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A novel formulation of an accelerated expansion of a closed universe in which the
cosmological constant decays like Λ = (β/t)(ȧ/a), where β is a positive parameter
and a(t) is the scale factor, is presented and discussed in some details. The phe-
nomenological decaying law is motivated from the fractional action-like variational
approach (or fractionally differentiated Lagrangian function (FDLF)) recently in-
troduced by the author.
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1. Introduction

It is widely believed today that our universe is asymptotically flat, matter dom-
inated and undergoes a phase of an accelerated expansion due to the presence of a
mysterious dark energy. This fact is based on the recent available astronomical ob-
servations of the dynamics of galaxies, clusters of galaxies, of luminosity distances
of the Type Ia supernovae (SNIa) as a function of redshift with redshifts z > 0.35,
the first acoustic peak of the CMB temperature fluctuations or anisotropies and
the recent findings of BOOMERANG experiments [1 – 4]. One of the main features
of the dark energy is the violation of the strong energy condition ρ + 3p ≥ 0; ρ and
p are the density and pressure of the perfect fluid. Questions still linger about the
nature of dark matter, especially its distribution in central region of clusters and
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galaxies. In summary, the assumption of the flat model with a positive cosmological
constant is in good agreement with the observations.

A large number of theoretical and phenomenological competitive models, rang-
ing from a positive cosmological constant to scalar field theories, have been pre-
sented to account for the gravitational effects of the dark energy including the
cosmological constant Λ with the equation of state pΛ = −ρΛ = −Λ, which is
considered to be a strictly constant energy density inherent in empty spacetime
[5]. Most of these theories are accompanied with problems and many difficulties,
and we still ignore which of these models are the most viable or more realistic.
We are grappled with deep cosmological enigmas and many unsolved problems.
In this work, a modified Friedmann-Robertson-Walker (FRW) cosmology is dis-
cussed, in which the cosmological constant decays with the phenomenological law
Λ = (β/t)(ȧ/a), where β is a positive parameter and a(t) is the scale factor of
the universe. The chosen phenomenological law is in fact based on the fraction
action-like variational approach (FALVA) of fractionally differentiated Lagrangian
function (FDLF), introduced in 2005 by the author to model nonconservative and
weak decaying classical and quantum dynamical systems. The fractional time in-
tegral introduces only one fractional parameter, α > 0, while in other models an
arbitrary number of fractional parameters (orders of derivatives) appear [6 – 12].
The standard functional action S is replaced by a fractional functional integral
action Sα>0 revealing interesting features. It is in fact defined as follows

Sα>0 [q] =
1

Γ (α)

t
∫

t0

L (q̇ (τ) , q (τ) , τ) (t − τ)
α−1

dτ

=

t
∫

t0=0

L (q̇, q, τ) τdgt (τ) , [t0, t1] ∈ R ,

where L (q̇, q, τ) is the Lagrangian weighted with (t − τ)
α−1

/Γ(α) and
Γ(1 + α)gt(τ) = tα − (t − τ)α, with the scaling properties gµt(µτ) = µαgt(τ),
µ > 0. In reality, we consider a smooth action integral (a time smeared measure
dgt(τ) on the time interval [0, t] ∈ R+), which can be rewritten as the strictly
singular Riemann-Liouville type fractional derivative Lagrangian

Sβ∈(0,1) [q] = D−1+β
t L (q̇ (t) , q (t) , t)

=

t
∫

0

L (q̇ (t) , q (t) , t)
dτ

(t − τ)
β

β→0→
t

∫

0

L (q̇ (t) , q (t) , t) dτ,

and thereby retrieved the standard action integral or functional integral. In this
work, we have β = 1 − α, α ∈ (0, 1). Such type of functionals is known in math-
ematical economy, describing, for instance, the so called “discounting” economical
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dynamics. The resulting modified Euler-Lagrange equation and fractional Hamilto-
nian canonical equations were derived, and it was proved to have important cosmo-
logical consequences in agreement with recent astronomical observations [13 – 14].
Within the framework of the FDLF formalism, the gravity is perturbed and the
dynamical equations result in a decaying cosmological constant (considered as a
time-decaying friction), depending on the fractional parameter α, and decays like
Λ ∝ (1/t)(ȧ/a). Motivated by the results obtained in our previous work, we will
discuss in this paper the Friedmann-Robertson-Walker cosmology with normal ac-
tion considered, i.e., α = 1, where the cosmological constant is replaced by the
phenomenological friction-like law Λ(t) = (β/t)(ȧ/a), and β is a positive parame-
ter.

