
Printed ISSN 1330–0016

Online ISSN 1333–9133

CD ISSN 1333–8390

CODEN FIZBE7

INTERPRETATIONS OF OCTONION WAVE EQUATIONS

P. S. BISHTa, B. PANDEYa and O. P. S. NEGIb,1

aDepartment of Physics, Kumaun University, S. S. J. Campus,
Almora - 263601 (Uttarakhand), India

bInstitute of Theoretical Physics, Chinese Academy of Sciences,
KITP Building Room No.- 6304, Hai Dian Qu Zhong Guan Chun Dong Lu, 55 Hao,

Beijing - 100080, P. R. China

E-mail addresses: ps bisht123@rediffmail.com, ops negi@yahoo.co.in

Received 13 August 2007; Revised manuscript received 12 August 2008

Accepted 17 September 2008 Online 30 October 2008

The interpretations of octonion wave equations in eight-dimensional space-time is
studied. We made an attempt to consider the octonion field equation as the equa-
tion of motion for particles carrying simultaneously electric and magnetic charges
(i.e. dyons) in external and internal spaces. It has been concluded that the com-
ponent of octonion potential wave equations behaves neither as the generalized
electromagnetic fields of monopoles nor of the dyons. Rather, it has a mixed be-
haviour of electromagnetic fields associated with the electric and magnetic charges
in external and internal spaces. We have also made an attempt to investigate the
split octonion wave equation and its interpretation in classical electrodynamics, and
accordingly the consistent and compact forms of eight-dimensional potential and
current equation of dyons are obtained in terms of Zorn’s vector matrix realization
of split octonions. Visualizing the external four-space as the localization space for
tachyons, it is shown that the split octonion wave equation reduces to the Maxwell’s
equation (field equation) for bradyons in R4-space as well as that for tachyons in
T 4- space in the absence of other.
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1. Introduction

Octonions were first introduced in physics by Jordan, von Neuman and
Wigner [1], who investigated a new finite Hilbert space, on replacing the com-
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plex numbers by octonions [2]. According to the celebrated Hurwitz theorem [3],
there exist four-division algebras consisting of R (real numbers), C (complex num-
bers), H (quaternions) and O (octonions). All four algebras are alternative with
antisymmetric associators. In 1961, Pais [4] pointed out a striking similarity be-
tween the algebra of interactions and the split octonion algebra and, accordingly,
some attention has been directed to octonions in theoretical physics with the hope
of extending the 3 + 1 space-time framework of the theory to eight dimensions to
accommodate the ever increasing quantum numbers and internal symmetries as-
signed to elementary particles and gauge fields. Much literature is available [5 – 11]
on the applications of octonions to interpret the wave equation, Dirac equation,
and the extension of octonion non-associativity to physical theories. It is assumed
that the octonion wave equation contains four-dimensional internal space of mass
parameters, while the external four-dimensional space has been interpreted as the
four generators of fermions within the quark-lepton symmetry. In this direction, the
ingenious work was done by Günaydin and Gürsey [12] to formulate quark models
and colour gauge theory in terms of split octonions. The SU(3) group appears as the
automorphism group of octonion representation, leaving the complex subspace and
the scalar product invariant. This approach has been extended by many [13 – 18]
to investigate the role of octonions and division algebra in unified gauge theories,
higher-dimensional theories of supersymmetry and super-strings. Octonions were
also used by Buoncristiani [19] in writing Yang-Mill’s field equation in a simpler
form. The extension of quaternion matrices to octonions for their interpretation in
non-Riemannian geometry has been analysed by Marques et al. [20].

In the past few years, there has been a considerable interest in higher-
dimensional kinematical models [21] for a proper and unified representation of
a relativistic object, bradyonic as well as tachyonic (including those with inter-
nal structure). It has been speculated [22] that the problem of representation
and localization of tachyonic objects may be solved only with the extension of
four-dimensional Minkowski space to higher-dimensional space-time. It has already
been discussed in a series of papers [23 – 25] that the true localization space for
the representation of tachyons is T 4-space with one space and three time coor-
dinates, while that for bradyons is the usual R4-space with one time and three
space coordinates. The unified eight-dimensional space time has been discussed
earlier [25] as the unified space of bradyons and tachyons, i.e. R8 = R4

⋃
T 4. The

two R4- and T 4-localization spaces are considered as external (internal) space for
bradyons (tachyons) and vice versa. Moreover, the built-in duality associated with
the combination of symmetries of R4- and T 4-subspaces is useful to understand
the problem of quark confinement in quantum chromodynamics where the role of
tricolors would be played by three time coordinates for bradyons and that of three
space coordinates for tachyons.

In order to interpret octonion wave equations in eight-dimensional space-time,
we made in the present paper an attempt to discuss the octonion field equation as
the equation of motion for particles carrying simultaneously electric and magnetic
(monopole [26]) charges (i.e. dyons [27]). Starting from the regularity condition of
octonion field equation, we have developed a consistent and compact formulation
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of eight-dimensional potential and current equations for dyons. It has been demon-
strated that the component of octonion potential wave equations behaves neither
as the generalized electromagnetic fields of monopoles nor as the dyons. Rather,
they have the mixed behaviour of electromagnetic fields associated with the electric
and magnetic charges in external and internal spaces.

