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The processes ππ → ππ, KK̄ and ηη, with IGJPC = 0+0++, are analysed by means
of simultaneous coupled-channel analysis of all available data. The investigation is
focussed on the properties of the f0(665), f0(980), f0(1370), f0(1500) and f0(1710)
states with the aim to determine their quark-gluonic content. The analysis supports
the existence of f0(665) as a very broad resonance. It suggests further to see the
f0(980) state as predominantly the ηη bound state. The quark content of other
states is inferred and f0(1500) appears as a mixed state with dominant glueball
component.
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1. Introduction

The existence of glueballs is one of the yet unproven predictions of the Stan-
dard Model of particle physics. It describes the strong, weak and electromagnetic
fundamental forces and fundamental constituents of matter of which quarks and
gluons are responsible for strong interactions. According to the Quantum chro-
modynamics (QCD), the theory behind the Standard Model, quarks and gluons
are the basic building blocks of all strongly interacting elementary particles that
make up all known matter. While baryons are made of three quarks, mesons are
made of quark-antiquark pairs. Free single quarks are not observed. This is the
consequence of the confinement, the peculiar characteristic of strong interactions
mediated by gluons. However, it follows from QCD that apart from elementary par-
ticles made of quarks bound by gluons, there should exist particles made of gluons
only, without quarks. These glueballs are the subject of much theoretical as well
as experimental investigation. Theory tries to calculate their possible masses and
other properties while experiments should be able to see them in the high-energy
collision experiments.
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On the side of the theory, there are two different nonperturbative methods of
QCD calculations, which are able to give us some hints of the glueball masses.
On the side of experiment, it is expected that the first observable glueballs would
be those with the vacuum quantum numbers. This is because their theoretically
calculated masses should be somewhere within the interval of the present day ex-
perimentally known states. The proper identification of these resonant states from
the scattering experiments is, therefore, very important. This is why the scalar-
meson states of vacuum quantum numbers are playing so important role nowadays.
However, there are problems on both sides.

Theoretically, the calculated masses of scalar glueballs give very different hints
concerning the mass of the lightest glueball. QCD lattice simulations predict that
the lightest glueball should have mass around 1650 MeV [1], while the QCD sum
rules predict the lightest glueball as a narrow state with a mass below 900 MeV
[2]. The experimental identification of resonant states in scattering experiments
is, therefore, important, but experimental situation is also quite obscure. These
resonances are not narrow and well separated ones. Moreover, they have masses at
energies where new scattering or decay channels are being opened and, therefore,
the simple pole identification by means of Breit-Wigner form identifying a resonance
from the nearest pole in the scattering matrix at an unphysical sheet of the complex
energy plane is unreliable, and the many-channels formalism has to be applied. It
is, therefore, very important to know the topology of scattering matrix of such
coupled channels. The general outline of such method of data analysis has been
proposed and successfully applied in Ref. [3].

2. Where to search for the glueball?

As mentioned above, it is commonly agreed that the lightest glueball should
have the vacuum quantum numbers. It is, therefore, wise to search it among the
isoscalar scalar f0 mesons, namely in the coupled scattering processes π → π, KK̄
and ηη, with, in the channel with quantum numbers IGJPC = 0+0++.

The most convenient for the data analysis is to use the S-matrix because of
its extraordinary physical characteristics. The S-matrix describes the scattering
processes at relativistic energies from initial to final states by its matrix elements
〈f |S|i〉 = Sfi. So in the case of three coupled channels, we have

S11 ∼ ππ → ππ, S22 ∼ KK̄ → KK̄, S33 ∼ ηη → ηη,

S12 ∼ ππ → KK̄ S13 ∼ ππ → ηη.

The S-matrix is suitable for the high-energy calculations because it is Lorenz
invariant. It means that for Lorenz transformation L, there is a unitary operator
U in the Hilbert space that

〈f |S|i〉 = 〈f |U∗SU |i〉 = 〈Lf |S|Li〉.
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The S-matrix is simply related to the experiment by the scattering matrix T

S = 1 + ik1/2Tk1/2, (1)

where k is the diagonal matrix of the corresponding channel momenta

ki =
1

2
(s − 4m2

i )
1/2, i = 1, 2, 3 (π, K, η), (2)

and s is the total energy square [4].

