vice versa, after insertion of relation (21b) into Eq. (18), we get Eq. (16). This is the
justification of the relations (21) for the nonsingular effective three-body potentials
W (17) and w (20).

The consistent procedure of separation of the complete set of a connected and
disconnected parts in the three-dimensional equations (19) or (16) is well known as
field-theoretical cluster decomposition procedure [9,10]. In Ref. [8], this procedure
is applied to the three-body equation for the γπN systems. For the three-body
reactions 1 + 2 + 3→ 1′ + 2′ + 3′, the cluster decomposition procedure is the same
as separation of the following connected and disconnected matrix elements

T dc
1′2′3′,123 = −〈in;p′

2,p
′

3|b+p3
(in)Jp′

1
(0)|p1,p2; in〉 (22)

+〈in;p′

2,p
′

3|b+p2
(in)Jp′

1
(0)|p1,p3; in〉 − 〈in;p′

2,p
′

3|b+p1
(in)Jp′

1
(0)|p2,p3; in〉

+〈in;p′

2|Jp′

1
(0)bp′

3
(in)|p1,p2,p3; in〉 − 〈in;p′

3|Jp′

1
(0)bp′

2
(in)|p1,p2,p3; in〉,

T c
1′2′3′,123 = −

∑

permutations 1,2,3

〈in;p′

2,p
′

3|
{{

Jp′

1
(0), b+p1

(in)
}
, b+p2

(in)

}
|p3; in〉. (23)

The s and u channel terms of the effective potential (20) are depicted in Figs. 2a and
2e. As off-mass-shell one-particle states are taken b = 1 and a = 1′. These off-mass-
shell particles in the following figure are marked by ∗. The diagrams in Figs. 2a
and 2e have different chronological sequences of the absorption and the emission
of particles 1 and 1′. In particular, the s-channel diagram 2a corresponds to the
chain of reactions, where firstly the initial three-body state 1∗ + 2 + 3 transforms
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into intermediate on-mass-shell n-particle states which afterwards produce the final
1∗′ +2′ +3′ state. In the diagram 2e, at first the final fermion 1∗′ is generated with
the intermediate states l from the initial 2 + 3 states, and afterwards we obtain
final 2′ + 3′ state from the intermediate l + 1∗ states.

Using the cluster decomposition procedure for the s and u channel terms in
Eq. (20) or in Eq. (25), one can change the chronological sequence of absorption
of the initial on-mass-shell fermions 2, 3 and emission of the final on-mass-shell
particles 2′, 3′. The diagrams 2b, 2c and 2d show all possible transpositions of
the particles 3 and 3′ from the original s-channel diagram 2a which can be per-
formed after transposition of particles 3 and 3′ using the disconnected structure
(22) of the tree-body amplitudes. In particular, Fig. 2b is obtained after trans-
position of fermion 3′ i.e. after substitution of the disconnected part of amplitude
〈in;p′

2|Jp′

1
(0)bp′

3
(in)|n; in〉. Fig. 2c is generated by transposition of fermion 3 and

Fig. 2d is the result of the permutation of both particles 3 and 3′. Unlike to the
diagram 2a, in the diagram 2b the intermediate l states arise together with the final
3′ state and subsequently are generating the final two-fermion 1∗′ + 2′ states. The
same procedure of transposition of particles 3 and 3′ from the u-channel diagram in
Fig. 2e generates the diagrams 2f, 2g and 2h. Another kind of permutations of both
particles 2+3 and 2′ +3′ from s-channel diagram in Fig. 2a produces the diagrams
3a, 3b and 3c. In particular, diagrams 3g and 3i are obtained from diagrams 2b
and 2f after transposition of the 2 + 3 particle states. And transposition of 2′ + 3′

states in diagrams 2c and 2g produces diagrams 3h and 3j. The complete set of the
diagrams which can be obtained after transpositions of the particles (2, 3); (2′3′)
consists of the different disposition of these particles at the first vertex function and
at the following vertex function. The first vertex function in Fig. 2 and in Fig. 3 is
denoted with the hollow circle in Fig. 2 and the dashed circle stands for the next
vertex function. One has the following combinations of the dispositions of particles
(2, 3); (2′3′) at the vertex functions:

1∗ + zero particles =⇒1′∗ + four particles,
1∗ + one particle =⇒1′∗ + three particles,
1∗ + two particles =⇒1′∗ + two particles,
1∗ + three particles =⇒1′∗ + one particle and
1∗ + four particles =⇒1′∗ + zero particles.