After decomposing the octonion wave equation into two quaternion-valued wave
equations, it is shown that the two different spaces describe two separate wave
equations for electromagnetic fields. Visualizing the external four-spaces as the
localization space for bradyons and the internal space as the localization space for
tachyons, it is shown that the octonion wave equation reduces to the Maxwell’s
equation (field equation) for bradyons in R4-space as well as that for tachyons
in T 4-space. It has also been emphasized that the quaternionic decomposition of
octonion wave equation describes the field equations of dyons and tachyonic dyons,
respectively, when we take them as the combination of bi-quaternion instead of real
quaternion in external and internal four-dimensional spaces of eight-dimensional
space-time.

Then we have made an attempt to investigate the split octonion wave equation
and its interpretation in classical electrodynamics. Split octonion electrodynam-
ics has been discussed in terms of Zorn’s vector matrix realization by describing
electrodynamics potential, current and other dynamical quantities as octonion vari-
ables. Also, the consistent and compact forms of eight-dimensional potential and
current equation of dyons are obtained in terms of Zorn’s vector matrix realization
of split octonions. It has been shown that the split octonion valued potential wave
equation also behaves neither as the generalized electromagnetic fields of monopoles
nor of the dyons. Rather, it has again a mixed behaviour of electromagnetic fields
associated with the electric and magnetic charges in external and internal spaces.
And last, it is shown that the split octonion Zorn’s vector realization reproduces
two different spaces to demonstrate the separate wave equations for electromagnetic
fields. Visualizing the external four-space as the localization space for tachyons, it
is shown that the octonion wave equation, when expressed in terms of split octo-
nions, reduces to the Maxwell’s equation (field equation) for bradyons in R4-space
as well as that for tachyons in T 4-space in the absence of other.

2. Definition of octonion

An octonion x is expressed as a set of eight real numbers

x = e0x0 + e1x1 + e2x2 + e3x3 + e4x4 + e5x5 + e6x6 + e7x7 = e0x0 +

7∑

A=1

eAxA , (1)

where eA(A = 1, 2, ..., 7) are imaginary octonion units and e0 is the multiplicative
unit element. Set of octets (e0, e1, e2, e3, e4, e5, e6, e7) are known as the octonion
basis elements and satisfy the following multiplication rules

e0 = 1; e0eA = eAe0 = eA; eAeB = −δABe0 +fABCeC . (A,B,C = 1, 2, . . . , 7) (2)
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The structure constants fABC are completely antisymmetric and take the value 1
for following combinations,

fABC = +1; ∀(ABC) = (123), (471), (257), (165), (624), (543), (736). (3)

It is to be noted that the summation convention is used for repeated indices. Here
the octonion algebra O is described over the algebra of real numbers having the
vector space of dimension 8. As such, we may write the following relations among
octonion basis elements

[eA, eB ] = 2 fABC eC ,

{eA, eB} = −2 δABe0 ,

eA( eB eC) /= (eA eB ) eC , (4)

where brackets [ , ] and { , } are used respectively for commutation and the
anti-commutation relations, while δAB is the usual Kronecker delta-Dirac symbol.
Octonion conjugate is defined as

x = e0x0− e1x1− e2x2− e3x3− e4x4− e5x5− e6x6− e7x7 = e0x0−
7∑

A=1

eAxA , (5)

where we have used the conjugates of basis elements as e0 = e0 and eA = −eA.
Hence, an octonion can be decomposed in terms of its scalar (Sc(x)) and vector
(V ec(x)) parts as

Sc(x) =
1

2
(x + x ); V ec(x) =

1

2
(x − x ) =

7∑

A=1

eAxA . (6)

Conjugates of product of two octonions and its own are described as

(x y) = y x , (x) = x . (7)

while the scalar product of two octonions is defined as

〈x , y〉 = 1

2
(x y + y x) = 1

2
(x y + y x) =

7∑

α=0

xα yα . (8)

The norm N(x) and inverse x−1(for a nonzero x) of an octonion are respectively
defined as

N(x) = xx = xx =
7∑

α=0

x2
α.e0 ,

x−1 =
x

N(x)
=⇒ xx−1 = x−1 x = 1 . (9)
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The norm N(x) of an octonion x is zero if x = 0, and is always positive otherwise.
It also satisfies the following property of normed algebra

N(x y) = N(x)N(y) = N(y)N(x) . (10)

Equation (4) shows that octonions are not associative in nature and thus do not
form the group in their usual form. Non-associativity of octonion algebra O is pro-
vided by the associator (x, y, z) = (xy)z − x(yz) ∀x, y, z ∈ O defined for any 3
octonions. If the associator is totally antisymmetric for exchanges of any 2 vari-
ables, i.e. (x, y, z) = −(z, y, x) = −(y, x, z) = −(x, z, y), then the algebra is called
alternative. Hence, the octonion algebra is neither commutative nor associative but,
it is alternative.