The S-matrix can be easily decomposed into the partial waves to describe the
interaction with a particular orbital momentum quantum number. To search for the
glueball with vacuum quantum numbers, we confine our analysis to the s-partial
wave. The S-matrix partial wave elements are functions of the total energy of two
incoming interacting π mesons. In relativistic calculations, we work with the square
of the total energy

s = (2E)2 = 4(m2
π + k2

1), (3)

where we use the units with light speed c = 1.

The square root in the channel momenta leads to the (+/-) ambiguity of the
S-matrix elements and to the so-called kinematical cuts in the complex s-plane,
starting at the energy thresholds, i.e. si-values when individual momenta k are
equal to zero. In the case of three coupled channels, we have three cuts alongside
the real axis starting from

si = 4m2
i , i = 1, 2, 3 (π, K, η)

to infinity. To remove the ambiguity, the next (called unphysical) Riemann sheets
are attached and adjoined to the first one (physical) alongside the cuts. Each mo-
mentum below the threshold is imaginary and the sign of it changes by going to
the next adjoined unphysical sheet. This serves for the numeration of the Riemann
sheets of the whole complex surface.

In the one-channel case, we have only (ππ → ππ) and the two Riemann sheets
are numbered according to the Sign(Imk1) = +,−, as I and II. But as more channels
are coupled together, each new channel doubles them, and for N channels we are
left with the surface consisting of 2N Riemann sheets. In the two-channel case, the
surfaces are numbered as I, II, III, IV according to

Sign(Imk1, Imk2) = (++,−+,−−,+−) .

In the three-channel case, the numbering follows the same rule

Sign(Imk1, Imk2, Imk3) =

(+ + + − + + −− + + − + + −− −−− − + − + + − )
I II III IV V VI VII VIII
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3. Analytic continuation

The outstanding features of the S-matrix can be exploited for analytical con-
tinuation of the S-matrix elements to each of the attached Riemann sheets. These
features are properties like symmetry

Sij = Sji (4)

real analyticity

Sij(s∗) = S∗
ij(s) (5)

and unitarity

SS† = S†S = 1 (6)

where * means complex conjugation and † means hermitian conjugation.

These S-matrix properties are related to the very powerful fundamental physical
concepts. Symmetry (Eq. (4)) holds due to the time reversal invariance of strong
interactions. The real analyticity Eq. (5) is related to the concept of causality. It
guaranties that all zeros or singularities of the S-matrix in the complex s-variable
plane are on the real axis or at the complex conjugate positions. The S-matrix
Eq. (6) holds because of the scattering probability conservation and causes that
the S-matrix is multivalued in the s-variable and has the right-hand cuts [4]. At
the same time, Eq. (6) defines the analytical continuation of the S-matrix to the
unphysical sheets.

Derived from the so-called first principles, these S-matrix properties make of
the S-matrix the useful and powerful tool in direct analysis of experimental data.
This is particularly advantageous in the analysis of several overlapping resonances,
because the simplified approach based on the use of simple Breit-Wigner resonance
cannot be applied or leads to the model-dependent results. We have formulated
the computational method useful for the global analysis of several coupled-channel
processes with overlapping resonances, using the analytical continuation of the
S-matrix elements and it was successfully applied to various experimental data
analyses [3].

The unitarity can be used to find the analytical continuation of all S-matrix
elements. It is possible to express them on unphysical sheets through their values
on the physical sheet as can be seen from Table 1.

One can see from Table 1 how the analytical continuation determines that sin-
gularities and zeros corresponding to one process propagate to other coupled pro-
cesses. This gives a hint that all of them can be simultaneously described by a
simple parameterization. Resonance is then characterized by clusters of poles and
zeros of the S-matrix in various sheets. In the absence of channel coupling, the
zeros and poles are on top of each other in different Riemann sheets of the complex
s-variable. The amount of their relative position shift on different sheets reflects the
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TABLE 1. The 3×3 S-matrix elements analytically continued from the first Rie-
mann sheet to 8 adjacent Riemann sheets. There Dkl denotes the minor of the ele-
ment Skl, so Dkk = SllSmm−S2

lm, and Dkl = SklSmm−SkmSlm for k, l,m = 1, 2, 3,
cyclically. The S matrix is symmetric due to the time reversal.