For instance, we have four diagrams

1∗ + 2 =⇒1′
∗

+ 3, 2′3′ (Fig. 2c),
1∗ + 3 =⇒1′

∗

+ 2, 2′3′,
1∗ + 2′ =⇒1′

∗

+ 23, 3′ and
1∗ + 3′ =⇒1′

∗

+ 23, 2′ (Fig. 3g)
for the disposition

1∗ + one particle =⇒1′
∗

+ three particles.

The particle distribution

1∗ + three particles =⇒1′
∗

+ one particle
has also four diagrams
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Fig. 3. Diagrams obtained after the two particle (2, 3) and (2′, 3′) transposition
from the s-channel diagram in Fig. 2a and from the t-channel diagram in Fig. 2e.

1∗ + 3, 2′3′ =⇒1′
∗

+ 2,
1∗ + 2, 2′3′ =⇒1′

∗

+ 3 (Fig. 3h),
1∗ + 23, 3′ =⇒1′

∗

+ 2′ (Fig. 2b),
1∗ + 23, 2′ =⇒1′

∗

+ 3′.

The particle distribution

1∗ + two particles =⇒1′
∗

+ two particles
can be observed in the six diagrams

1∗ + 23=⇒1′
∗

+ 2′3′ (Fig. 2a),
1∗ + 2, 3′=⇒1′

∗

+ 3, 2′ (Fig. 2d),
1∗ + 2, 2′=⇒1′

∗

+ 3, 3′,
1∗ + 3, 2′=⇒1′

∗

+ 2, 3′,
1∗ + 3, 3′ =⇒1′

∗

+ 2, 2′ and
1∗ + 2′3′=⇒1′

∗

+ 23 (Fig. 3c).

The diagrams

634 FIZIKA B 13 (2004) 2, 625–644



machavariani: relativistic field-theoretical formulation of . . .

1∗ =⇒1′
∗

+ 23, 2′3′ (Fig. 3a) and
1∗ + 23, 2′3′ =⇒1′

∗

(Fig. 3b)
are related to the distributions

1∗ + zero particles =⇒1′
∗

+ four particles and 1∗ +
four particles =⇒1′

∗

+ zero particles,
correspondingly.

Thus the s-channel term in Eq. (25) generates the 2× 4 + 6 + 2 = 16 connected
terms after cluster decomposition. The other 16 connected terms produce the u-
channel term in Eq. (25). Hence, we get 32 independent skeleton diagrams after the
cluster decomposition procedure performed in the second and in the third terms of
Eq. (20) or Eq. (25). Diagrams 3c, 3d, 3e, 3f, 3i and 3j contain the antiparticle inter-
mediate states, because the time-ordered field-theoretical formulation includes the
complete set of the intermediate particle propagators with different time sequences.
This means that for any diagrams with n, l, ...-particle intermediate states, there
appear the corresponding diagrams with the antiparticle n, l, ... intermediate states.

The S-matrix reduction formulas for the 1d =⇒ 1′+d′ process gives the following
equation

T1′d′,1d = −〈out;P′

d|Jp′

1
(0)|p1,Pd; in〉 = w1′d′,1d

+(2π)3
∑

n=3f,fd,d3

T1′d′,γ
δ(3)(p1 + Pd −Pγ)

Ep1
+ P o

d − P o
γ + iǫ

T ∗

1d,γ , (24)

where

w1′d′,1d = −〈out;P′

d|
{
Jp′

1
(0), b+p1

(0)
}
|Pd; in〉 (25)

+(2π)3
∑

n=1′′2′′3′′b′′,...