3. Octonion wave equation

In order to write the octonion wave equation, let us define the differential octo-
nion D as

D =

7∑

µ=0

eµDµ , (11)

where Dµ are described as the components of differential operator in eight-
dimensional representation. Here we assume the eight-dimensional space as the
combination of two (external and internal) four-dimensional spaces. As such, we
describe a function of octonion variable as

F(X) =
∑7

µ=0
eµfµ(X) = f0 + e1f1 + e2f2 + .....+ e7f7 , (12)

where fµ are scalar functions. Since octonions are neither commutative nor asso-
ciative, one has to be very careful to multiply the octonion either from left or from
right in terms of regularity conditions. As such, a function F(X) of an octonion

variableX =
7∑

µ=0

eµXµ is left regular atX if and only if F(X) satisfies the condition

DF(X) = 0 . (13)

Similarly, a function G(X) is a right regular if and only if

G(X)
←−
D = 0 , (14)

where G(X) = g0 + g1e1 + g2e2 + .....+ g7e7. Then we get

DF = I0 + I1e1 + I2e2 + I3e3 + I4e4 + I5e5 + I6e6 + I7e7 , (15)
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where

I0 = ∂0f0 − ∂1f1 − ∂2f2 − ∂3f3 − ∂4f4 − ∂5f5 − ∂6f6 − ∂7f7 ,

I1 = ∂0f1 + ∂1f0 + ∂2f3 − ∂3f2 + ∂6f5 − ∂5f6 − ∂7f4 + ∂4f7 ,

I2 = ∂0f2 + ∂2f0 + ∂3f1 − ∂1f3 + ∂4f6 − ∂6f4 − ∂7f5 + ∂5f7 ,

I3 = ∂0f3 + ∂3f0 + ∂1f2 − ∂2f1 + ∂6f7 − ∂7f6 + ∂5f4 − ∂4f5 ,

I4 = ∂0f4 + ∂4f0 + ∂3f5 − ∂5f3 − ∂2f6 + ∂6f2 − ∂1f7 + ∂7f1 ,

I5 = ∂0f5 + ∂5f0 + ∂1f6 − ∂6f1 + ∂7f2 − ∂2f7 − ∂3f4 + ∂4f3 ,

I6 = ∂0f6 + ∂6f0 − ∂1f5 + ∂5f1 + ∂2f4 − ∂4f2 − ∂3f7 + ∂7f3 ,

I7 = ∂0f7 + ∂7f0 + ∂1f4 − ∂4f1 + ∂2f5 − ∂5f2 − ∂6f3 + ∂3f6 . (16)

The regularity condition (13) may now be considered as homogeneous octonion
wave equation for octonion variables without sources. On the other hand, equation
(15) is considered as the inhomogeneous wave equation

DF = I , (17)

where I is again an octonion. Similarly, we may also write the homogeneous as well
as inhomogeneous octonion wave equations on using the right regularity condition
(14). We may now interpret these octonion wave equations as the classical wave
(field) equations of physical variables.

3.1. Potential equation for electromagnetic fields with sources

Let us consider the case of generalized electromagnetic fields of dyons (particles
carrying simultaneously the electric and magnetic charges). We may now define an
octonion valued potential, in eight dimensional formalism as the combinations of
two four-dimensional spaces, as follows

∅ =
∑7

κ=0
eκ∅κ =

3∑

µ=0

eµAµ +

7∑

ν=4

eνBν , (18)

where ∅ is the octonion potential and Aµ and Bν are assumed respectively as
the electric and magnetic four-potentials associated with the electric and magnetic
charges of dyons [28]. As such, we may write the wave equation for octonion po-
tential variable for simultaneous existence of electric and magnetic charges on a
particle (namely dyons) in the following manner,

D∅ = F , (19)

where

D =
7∑

µ=0

eµDµ = e0D0 −
7∑

A=1

eADA , and F =
7∑

µ=0

Fµeµ . (20)
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The coefficients of octonion F are then given by

F0 = ∂0∅0 + ∂1∅1 + ∂2∅2 + ∂3∅3 + ∂4∅4 + ∂5∅5 + ∂6∅6 + ∂7∅7 ,
F1 = ∂0∅1 − ∂1∅0 + ∂3∅2 − ∂2∅3 + ∂7∅4 − ∂4∅7 + ∂5∅6 − ∂6∅5 ,
F2 = ∂0∅2 − ∂2∅0 + ∂1∅3 − ∂3∅1 + ∂6∅4 − ∂4∅6 + ∂7∅5 − ∂5∅7 ,
F3 = ∂0∅3 − ∂3∅0 + ∂2∅1 − ∂1∅2 + ∂4∅5 − ∂5∅4 + ∂7∅6 − ∂6∅7 ,
F4 = ∂0∅4 − ∂4∅0 − ∂3∅5 + ∂5∅3 + ∂2∅6 − ∂6∅2 + ∂1∅7 − ∂7∅1 ,
F5 = ∂0∅5 − ∂5∅0 − ∂1∅6 + ∂6∅1 − ∂7∅2 + ∂2∅7 + ∂3∅4 − ∂4∅3 ,
F6 = ∂0∅6 − ∂6∅0 + ∂1∅5 − ∂5∅1 − ∂2∅4 + ∂4∅2 + ∂3∅7 − ∂7∅3 ,
F7 = ∂0∅7 − ∂7∅0 − ∂1∅4 + ∂4∅1 − ∂2∅5 + ∂5∅2 + ∂6∅3 − ∂3∅6 . (21)

We get F0 = 0 in the Euclidean space (+,+,+,+,+,+,+,+) due to eight-
dimensional Lorentz gauge condition (i.e., the combination of two gauges associated
with electric and magnetic potentials). Thus, one-dimensional octonion represen-
tation is identical to eight-dimensional space over the field of real numbers. It
is isomorphic to four-dimensional space representation over the field of complex
variables which is equivalent to two-dimensional space representation over quater-
nion field variables. Similarly, one-dimensional quaternion space is isomorphic to
four-dimensional space over the field of real numbers which is identical to two-
dimensional space over the field of complex numbers. So, an octonionic potential
may also be described as the combination of two quaternion potentials in the fol-
lowing manner