2. Modified FRW cosmology with friction lambda

We consider the standard FRW metric modelled by the metric

ds2 = dt2 − a2 (t)

[

dr2

1 − kr2
+ r2

(

dθ2 + sin2 θdφ2
)

]

, (1)

where k = 0,±1 is the curvature parameter of the spatial sections (CPSS) in the
standard case and r, θ and φ are dimensionless commoving coordinates. In the
presence of the friction cosmological constant, the Friedmann dynamical equations
are written as follows [15]

ȧ2

a2
+

k

a2
=

8πGρ

3
+

β

3t

ȧ

a
, (2)

ä

a
= −4πGρ (1 + 3γ)

3
+

β

3t

ȧ

a
, (3)

where the equation of state p = γρ (γ is a real parameter) is assumed. Moreover, we
will assume that the fluid density decays like ρ = 3δ/(8πGa2), where δ is a positive
parameter [16 – 25]. Here G is the gravitational constant. Consequently, Eqs. (2)
and (3) give

ȧ2

a2
+

k − δ

a2
=

β

3t

ȧ

a
, (4)

ä

a
= −δ (1 + 3γ)

2a2
+

β

3t

ȧ

a
, (5)

An important consequence arises from Eq. (4) if k = δ, the scale factor evolves as
a ∝ tβ/3 (the solution a = constant is not acceptable). Replacing into Eq. (5) gives

β

3t2
=

δ(1 + 3γ)

2t2β/3
, (6)
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yielding β = 3 ( a ∝ t ) and δ (1 + 3γ) = 1. For δ = 1, γ = 0 (matter era), while
for δ = 1/3, γ = 1/2 (radiation era). This is interesting because it gives a uni-
verse expanding linearly with time in a closed spacetime in which the cosmological
constant decays and the fluid density decays as ∝ t−2.

In addition, we have more matter in the matter epoch than in the radiation
one. For k /= δ, Eqs. (4) and (5) give

ä

a
− δ (1 + 3γ)

2 (k − δ)

ȧ2

a2
= −

(

δ (1 + 3γ)

2 (k − δ)
− 1

)

β

3t

ȧ

a
. (7)

If δ (1 + 3γ) = 2 (k − δ), then the solution of Eq. (7) is a = eHt, where H ≡ ȧ/a
is the Hubble parameter. This results in rapid decays of the energy densities and
the cosmological constant, leaving no time for galaxy formation. If, in contrast,
γ = −1/3 (p = −ρ/3), then k = δ > 0 and consequently, the scale factor evolves
as a ∝ tm,m = 1 + (β/3) > 1 and this corresponds to an accelerated expansion in
a closed spacetime. The cosmological constant is positive and decays like Λ ∝ t−2,
while the fluid energy density decays like ρ ∝ t−2m and, consequently, the fluid
pressure tends to zero. In other words, the universe at the end of time is empty but
closed. More generally, we will consider the following three solutions.

a)-Matter-dominated epoch

This corresponds to γ = 0. Equation (7) is then written like

ä

a
− δ

2 (k − δ)

ȧ2

a2
= −

(

δ

2 (k − δ)
− 1

)

β

3t

ȧ

a
, (8)

which can be solved to give a ∝ tr, where

r =
3 (2 (k − δ)) − β (3δ − 2k)

3 (2k − 3δ)
. (9)

Note that for k = 0 (flat spacetime), r = (2 + β)/3 > 1 if β > 1. Consequently,
the cosmological constant is positive and decays like Λ ∝ t−2 (Λ = βH2/r =
3βH2/(2 + β)), while the fluid density decays like ρ ∝ t−2r. The vacuum energy
density is then given by