〈out;P′

d|Jp′

1
(0)|n; in〉 δ

(3)(p1 + Pd −Pn)

Ep1
+ P o

d − P o
n + iǫ

〈in;n|Jpb
(0)|Pd; in〉

−(2π)3
∑

l=f,fb,...

〈out;P′

d|Jp1
(0)|l; in〉

δ(3)(−pb + P
α̃
−Pl)

−Ep1
+ P o

d′ − P o
l

〈in; l|Jp′

1
(0)|Pd; in〉.

Equations (24) and (25) for the amplitude and for the effective potential of the 1d
scattering reaction have the same form as the two-body equations. After cluster
decomposition of w1′d′,1d, we obtain only 6 terms (see Fig. 4) with a transposition
d ⇐⇒ d′ and with crossing transformation 1′ ←→ 1. Equation (24) contains the
1d → 1′2′3′ transition matrix which is connected with the 123 → 1′2′3′ transition
amplitude according to Eq. (19), where α, β = 3f , but γ = 3f, fd. Thus the
123→ 1′2′3′, 1d→ 1′2′3′ and 1d→ 1′d′ transition amplitudes are the solutions of
the coupled equations (19) and (24). Using the linearization procedure of such type
equations [8,11], one can obtain the equivalent set of Lippmann–Schwinger-type
equations

Tα,fd(Efd) = Uα,fd(Efd) +
∑

γ

Uαγ(Efd)
1

Efd − Eγ + iǫ
Tγ,fd(Efd), (26)
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Fig. 4. Graphical representation of the on-mass-shell particle-exchange potential
(25) for the 1+d =⇒ 1′+d′ amplitude after cluster decomposition. The double line
denotes a two-fermion bound state, n stands for the three-fermion+boson states,
m = f + b, ... and l corresponds to the intermediate fermion f, f + b, ... states.

where Efd = Ed + Ef is the energy of the asymptotic fermion and two-fermion
bound state d, α, γ = 3f, fd, and Uαγ(E) is unambiguously determined from the
connected part of potentials wαγ according to the relation (9a). Note that the so-
lution of the three-body equations (i.e the 123→ 1′′2′′3′ and 123→ 3′d′′ transition
amplitudes) participates in the wc

αγ potential in the diagrams 3b and 3c. One can
get rid of the three-fermion potential of such type nonlinearities after introduction
of new amplitudes fα,β = Fα,β +Aα,β in Eq. (19) and in Eq. (24), where the choice
of Aα,β is conditioned by the cancellation of the terms in Figs. 2b and 2c which
have the form fgoA

+ and Agof
+. Then we get the linear Lippmann–Schwinger-

type equation for Fα,β amplitudes with the disconnected terms. Therefore this
linearization procedure generates necessity to use the Faddeev-type equations for
the three-fermion scattering problems. Certainly, in the intermediate energy region,
i.e up to 2 GeV of the energy of the incoming proton for the Nd-3N systems, one
can neglect the diagrams 3i and 3j with the 2N states and the diagram 3f with the
3N intermediate state.

Equations (19) and (24) represent the spectral decomposition formulae (or off-
shell unitarity conditions) for the three-body amplitudes in the standard quantum
field theory. Such three-dimensional time-ordered relations were considered in the
textbooks in the quantum field theory [5,6,9] and in the nonrelativistic collision
theory [3,4] for the two-body reactions. Therefore, one can treat Eqs. (19) and
(24) as the three-body generalization of the field-theoretical spectral decomposition
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formulae (or off-shell unitarity conditions) for the two-body amplitudes. The field-
theoretical formulation allows us to obtain the analytical structure of the three-
body amplitudes, and the problem of determination of the three-body forces in the
nonrelativistic Faddeev equations does not arise in the considered formulation.