∅ = ∅a + e7∅b , D = Da + e7Db , F = Fa + e7Fb , (22)

where ∅a, ∅b, Da, Db, Fa and Fb are quaternion variables described as

∅a = ∅0 + e1∅1 + e2∅2 + e3∅3 ,
∅b = ∅7 + e1∅4 + e2∅5 + e3∅6 ,
Da = ∂0 + e1∂1 + e2∂2 + e3∂3 ,

Db = ∂7 + e1∂4 + e2∂5 + e3∂6 ,

Fa = F0 + e1F1 + e2F2 + e3F3 ,

Fb = F7 + e1F4 + e2F5 + e3F6 . (23)

Here e1, e2 and e3 are three quaternion units which satisfy the multiplication rule
ejek = −δjk + εjklel ∀(j, k, l = 1, 2, 3). If we replace the octonion unit e7 by

imaginary unit i =
√
−1, which commutes with other octonion basis elements eA,

the resultant theory of octonions becomes the theory of bi-quaternion variables
and, accordingly, the generalized fields of dyons are already written in compact,
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covariant and consistent way [28]. We may now consider the following mapping for
different four-dimensional spaces,

∂7 → ∂
′

0, ∅7 → B0, ∅0 → A0 ,

∂4 → ∂
′

1, ∅4 → B1, ∅1 → A1 ,

∂5 → ∂
′

2, ∅5 → B2, ∅2 → A2 ,

∂6 → ∂
′

3, ∅6 → B3, ∅3 → A3 . (24)

Then we get

Fj = ∂0Aj − ∂jA0 + (
−→∇ ×−→A )j + ∂

′

0Bj − ∂
′

jB0 + (
−→∇ ×−→B )j ,

Fj+3 = ∂0Bj − ∂jB0 + (
−→∇ ×−→B )j + ∂

′

0Aj − ∂
′

jA0 + (
−→∇ ′ ×−→A )j ,

F7 = ∂0B0 − ∂1B1 − ∂2B2 − ∂3B3 − (∂
′

0A0 + ∂
′

1A1 + ∂
′

2A2 + ∂
′

3A3) . (25)

Hence Eq. (25) shows that F0, Fj , Fj+3 and F7 correspond to the components of
electric and magnetic fields obtained in terms of components of two four-potentials
(Aµ and Bµ) in internal and external spaces. If these two spaces are completely
disjoint spaces, we get only Fj , and F0 is vanishing due to Lorentz gauge condition,
while Fj+3 and F7 do not occur. Here prime derivatives are associated with the sec-
ond part of four-dimensional structure of eight-potential. In Eq. (25), we find that
Fj is made up of the jth components of electric and magnetic fields. Here the first

term ∂0Aj−∂jA0 describes the electric field and second term
−→
(∇×−→A )j corresponds

to the magnetic field in usual four-dimensional (we call it as the external) space. In
the light of the duality of electric and magnetic fields (and accordingly for electric
{Aµ} and magnetic {Bµ} four-potentials), the third term ∂0Bj − ∂jB0 of Fj is

equivalent to the magnetic field while the last term (
−→∇ ×−→B )j denotes the electric

field in other four-dimensional (let us call it as internal or magnetic) space. On

mixing of these two spaces, ∂0Aj −∂jA0 +(
−→∇×−→A )j resembles with the expression

of generalized electric field and ∂
′

0Bj − ∂
′

jB0 + (
−→∇ ×−→B )j as that of the generalized

magnetic fields of dyons [28, 29]. So, it looks awkward to combine external (inter-
nal) space of electric charge (magnetic monopole) to the internal (external) space
of magnetic monopole (electric charge) to interpret Fj . As such, we may conclude
that the Eq. (25) does not represent the true generalization of potential equation
for the generalized electromagnetic fields of dyons. Rather, we have obtained the
mixed behaviour of electric and magnetic charges in internal and external spaces.
So, octonion wave equation of electromagnetic potential faces difficulties and hence
needs modification to interpret it consistently.

3.2. Current equation

We now analize the octonion wave equation (17) as the current equation in
eight-dimensional representations, i.e.

D F = S , (26)
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where

S0 = ∂0F0 − ∂1F1 − ∂2F2 − ∂3F3 − (∂
′

1F4 + ∂
′

2F5 + ∂
′

3F6 + ∂
′

0F7) ,

Sj = ∂0Fj + ∂jF0 + (
−→∇ ×−→F )j − ∂

′

0Fj+3 + ∂
′

jF7 − (
−→∇ ′ ×−→F )j+3 ,

Sj+3 = ∂
′

0Fj + ∂
′

jF0 − (
−→∇ ′ ×−→F )j − ∂0Fj+3 − ∂jF7 − (

−→∇ ×−→F )j+3 ,

S7 = ∂1F4 + ∂2F5 + ∂3F6 + ∂0F7 + (∂
′

0F0 − ∂
′

1F1 − ∂
′

2F2 − ∂
′

3F3) . (27)