I II III IV V VI VII VIII

S11 1/S11 S22/D33 D33/S22 detS/D11 D11/detS S33/D22 D22/S33

S12 iS12/S11 -S12/D33 iS12/S22 iD12/D11 -D12/detS iD12/D22 D12/S33

S22 D33/S11 S11/D33 1/S22 S33/D11 D22/detS detS/D22 D11/S33

S13 iS13/S11 -iD13/D33 -D13/S22 -iD13/D11 D13/detS -S13/D22 iS13/S33

S23 D23/S11 iD23/D33 iS23/S22 -S23/D11 -D23/detS iD23/D22 iS23/S33

S33 D22/S11 detS/D33 D11/S22 S22/D11 D33/detS S11/D22 1/S33

strength of coupling of coupled channels. The characteristic appearances of various
zero-pole clusters of different resonant states determine their properties and their
quark and gluon structure.

For two coupled channels, i.e. for the coupled processes ππ → ππ, ππ → KK̄
and KK̄ → KK̄ in our case, there are two cuts on the real s axis starting at branch
points s = 4m2

π and s = 4m2
K . The 2×2 S-matrix element’s analytical continuations

to Riemann sheets II, III and IV is expressed by the first 4 rows and 4 columns
of Table 1. One can see that the zero due to the resonance in S11 will appear as
the 2nd sheet pole at the other two coupled processes. As D33 = S11S22 − S2

12, it
will appear as a pole also on the 3rd sheet at coupled processes, but at the shifted
position. The magnitude of the shift depends on the value of S12, and in the absence
of the coupling (S12 = 0), there is no shift of poles relative to the zero on the 1st

sheet.

Thus one can see that by starting from the resonance zeros on the 1st Riemann
sheet, the resonance representations in terms of poles and zeros on the full Riemann
surface is obtained. In the two-coupled channel case, one can distinguish three types
of resonances generated by the 1st sheet’s zeros. They can be caused by zeros of S11,
of S22 or zeros of both of them. In the three-channel case, such classification gives
more possible combinations causing resonance propagation to coupled channels [5].

4. Data analysis

For the analysis, it is convenient to eliminate the s-variable branch-point singu-
larities at threshold energies of binary processes by means of conformal mapping
z = (k1 +k2)/(m2

K −m2
π)1/2 and to map the four Riemann sheets into one z-plane.

The ki for i = 1, 2 are the channel momenta. Further step in the simplification of
analysis is the use of the Le Couteur-Newton relations [6] expressing the S-matrix
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elements as ratios of just one real analytic function

S11 =
d(−z−1)

d(z)
, S22 =

d(z−1)

d(z)
, DetS =

d(−z)

d(z)
. (7)

Here d(z) is the Jost function. In z-variable, it is free of the right-hand cuts
and other singularities, therefore has only zeros in the complex z-plane. However,
to account for the background contribution from related cross channels, as well as
the existing left-hand cuts approximated by zeros, it is convenient to include these
zeros to d(z), too [5].

The part of d(z) corresponding to the resonances has then the simple form

dres = z−M
M∏

n=1

(1 − z∗Nz)(1 + znz) , (8)

where M is the number of pairs of the conjugate zeros. The zn positions are free
parameters in fitting the scattering data of all scattering matrix elements. With the
means of unitarity, they are conveniently expressed through the phase shifts and
inelasticities which are our input data known from experiments. In the two coupled
channel case, S11 = η exp δ1, S12 = (1 − η2)1/2 exp(δ12) and S22 = η exp δ2, where
the inelasticity η and ππ → ππ phase shift δ1 and ππ → KK̄ phase shift δ12 are
known from the scattering experiments, and δ12 = δ1 + δ2. The experimental data
were taken from Refs. [25] and [26] of our paper [7].