ρΛ ≡ Λ

8πG
=

βr

8πGt2
=

β (2 + β)

24πGt2
. (10)

As for the density parameter of the universe and the density parameter due to
the vacuum contribution, they are defined, respectively, as

Ωmatter ≡ ρ

ρc
=

δ

t2rH2
=

δ

p2t2(r−1)
, (11)
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ΩΛ ≡ Λ

3H2
=

β

2 + β
, (12)

where ρc = 3H2/(8πG) is the critical energy density of the universe. Note that
for r > 1, which corresponds to an accelerated expansion, Ωmatter → 0, while for
r = 1, Ωmatter → δ/p2. That is, for r > 1, the accelerated expansion is dominated
by the vacuum energy. Thus for β = 3r, Ωtotal = Ωmatter + ΩΛ → 1, as favoured
by the inflationary scenario. In order to calculate the rate of particle creation
(annihilation), we define

np =
1

a3

d
(

ρa3
)

dt

∣

∣

∣

∣

∣

p

=
1

8πG

βr

t3
=

β

δt2(1−β)/3
ρpHp , (13)

where we have used the continuity equation d(ρa3)/dt = −(a3/(8πG))(dΛ/dt) for a
constant G. Note that for r > 1, np increases with time, and for p < 1, np decreases
with time. For r = 1 and β = δ = 1, np = ρpHp, less than that of the steady state
model (= 3npHp) [15].

b)Radiation-dominated epoch

This is characterized by the equation of state p = ρ/3, or γ = 1/3. The solution
of Eq. (7) is then a ∝ tq, where

q =
3 (k − δ) + β (k − 2δ)

3 (k − 2δ)
. (14)

Note that for k = 0, q = (3+2β)/6 > 1 for β > 3/2 and consequently, for this value
of β, the expansion of the universe accelerates faster in the matter epoch than in
the radiation one. Consequently, the cosmological constant is positive and decays
like Λ ∝ t−2 (Λ = βH2/q = 6βH2/(3 + 2β)), while the fluid density decays like
ρ ∝ t−2q. The vacuum energy density decays like

ρΛ ≡ Λ

8πG
=

βq

8πGt2
=

β (3 + 2β)

48πGt2
. (15)

c)-Inflationary era

This epoch corresponds to p = −ρ, or γ = −1. This yields the following differ-
ential equation

ä

a
+

δ

k − δ

ȧ2

a2
=

(

k

k − δ

)

β

3t

ȧ

a
. (16)

A possible solution is given by a ∝ tn, where

n =
kβ + 3 (k − δ)

3k
, (17)
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with n > 1 for kβ > 3δ. As the time grows up, the RHS of Eq. (16) tends to zero
and n ≃ (k − δ)/k < 1. That is, the Universe expansion in the closed spacetime
decreases with time. Note that for k = 0, the solution is given by a ∝ eHt, which
corresponds to the inflation case.

3. Time-varying gravitational constant

We now discuss the case when the gravitational constant varies. The continuity
equations are ρ̇ + 3H(γ + 1)ρ = 0 and Λ̇ + 8πĠρ = 0 [16]. The first differential
equation gives

(3γ + 1)
ȧ

a
=

Ġ

G
, (18)

while the second differential equation gives

β

(

− 1

t2
ȧ

a
+

1

t

(

2 (k − δ) − δ (1 + 3γ)

2a2

))

+
3δ

a2

Ġ

G
= 0 . (19)

Assuming the power-law behaviour a ∝ ty and G ∝ tx, Eqs. (18) and (19) give
(3γ + 1)y = x with y = 1 in order to obtain a consistent solution with x = 3γ + 1
and (6 − β)δx = β(2 − 2(k − δ)). Thus for γ = 0 and k = 0, x = 1 and (6 − β)δ =
β(2−2(k−δ)). From Eq. (4) we obtain the quadratic equation δ2+δ−1 = 0 and thus