Thus, the current equation for octonion variables describes [30] the generalized
structure of differential equations (Maxwell’s equations) in eight-dimensional space-
time. Four-dimensional reduction of these differential equations may be visualized
as the Maxwell’s equations in internal and external spaces. So, it is difficult to ex-
plain the various terms associated with the eight parameters SΛ(Λ = 0, 1, 2, 3..., 7)
correctly. Silagade [30] provided the interpretation of the homogeneous octonion
wave equation DF = 0 as equivalent to one of the pair of seven-dimensional
Maxwell’s equations and the second pair of seven-dimensional Maxwell’s equations
may be obtained on applying the duality transformations between electric and mag-
netic fields therein. Similarly, Gamba and Gogberashvili [8] also tried to explain
the structure of eight parameters SΛ(Λ = 0, 1, 2, 3..., 7) but the consistent justifi-
cation needs modifications. Hence, octonion wave equation (26) may be identified
rather a current equation or octonion field equation in eight-dimensional spaces for
mixed structural behaviour of sources (the electric and magnetic) instead of dyons.
In other words, we may say that Eq. (26) can not be described as the true field
equation of dyons. Here S0 and S7 may be taken to vanish due to the equations of
continuity in internal and external spaces.

3.3. Quaternion decomposition

We may decompose an octonion in terms of two-quaternions. So, let us decom-
pose octonion wave equation for potential in terms of two quaternions as

D∅ = (Da − e7Db)(∅a + e7∅b) = (φ+ e7ϕ) = F . (28)

Here

φ=Da∅a+∅bD̃b =(D0−D1e1−D2e2−D3e3)∅a+∅b(←−D7−←−D4e1−←−D5e2−←−D6e3) , (29)

where
←−
Dr, (r = 4, 5, 6, 7) represents the partial differential of ∅b from right to left,

D̃b denotes the quaternion conjugation (ẽo = e0 , ẽj = −ej ∀j = 1, 2, 3) from
right to left, i.e.,

Da = D0 −D1e1 −D2e2 −D3e3 ,

D̃a = D0 +D1e1 +D2e2 +D3e3 = D1 ,
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D̃b = D7 −D4e1 −D5e2 −D6e3

and ϕ = D̃a∅b − ∅aDb = Da∅b − ∅aDb . (30)

Here an octonion-valued potential is described as the sum of two quaternions by
the Cayley-Dickson doubling process. Thus, we observe that the octonion potential
wave equation rules out the existence of isolated magnetic monopole and provides
a mixed structural behaviour of electromagnetic fields containing both charges si-
multaneously. In other words, we may say that it is a generalized field equation
of electromagnetic fields associated with a particle carrying simultaneously electric
and magnetic charges (namely dyons). The generalized electromagnetic fields of
dyons are symmetric and dual invariant in terms of two four potentials. So, the
possibility of monopoles (or dyons) in non-Abelian or supersymmetric gauge the-
ories is directly linked with the existence of second four-potential which is hidden
in external space and present in internal space, while the electric four-potential is
the consequence of our external space and seems to be hidden in internal space.

Similarly we may decompose the current equation (26) in terms of two quater-
nions as

DF = (Da + e7Db)(g + e7h) = S = sa + e7sb , (31)

where
sa = Dag − hDb = DaDb∅a + ∅bDbDb ,

sb = D̃ah+ gDb = DaDa∅b + ∅bDbDb . (32)

Thus S = sa + e7sb is the octonionic form of generalized current density. Similarly,
we may express the octonionic forms of generalized force and generalized field tensor
density as the generalizations of two quaternions.

3.4. Localization spaces of bradions and tachions

We have described the octonion (eight-dimensional) space as made of two
quaternion (namely the external and internal four-dimensional) spaces. Let us sup-
pose the external four-space as the usual Minkowski (or Euclidean) R4 ⇒M (1, 3)-
space (consisting one time and three space coordinates). This space has been named
[20, 21] as the localization space of bradyons (particles travelling slower than light,
subluminal particles). Accordingly, we describe the internal four-dimensional space
as the T 4 ⇒M (3, 1)-space (consisting three time and one space coordinates). The
possibility of such space is explored [20, 21] as the localization space of tachyons
(particles travelling faster than light, superluminal particles). Hence an octonion
eight-dimensional space is described as the unified space containing both exter-
nal R4 ⇒ M (1, 3) and internal T 4 ⇒ M (3, 1) four-dimensional spaces. In other
words, we may identify the octonion space as the unified localization space for the
description of bradyons and tachyons. Therefore, the bradyons are the objects of
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our four-dimensional world for which the Cauchy’s data are described in the plane
{t = 0}, while tachyons are localized in time and their Cauchy’s data lie in the
plane {x = 0}. Hence, the eight-dimensional space of octonion variables described
above is the unified localization space for bradyons and tachyons and hence can be
expressed as R8 = R4

⋃
T 4. The T 4 space is characterized as the hidden space for

bradyons while R4-space is identified as the hidden space for tachyons. We may
also interpret that the R4-space is visualized as the internal space for tachyons
(and external space for bradyons) and correspondingly the T 4-space is the internal
space for bradyons (and external space for tachyons). First quaternion variable of
Eq. (31) maps to four-dimensional space for bradyons, i.e. R4 ≃ (t,−→r ), while the
second quaternion variable gives rise to four-dimensional space for tachyons, i.e.
T 4 ≃ (r,