For the reason of clarity, we skip the details of the three-channel analysis. Its
mathematical formalism is only more complex but in essence it follows the same
ideas. It is clear that in that case the coupling of ππ → ππ, ππ → KK̄ and
ππ → ηη processes have to be taken into account, and also all other combined
processes as described in Table 1. Unfortunately, the experimental measurements
are providing us mainly with the data from the ππ scattering processes, and we
have to be content with rather sparse data from the two production processes [8].
The scattering data about the remaining processes do not exist. In the analysis,
we are taking into account the following resonances coupled to these processes:
f0(600), f0(980), f0(1370), f0(1500) and f0(1710). The experimental data from the
ππ threshold energy up to 1.9 GeV, as far as they are available for the coupled
processes, are used as input for the analysis.

5. Results

We shall not enter into technical details here, but rather we describe the re-
sults. In Table 2 we present results of our two-channel analysis of four f0-isoscalar
resonances listed in the Particle Data [9]. The coupling constants are calculated
through the residues of amplitudes of the T -matrix Eq. (1).

We see that the f0(980) and f0(1370) are coupled more strongly to the KK̄
than to ππ, therefore, they have a dominant quark component. The f0(1500) and
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TABLE 2. Coupling constants.

f0(600) f0(980) f0(1370) f0(1500)

γππ (GeV) 0.65± 0.06 0.17± 0.05 0.12± 0.03 0.66± 0.11

γKK̄ (GeV) 0.72± 0.10 0.45± 0.03 0.99± 0.05 0.67± 0.15

partially the f0(600) couplings to both channels are almost the same, which is an
indication that there is a significant glueball component in them. The three-channel
calculation reveals that f0(980) is the ηη bound state, i.e. the quark anti-quark state
and not a true resonance.

Table 3 shows the masses and total widths of the scalar mesons - the f0 reso-
nances from the analysis of all three-channels and their comparison to the Particle
Data [9]. Because the positions of the zero-pole clusters on various Riemann sheets
are quite stable for different models, they are the best model independent way to
describe resonances. While positions of individual resonances are quite stable, the
calculations of corresponding masses and widths are very model-dependent. For the
comparison with results of other papers, the masses and widths in Table 3 were
calculated for the relativistic resonance amplitude [5].

TABLE 3. Masses and total widths (in MeV).

Resonance mres Γtot mres(PDG) Γ(PDG)

f0(600) 889 1190 400 – 1200 600 – 1000

f0(980) 1006 64 980± 10 40 – 100

f0(1370) 1386 156 1200 – 1500 200 – 500

f0(1500) 1539 640 1507± 5 109± 7

f0(1710) 1710 164 1714± 5 140± 10

We do not show errors of our calculated values, because they are strongly model-
dependent. Derivation of f0(600) mass for the non-relativistic resonance form gives
mres = 570 MeV by comparison.

6. Conclusions

The three-channel analysis reveals a mixing of states f0(1370) and f0(1710) with
the wide states f0(600) and f0(1500). The inclusion of the ηη coupled channel does
not shift the pole clusters found from two-channel analyses. The pole clusters are
very good indication of the type of resonant states.

The existence of the broad f0(600) is confirmed. The absence of poles on the
sheets VI and VII indicates that f0(980) is an ηη bound state. f0(1370) is coupled
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more strongly to ηη than to ππ and KK̄. The f0(1500) resonance has a dominant
glueball component and f0(1710) couples more strongly to KK̄ than to the other
two.

The mixing seems to play an important role since if the f0(1370) and the
f0(1710) were the pure SS̄ quark states, then their coupling to both KK̄ and
ηη would be similar.
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GDJE JE GLUONSKA LOPTA?

Analiziramo sve poznate podatke za procese ππ → ππ, KK̄ i ηη, za koje je IGJPC

= 0+0++, primjenjujući istovremenu analizu za vezana stanja. Usredotočili smo se
na istraživanje svojstava stanja f0(665), f0(980), f0(1370), f0(1500) i f0(1710) s
ciljem odred–ivanja njihovog kvark-gluonskog sastava. Analiza podržava postojanje
vrlo široke rezonancije f0(665). Nadalje, ukazuje da je stanje f0(980) pretežno
vezano stanje ηη. Za druga stanja procjenjuje se kvarkovski sadržaj, a f0(1500) je,
čini se, miješano stanje s gluonskom loptom kao većinskom sastavnicom.
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