δ+ = (−1 +
√

5)/2 ≈ 0.6, and consequently for k = δ, β ≈ 1.38. The fluid density
then decays like ρ ∝ t−3, while the cosmological constant decays like Λ ∝ t−2. In
conclusion, the flat universe expands linearly with time as a power-law and is filled
with a fluid whose equation of state is given by p = 0, and where the gravitational
constant increases linearly with time. The interesting feature of this model is that
all its parameters are determined through the theory itself. Moreover, for γ = 1/3
(radiation-dominated epoch), x = 2, and thus the gravitational constant increases
as G ∝ t2, while the fluid density decays like ρ ∝ t−4 or ρ ∝ a−4, as it is expected.
Thus the gravitational constant passes from G ∝ t2 → G ∝ t, while the universe
expands as a ∝ t. It is worth mentioning that for k = δ and γ = −1/3, Eq. (19)
gives a = ±t with β = 3δ for a non-constant scale factor a. Thus, an increasing
gravitational constant with decaying vacuum and fluid densities may occur in a
closed linearly expanding spacetime. Note that a = −t is also a possible solution to
the problem and such type of solution appears in pre-Big-Bang cosmology [26]. The
presence of the bulk viscous stress term Π may also be taken into account when
we deal with dissipative effects on the evolution of the Universe [27]. That is, the
pressure term is modified and p → p + Π. In this case, the first continuity equation
is written as ρ̇ + 3H(γ + 1)ρ = −3ΠH, and in order to have a consistent solution,
one may choose −8πΠ ∝ t−2y−x, so that −δ (x − 2y) + 3δy(γ + 1) = y. For γ = 0
(matter epoch), (5δ−1)y = δx, while for γ = 1/3 (radiation epoch), (6δ−1)y = δx.
From Eq. (19), y = 1; thus 5δ − 1 = δx and β(2k − 3δ − 2) = −6δx for the matter
epoch. Taking 2k = 3δ yields β = 3δx, and consequently, −8πΠ ∝ t−2−β/3δ.
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Finally, for γ = 1/3 (radiation epoch), 6δ − 1 = δx and β(k − 2δ − 1) = −3δx.
Taking k = 2δ, β = δx, we obtain again −8πΠ ∝ t−2−β/3δ. It is interesting to
have a CPSS and, consequently, a varying topology of the universe evolving from
the radiation dominated epoch to the radiation (? matter) dominated one. If in
contrast 2k = 3δ, i.e., the CPSS is unchanged during the cosmic evolution, than
β(δ + 2) = 6δx and −8πΠ ∝ t−2−β(δ+2)/6δ and thus Π decays more rapidly in the
matter-dominated epoch than in the radiation one.

4. Conclusions

While a vast literature exists that addresses the observational fact of the cur-
rent expansion and evolution of the universe, we are not aware of models similar
to the one developed in this paper. We have shown in this work that the modified
FRW cosmology with decaying friction-like cosmological constant, motivated from
the fractionally differentiated Lagrangian function formalism, has important and
interesting consequences in describing the evolution of the universe. One may at-
tribute the accelerated expansion of the universe to the decay of the cosmological
constant in its special law Λ(t) = (β/t)(ȧ/a). The class of solutions obtained in
this work, which corresponds to a closed spacetime, is totally appealing, since this
type of solution appears in string theory [28]. This model is a radical alternative
to the standard big-bang/inflationary theory. Further details and consequences are
in progress.
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UBRZANO ŠIRENJE ZATVORENOG SVEMIRA

Predstavljamo i podrobno raspravljamo novu formulaciju ubrzanog širenja zatvo-
renog svemira, u kojoj kozmološka konstanta opada kao Λ = (β/t)(ȧ/a), gdje je
β pozitivan parametar a a(t) mjerni množitelj. Ta fenomenološka postavka pod-
staknuta je nedavno uvedenim frakcijskim činidbenim varijacijskim pristupom (odn.
frakcijski diferenciranom Lagrangeovom funkcijom (FDLF)).
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