−→
t ). In the absence of the second quaternion, Eq. (32) reduces to

sa = DaDa∅a ⇒ (
∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
)φ = �(R)φ , (33)

which resembles to Cauchy-Feuter equation of quaternion variables in R4 ≃ (t,−→r )
space and thus describes the usual Maxwell’s equations in electromagnetic fields
in R4-space. On the other hand, in the absence of the first quaternion, Eq. (32)
reduces to

sb = ∅b DbDb ⇒ ϕ(
∂2

∂r2
− ∂2

∂t2x
− ∂2

∂t2y
− ∂2

∂t2z
) = ϕ

←−
�(T ) , (34)

which also describes the Cauchy–Feuter equation of quaternion variables in T 4 ≃
(r,
−→
t ) space and coincides with the Maxwell’s equations of superluminal photons

in T 4-space. Equation (33) is the left regular while Eq. (34) is the right regular.
Hence, the regularity conditions are changed for internal and external spaces. In
the case of bi-quaternion, Eqs. (33) and (34) characterize, respectively, the equa-
tions of dyons for subluminal and superluminal electromagnetic fields. In general,
the octonionic space describes the unified structure of subluminal and superlumi-
nal objects. As such, the octonionic eight-dimensional representation is the unified
picture of bradyons and tachyons and the octonionic current equations thus repro-
duces two different kinds of Maxwell’s equations in external and internal spaces in
order to explain the simultaneous description of bradyons and tachyons. Here, we
have developed the octonion wave equation and theory of octonion field variables
in compact and simpler manner. So, in order to overcome the non-associativity,
it is necessary to decompose them in terms of two quaternions isomorphic to two
different four-dimensional spaces. The compact and simpler form of octonion field
equation provides a unified model of the theories of subluminal and superlumi-
nal electromagnetic fields in view of the localizability of bradyons and tachyons in
consistent manner.

4. Split octonion wave equation

The split octonions are a non associative extension of quaternions (or the split
quaternions). They differ from the octonion in the signature of quadratic form.
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The split octonions have a signature (4, 4) whereas the octonions have positive
signature (8, 0). The Cayley algebra of octonions over the field of complex numbers
CC = C⊗ C is visualized as the algebra of split octonions with basis elements u0 =
1

2
(e0 + ie7), u

⋆
0 = 1

2
(e0 − ie7), uj = 1

2
(ej + iej+3), u

⋆
j = 1

2
(ej − iej+3) (j =

1, 2, 3; i =
√
−1) as the bi-valued (or bi-dimensional) representations of quaternion

units e0, e1 , e2 , e3. The split Cayley (octonion) algebra is thus expressed in terms
of 2 × 2 Zorn’s vector matrix components which are scalar and vector parts of a
quaternion. As such, we may also write an arbitrary split octonion A in terms of
the following 2× 2 Zorn’s vector matrix realizations [24] as

A = au⋆
0 + bu0 + xiu

⋆
i + yiui =

(
a −−→x
−→y b

)
. (35)

Split octonion conjugation of equation (35) is then described as

A = au0 + bu0 ∗ −xiui ∗ −yiui =

(
b −→x
−−→y a

)
. (36)

The norm of A is defined as,

AA = AA = (ab+−→x .−→y )1̂ , (37)

where 1̂ is the identity element given by 1̂ = 1u0+1u⋆
0. Any four-vector Aµ (complex

or real) can equivalently be written in the following Zorn’s matrix realization as

Z(A) =

(
x4 −−→x
−→y y4

)
(38)

and

Z(A) =

(
x4

−→x
−−→y y4

)
. (39)

In Eqs. (38) and (39), putting −→x = −→y , we get the equivalent matrix realization for a
four-vector in bi-valued four-dimensional Euclidean space-time. In order to develop
the the eight-dimensional split octonion kinematics, we start with the following
definition of the split octonion differential operator D and its conjugate D in terms
of 2× 2 Zorn’s matrix realizations,

D =

(
∂4 −−→∇−→∇ ∂′4

)
, (40)

D =

(
∂4

−→∇
−−→∇ ∂′4

)
, (41)

with the assumption that the primed variables are represented in internal space,
whereas the unprimed variables are defined in external four-dimensional space.
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4.1. Potential equation

Let us express an octonion potential in the following form

∅ = A4u0 ∗+B4u0 +Biui ∗+Aiui , (42)

where {Aµ} = (A4, Aj) and {Bµ} = (B4, Bj) are respectively two four-potentials
associated with electric and magnetic charges. Equation (42) may then be expressed
in terms of the split octonion 2× 2 Zorn’s vector matrix realization as

∅ =

(
A4 −−→B−→
A B4

)
, (43)

where A4 = i ∅e(e denotes the electric charge) and B4 = i ∅g(g denotes the mag-

netic charge). Here
−→
A and A4 are assumed to be the components of electric four-

potential Aµ = (
−→
A, i ∅e). Similarly

−→
B and B4 are considered as the components

of magnetic four-potential Bµ = (
−→
B, i ∅g). We have designed the eight-dimensional

space spanned by split octonion basis elements in terms of two four-dimensional
spaces (namely the external and internal space). Here also the electric four-potential
is described in external four-dimensional space, while the magnetic four-potential
has been considered in internal four-dimensional spaces. Since electric charge and
magnetic monopoles are dual to each other, we may interpret these two spaces as
dual to each other. The internal space of electric charge may be identified as the
external space of monopole while the external space of electric charge will be visu-
alized as the internal space of magnetic monopole. Accordingly, the electric charge
is considered in external space and magnetic charge in internal space. Hence, the
eight-dimensional spaces have the built-in duality, where a bradyonic monopole
plays the role of tachyonic electric charge while the tachyonic monopole looks like
a bradyonic electric charge or vice versa. Eight-dimensional spaces have been con-
sidered as the unification of R4-(bradyonic) and T 4-(tachyonic) spaces.