4. Equal-time anticommutators as an off-mass-shell

particle-exchange potential

The important part of the effective potential wαβ is the equal-time commutator
in the effective potentials (20) and (25). The equal-time anticommutators in the
effective potential of the 1d→ 1′d′, 1d→ 1′2′3′ and 123→ 1′2′3′ reactions are

Y1d,1′d′ = − < P′

d|
{
Jp′

1
(0), b+p1

(0)
}
|Pd; in〉, (27a)

Y1d,1′2′3′ = − < p′

2,p
′

3|
{
Jp′

1
(0), b+p1

(0)
}
|Pd; in〉, (27b)

Y123,1′2′3′ = − < p′

2,p
′

3|
{
Jp′

1
(0), b+p1

(0)
}
|p2,p3; in〉. (27c)

The explicit form of expressions (27) can be determined using the a priori given La-
grangian and equal-time anticommutations relation between the Heisenberg field
operators. In the case of renormalizable Lagrangian models or for nonrenormal-
izable simple phenomenological Lagrangians, the equal-time anticommutators are
easily calculated [8,11]. In that case, expressions (27), which are often called the
seagull terms, consist of the off-shell-internal one-particle-exchange potentials (see
diagrams 5a, 5c and 5e), and of the contact (overlapping) terms (Figs. 5b, 5d and
5f) which do not contain any particle propagator in the intermediate states between
asymptotic |β〉 and 〈α| states. The equal-time commutators are the only part of
effective potentials (20) or (25) which contains explicitly the internal off-mass-
shell particle-exchange diagrams, since other terms in the effective potential (20)
or (25) consist of the on-mass-shell particle-exchange terms, where off-mass-shell
are external fermions. In order to clarify the structure of the equal-time terms,
we will consider Lagrangian of the simplest φ3 model for the electromagnetic fields
and for the pseudoscalar πN interactions

Lem = −eψγµψAµ; Lps = −igπΨγ5τΦπΨ. (28)

The current operator and the equation of motion for these Lagrangians are

∂ν∂
νAµ = Jµ = −eψγµψ and (∂ν∂

ν +m2
π)Φi

π = ji
π = −igπΨγ5τ

iΨ (29)

Using the equal-time anticommutation relation between the Heisenberg field oper-
ators for the expressions (27), we get

Yαβ =
−e√
Z1Z1′

u(p′

1)γ
µu(p1)〈in; α̃|Aµ(0)|β̃; in〉

=
−e√
Z1Z1′

u(p′

1)γ
µu(p1)

(P
α̃
− P

β̃
)2
〈in; α̃|Jµ(0)|β̃; in〉 , (30a)
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Fig. 5. Graphical representation of the equal-time anticommutators (27). These
terms are shown separately for the binary reactions (a and b), for the process
2 =⇒ 3′ (c and d) and for the three-body process 3⇐⇒ 3′ (e, f anf g). Diagrams a,
c and e correspond to one of the off-mass-shell particle-exchange interactions which
are appearing from in the φ3-theory, i.e., for the QED or for the Yukawa-type
interactions. The triangle denotes the vertex functions in the tree approximation.
Diagrams b, d and f describe the contact (overlapping) interaction which does not
contain the intermediate hadron propagation between hadron states. Diagram 5g
corresponds to the simplest one off-mass-shell boson fermion and two off-mass-shell
boson-exchange interaction which is obtained from the equal-time commutators in
Eq. (27c) (diagram 5F) in the framework of the φ3 theory.

or for the πNN system

Yαβ =
−igπ√
Z1Z1′

u(p′

1)γ
5τ iu(p1)〈in; α̃|φi

π(0)|β̃; in〉

=
−igπ√
Z1Z1′

u(p′

1)γ
5τ iu(p1)

(P
α̃
− P

β̃
)2 −m2

π

〈in; α̃|ji
π(0)|β̃; in〉 , (30b)

where α̃, β̃ = (d, d′), (d, 2′3′) and (23, 2′3′) for (27a), (27b) and (27c), correspond-
ingly. Expressions (27a) or (27b) relate to the one off-mass-shell boson exchange
diagrams 5a, 5c and 5e for the Lagrangians (28). Using more complete Lagrangian
models, one can obtain also heavy ρ, ω meson exchange diagrams [8,11]. Moreover,
in Ref. [11] the one-boson-exchange (OBE) Bonn model of the NN potential was
exactly reproduced from the equal-time anticommutators. There were also numeri-
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cally estimated the contributions from the contact (overlapping) terms for NN phase
shifts. These contact (overlapping) terms arise from the φ4 (four-point) part of La-
grangians or from the nonrenormalizable Lagrangians, and they play an important
role for the NN scattering.