Let us now write the the inhomogeneous octonion wave equation in its split
form as

D∅ =

(
∂4A4 +

−→∇ .−→A −(∂4

−→
B −−→∇B4 −−→∇ ×−→A )

∂′4
−→
A −−→∇ ′

A4 −−→∇
′ ×−→B ∂′4B4 +

−→∇ ′
.
−→
B

)
=F , (44)

where F is a field like the electromagnetic field in split octonion 2×2 Zorn’s vector
matrix realization as

F =

(
f4 −−→f−→
f ′ f ′4

)
. (45)

Comparing Eqs. (44) and (45), we get

f4 = ∂4A4 +
−→∇ .−→A = 0 , (46)
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f ′4 = ∂′4B4 +
−→∇ ′
.
−→
B = 0 , (47)

−→
f = ∂4

−→
B −−→∇B4 −−→∇ ×−→A , (48)

−→
f

′
= ∂′4

−→
A −−→∇ ′

A4 −−→∇
′ ×−→B . (49)

In Eqs. (46) and (47), we could get f4 = 0 and f ′4 = 0 on applying Lorentz gauge
conditions on electric and magnetic four-potentials. We now discuss the different
cases in the following subsections.

(i) Bradyonic case

We may describe the theory of bradyons by substituting B4 = A4,
−→
B =

−→
A in

Eqs. (40) to (49) and correspondingly ∂4 = ∂′4,
−→∇ =

−→∇ ′
= ∂. Then we get

D∅ =F =

(
∂4A4 +

−→∇ .−→A −(∂4

−→
A −−→∇A4 −−→∇ ×−→A )

∂4

−→
A −−→∇A4 −−→∇ ×−→A ∂4A4 +

−→∇ .−→A

)
. (50)

Using the definition of electric and magnetic fields given by

−→
E = −∂

−→
A

∂t
−−→∇∅e = −∂

−→
A

∂t
−−→∇φe , (51)

−→H =
−→∇ ×−→A , (52)

and imposing Lorentz-gauge condition ∂4A4 +
−→∇.−→A = ∂∅e

∂t
+
−→∇ .−→A = 0, and using

−→
ψ =

−→
E − i

−→H(i =
√
−1), we get

−∂4

−→
A +

−→∇A4 +
−→∇ ×−→A = −i

−→
E +

−→H = −i
−→
ψ ∗ , (53)

∂4

−→
A −−→∇A4 −−→∇ ×−→A = i

−→
E −−→H = i

−→
ψ ∗ . (54)

Thus Eq. (50) reduces to

D∅ = F , (55)

where

F =

(
0 −−→F−→
F 0

)
= iψ ∗ . (56)
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Equation (56) is the split octonion form of field tensor Fµν = ∂µAν − ∂νAµ de-
scribing the electric and magnetic fields. Off-diagonal vector components of split
octonions (50) are the conjugates to each other and the scalar components along
principal diagonal are associated with the quaternion scalars (i.e. real quaternion).
Similarly, we get

D∅ = FT , (57)

where

FT =

(
0

−→
F ∗

−−→F ∗ 0

)
= iψ . (58)

and Eqs. (55) and (57) lead to

1

2
(D∅+D∅) =

(
0

−→H
−−→H 0

)
=
−→H , (59)

1

2
i (D∅ −D∅) =

(
0

−→
E

−−→E 0

)
=
−→
E , (60)

where
−→
E and

−→H are the electric and magnetic fields given by Eqs. (51) and (52).
Here we have the different split octonion representation in comparison to the case
quaternion electrodynamics, where 1

2
(D∅ +D∅) represents Lorentz condition (i.e.

scalar part of quaternion) and 1

2
i (D∅−D∅) represents the vector part (pure quater-

nion) of a quaternion. It is obvious because the off-diagonal elements of an octonion
is a quaternion while those along principal diagonal are the scalars.

(ii) Tachyonic case

For the description of tachyons, we substitute A4 = B4,
−→
A =

−→
B in Eqs. (40) to

(49) and get the representation of T 4-space. In this space (one space and three

time dimensions), the scalar component is r = |−→r | = (x2 + y2 + z2)
1

2 and the

time gradient vector
−→∇ ′

= [tx, ty, tz, ∂
′
4 = (−ir)]. Hence the split octonion form of

four-differential operator, its conjugate and the four-potential of tachyons may be
written as

D =

(
∂′4 −−→∇ ′

−→∇ ′
∂′4

)
, (61)

D =

(
∂′4

−→∇ ′

−−→∇ ′
∂′4

)
, (62)

FIZIKA B (Zagreb) 17 (2008) 3, 405–428 419



Bisht et al.: interpretations of octonion wave equations

∅ =

(
B4 −−→B−→
B B4

)
. (63)

Thus we get

D∅ =F ′ =

(
∂′4B4 +

−→∇ .−→B −(∂′4
−→
B−−→∇ ′

B4−−→∇
′×−→B )