The other source of the overlapping (contact) terms in the quantum field theory
are the quark-gluon degrees of freedom. One can construct the hadron creation and
annihilation operators, as well as the Heisenberg field operators of hadrons, from
the quark-gluon fields within the framework of the Haag–Nishijima–Zimmermann
[14] treatment of composite particles. In that case, the contact terms (see diagrams
5b, 5d and 5f) contain the contributions from the quark-gluon exchange [11,12].
However, equations (19), (20), (24) and (25) remain the same also for the formula-
tion with the quark–gluon degrees of freedom.

The contact (overlapping) terms shown in diagrams 5c, 5d and 5e, 5f can be
treated as pure three-body forces. For these terms, it is necessary to use an addi-
tional derivation of two-body and the three-body equations like the spectral decom-
position formulae (19). These extra auxiliary two-body and the three-body ampli-
tudes are necessary for the solution of the considered three-body equations. As an
example, we shall consider the amplitude < p′

2,p
′

3|jb(0)|p2,p3 > for the reaction
23→ b′2′3′. This amplitude participates in the diagram 5e, and the corresponding
on-mass-shell particle-exchange diagrams are depicted in Fig. 6. Diagrams 6b, 6c,
6d are obtained from the s-channel diagram 6a after transpositions 2 ⇐⇒ 1′. The
next four diagrams are produced by the crossing permutation of the off-mass-shell
particles 1∗ and b′

∗

. The last four diagrams are obtained from diagrams 6a, 6c, 6e
and 6c after transposition of the 1′2′ states to the first vertex.

The complete set of the diagrams which can be obtained after transpositions
of the particles 2; 1′2′ in the s channel term of amplitude of the 1∗ + 2 =⇒ b′∗1′2′

reactions consists from the following dispositions of on mass shell particles 2; (1′2′)
at the first and the next vertices:

1∗ + zero particles =⇒b′∗ + three particles,
1∗ + one particle =⇒b′∗ + two particles,
1∗ + two particle =⇒b′∗ + two particles and
1∗ + three particles =⇒b′∗ + zero particles.

For instance, we have three diagrams

1∗ + 2 =⇒b′∗ + 1′2′ (Fig. 6a),
1∗ + 1′ =⇒b′∗ + 2, 2′(Fig. 6d) and
1∗ + 2′ =⇒b′∗ + 2, 2′

for the distribution

1∗ + one particle =⇒b′∗ + two particles.

The particle dispositions

1∗ + two particles =⇒b′∗ + one particle
can be realized also with the three diagrams

1∗ + 2, 1′ =⇒b′∗ + 2′,
1∗ + 2, 2′ =⇒b′∗ + 1′ (Fig. 6b) and
1∗ + 1′2′ =⇒b′∗ + 2 (Fig. 6j).
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Fig. 6. Graphical representation of the on-mass-shell particle-exchange potential
for the 1+2 =⇒ 1′ +2′ + b′ amplitude with off-mass-shell boson b′. This amplitude
arises in the seagull term (4.1c) in the φ3 theory after cluster decomposition. The
curled line denotes the off-mass-shell boson b′

∗

which corresponds to the photon
γ for leptons or π-meson for barions. n = 2f ′′ + b′′, 2f ′′ + 2b′′, d′′ + b′′, ... stands
for the intermediate on-mass-shell particle states in s channel, m = f ′′ + b′′, ... and
l = b′′, 2b′′, ...

And the diagrams with the particle distribution

1∗ + 2, 1′2′ =⇒b′∗ (Fig. 6i) and
1∗ =⇒b′∗ + 2, 1′2′ (Fig. 6c)

form the distributions

1∗ + three particles =⇒b′∗ + zero particles and
1∗ + zero particles =⇒b′∗ + three particles.

Therefore, the complete set of the connected s-channel terms counts 2×3+2 = 8
terms. Together with the u channel terms, we have 32 diagrams for the b-boson
creation reaction on the two fermion system.

640 FIZIKA B 13 (2004) 2, 625–644



machavariani: relativistic field-theoretical formulation of . . .

The simplest contact terms (27c) for the three-point Lagrangians (28) have the
form

Y1′2′3′,123 = −e3 u(p′

1)γ
µu(p1)

(P2′+3′ − P2+3)2
〈p′

2|Jν(0)|p2〉

×u(p
′

3)γ
ν(γσQσ +mel)γµu(p3)

Z1Z3(p′3 − p3)2(Q2 −m2
el)

(31a)

and for the πNN system

Y1′2′3′,123 = −i3g3
π

u(p′

1)γ
5τ iu(p1)

(P2′+3′ − P2+3)2 −m2
π

〈p′

2|jk
π(0)|p2〉

× u(p′

3)γ
5τk(γσQσ +mN )γ5τ

iu(p3)

Z1Z3

(
(p′3 − p3)2 −m2

π

)
(Q2 −M2

N )
, (31b)

where Q = p1 + p2 − p′1, and this simplest two-off-mass-shell boson-exchange term
is depicted in Fig. 5g.

Starting from any Lagrangian, we always obtain one-off-mass-shell boson-
exchange potentials (Figs. 5a, 5c and 5e). For the contact (overlapping) terms
we use φ4 terms in Lagrangian [8], or more complicated models of phenomeno-
logical Lagrangians [11], models of a nonrenormalizable Lagrangian, quark-gluon
degrees of freedom [8] etc. These terms contains another kind of a three-body am-
plitudes, too, and one must include these extra-auxiliary two-body and three-body
amplitudes in the set of coupled equations (19) and (24). Thus the number of the
solved three-body equations and the form of the auxiliary amplitudes is depending
on the form of “input” Lagrangian. This means that the unified description of the
coupled three-fermion reactions can help us to determine the form of input La-
grangians which are sufficient and necessary for a description of the experimental
observables.

Besides the Lagrangians, as “input” by construction of the effective three-body
potentials are the amplitudes of the 2→ 2′ and 2→ 3′ reactions and the three-point
vertex functions. In these vertex functions, two particles are on mass shell and they
are function of one variable. Therefore, one can determine these vertex functions
from experimental data using the quark counting rules, dispersion relations, the
Regge trajectories theory, or the inverse scattering method [13].

5. Summary

In this paper, I have considered the three-dimensional covariant scattering equa-
tions for the amplitudes of the three-fermion scattering reactions. The basis for
these three-body relativistic equations are the standard field-theoretical S-matrix
reduction formulae. After decomposition over the complete set of the asymptotic
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“in” states, the quadratically nonlinear three-dimensional equations (19) or (24)
are derived. These equations have the same form as the off-shell unitarity condi-
tions (1) in the nonrelativistic collision theory. The suggested nonlinear equations
can be replaced by the equivalent Lippmann–Schwinger type equations (2) or (16)
for the connected parts of the three-body amplitudes. If one want to get rid of the
potential of these three-body equations from the nonlinear terms (see diagrams in
Figs. 2b and 2c with j = f ′′f ′′), after some simple transformations, one obtains
the Lippmann–Schwinger-type equations with the usual disconnected terms (see
the last three diagrams in Fig. 1c) of a three-body potential. In this case, instead
of Eq. (16) we get the Faddeev-type equations. Equations (16) satisfy all first prin-
ciples of the quantum field theory. Moreover, as “INPUT” for construction of the
potential of these equations are required the one-variable vertex functions which
can be determined from the dispersion relations, or from the inverse scattering
method, i.e., they can be obtained from the two-body scattering observables.

The effective potential of the suggested equations consists (i) of the on mass
shell particle exchange diagrams in Figs. 2–4 and (ii) of the equal-time commutators
which contain one of the off-mass-shell boson-exchange diagrams (Figs. 5a, 5c and
5d) and overlapping (contact) terms (Figs. 5b, 5d and 5e). The form and the number
of these equal-time potentials depend on the input Lagrangian model. For the three-
lepton interactions, the overlapping (contact) terms do not appear and the diagram
in Fig. 5e is reduced to the simple off mass shell two-photon exchange diagram in
Fig. 5f. In the case of the two-body reactions, the equal-time commutators generate
effective potential which can be constructed from the phenomenological one-variable
vertex functions if one uses the simple phenomenological Lagrangians. These one-
variable vertex functions could also be determined from experimental observables.

In order to construct the three-fermion potential from the one-variable phenom-
enological vertices, one needs also to construct the two-fermion scattering ampli-
tudes, the two-fermion=⇒two-fermion + boson transition amplitudes (see Figs. 5e
and 6) and also the complicated overlapping (contact) term (Figs. 5d and 5f). The
main attractive feature of the considered field-theoretical scheme of the three-body
equation is that it allows to estimate the importance of the overlapping (contact)
terms. Therefore, the unified description of two-body and three-body reactions
in the considered formulation allows to determine the form of the simplest La-
grangians which are necessary and sufficient for the unified description of the two-
body and the three-body experimental data. In addition, these calculations allows
an improvement of the accuracy of the calculations in the tree and in the Born
approximations.

The considered field-theoretical formulation is not less general than the four-
dimensional Bethe–Salpeter equations. The final form of the equations (20) or (24)
do not depend on the choice of the Lagrangian and these equations are valid for
any QCD-motivated model with the quark-gluon degrees of freedom. But the sug-
gested equations are much simpler as the analogue Bethe–Salpeter equations, and
they can be numerically solved with present-day computers. The only principal
approximation, that is necessary to do in this approach is the truncation of the in-
termediate multi-particle states. But here, unlike to the Bethe–Salpeter equations,
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one must cut down only the on mass shell intermediate states. In any case, for
a self-consistent calculation of the two-body and the three-body reactions in the
low- and intermediate-energy region, it is advisable to work out a scheme of a
suppression mechanism of the transition of one off-mass-shell fermion into the on-
mass-shell fermion+on-mass-shell boson which arise together with the transition
amplitude into the three-fermion + boson states (see Figs. 3a, 3b, 3d and 3e).
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RELATIVISTIČKA FORMULACIJA TEORIJE POLJA ZA
TRODIMENZIJSKE JEDNADŽBE SUSTAVA TRI FERMIONA

Predlaže se nova vrsta relativističkih jednadžbi za sustave tri fermiona. Jed-
nadžbe se izvode u okviru standardne teorije polja i S matrice u vremenski-ure-
d–enom trodimenzijskom obliku. Stoga su odgovarajuće relativističke kovarijantne
jednadžbe od početka trodimenzijske, a nova formulacija nema neodred–enosti koje
se javljaju zbog sažimanja na tri dimenzije četiridimenzijskih Bethe–Salpeterovih
jednadžbi. Rješenja novih jednadžbi automatski zadovoljavaju uvjete unitarnosti,
a za leptone, te su jednadžbe egzaktno baždarno invarijantne, čak i nakon odreza
mnogočestičnih (n > 3) med–ustanja. Nadalje, oblik tih tročestičnih jednadžbi ne
ovisi o odabiru Lagrangijana, i jednak za formulacije sa i bez kvarkovskih stupnjeva
slobode. Efektivan se potencijal novih jednadžbi definira vršnim funkcijama s dvije
čestica na ljusci mase. Naglašava se da se ULAZNE vršne funkcije mogu izvesti iz
mjernih podataka.

Posebna se pažnja obraća usporedbi s Faddeevim jednadžbama. Za razliku od
tih jednadžbi, nove tročestične jedandžbe su oblika Lippmann–Schwingerovih jed-
nadžbi s povezanim potencijalom. Nadalje, mikroskopski potencijal novih jednadžbi
sadrži doprinose sila tri tijela i mehanizma stvaranja (ponǐstenja) vanjskih čestica.
Analizira se struktura tročestičnih sila koje se javljaju u razmatranoj formulaciji u
okviru teorije polja.
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