∂′4
−→
B−−→∇B4−−→∇

′×−→B ∂′4B4 +
−→∇ ′
.
−→
B

)
. (64)

Now, using the following expressions for tachyonic [20, 21] electric and magnetic
fields in T 4- space as

−→
Et = −∂

−→
B

∂r
−−→∇ ′∅g , (65)

−→
Ht =

−→∇ ′ ×−→B , (66)

and imposing Lorentz gauge condition in T 4-space as

∂′4B4 +
−→∇ ′
.
−→
B = 0 ,

we get

−∂′4
−→
B +

−→∇ ′
B4 +

−→∇ ′ ×−→B = −i
−→
Et +

−→
Ht = −i

−→
ψt∗ , (67)

∂′4
−→
B −−→∇B4 −−→∇

′ ×−→B = i
−→
Et −−→Ht = i

−→
ψt∗ , (68)

where
−→
ψt =

−→
Et − i

−→
Ht (t denotes the tachyonic representations). Then Eq. (64)

reduces to

F ′ =

(
0 −−→Ft−→
Ft 0

)
= i
−→
ψt ∗ . (69)

Equation (64) is the split octonion form of field tensor F ′
µν = ∂′µB

′
ν −∂′νB′

µ compo-

nents of which describe the electric and magnetic field in T 4- space. Similarly, we
obtain

D∅ = F ′
t , (70)

where

F ′
t =

(
0

−→
Ft∗−−→−Ft∗ 0

)
= i
−→
ψt . (71)
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In the same manner, we get

1

2
(D∅+D∅) =

(
0

−→
Ht

−−→Ht 0

)
=
−→
Ht , (72)

1

2
i (D∅ −D∅) =

(
0

−→
Et

−−→Et 0

)
=
−→
Et , (73)

where
−→
Et and

−→
Ht are the electric and magnetic fields of tachyons in T 4-space as

given by Eqs. (65) and (66).

(iii) Dyonic case

In order to reformulate dyonic field equations in terms of split octonions and its
Zorn’s vector matrix realization, we replace ∅ in Eq. (42) by the complex (general-
ized) four-potential {Vµ} of dyons [28] in the following form

V = V4u0 ∗+V4u0 + Viui ∗+Viui =

(
V4 −−→V−→
V V4

)
, (74)

where V4 and
−→
V are the temporal and spatial components of generalized four-

potential of dyons. These are complex quantities and their real and imaginary com-
ponents are electric and magnetic constituents [28]. Split octonion four-differential
operator is now defined as

D = ∂4u0 ∗+∂4u0 + ∂iui ∗+∂iui =

(
∂4 −−→∇−→∇ ∂4

)
. (75)

Operating split octonion conjugate of four-differential operator given by Eq. (75)
on the equation (74) and using to communication relations of split octonion units,
we get

DV =

(
∂4V4 +

−→∇.−→V −(∂4

−→
V −−→∇V4 −−→∇ ×−→V )

∂4

−→
V −−→∇V4 −−→∇ ×−→V ∂4V4 +

−→∇ .−→V

)
, (76)

where

∂4V4 +
−→∇ .−→V = (∂µVµ)(u0 ∗+u0) = 0 , (77)

and

−∂4

−→
V +

−→∇V4 +
−→∇ ×−→V = −iψ ∗ . (78)
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Thus V is the generalized split octonion potential of dyons and
−→
ψ is the complex

vector field with
−→
E and

−→
H as the generalized electromagnetic fields of dyons. Con-

sequently, Eq. (76) leads to the following split octonion wave equation for dyonic
field as

DV = G , (79)

where

G =

(
0 −−→G−→
G 0

)
= i
−→
ψ ∗ . (80)

It is to be noted from Eqs. (46) to (49) that f4,
−→
f ,
−→
f ′ and f ′4 are the components

of electric and magnetic fields described in terms of two four-potentials in internal
and external spaces. If the two spaces are completely disjoint spaces, then we get

only
−→
f in external four-space since f4 = 0 due to Lorentz gauge condition, while

−→
f ′ and f ′4 do not occur. Equations (48) and (49) show that

−→
f and

−→
f

′
are made

up from electric and magnetic fields, which is the mixing of external and internal
spaces. As such, Eqs. (48) and (49) do not describe either the usual electric and
magnetic fields or the generalized fields of dyons. Rather, they have the mixed
behaviour, namely tachyonic dyons.

4.2. Field equations

Let us write the octonion wave equation in split representation as

DF = J . (81)

Here D and F are defined by equations (40) and (45) in split octonionic form
and J is associated with eight-dimensional current source density in split octonion
representation as follows,

J =

(
J4 −−→J−→
J J4

)
. (82)

Now, using Eqs. (40) and (45), we get

DF =

(
∂4f4 −−→∇.−→f ′ −(∂4

−→
f +
−→∇f ′4+

−→∇ ′ × f ′)

∂′4
−→
f ′+

−→∇ ′
f4+
−→∇×−→f ∂′4f

′
4 −
−→∇ ′
.
−→
f

)
. (83)

Comparing Eqs. (81), (82) and (83), we get

J4 = ∂4f4 −−→∇ .−→f ′ , (84)
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J ′
4 = ∂′4f

′
4 −
−→∇ ′
.
−→
f , (85)

−→
J = ∂4

−→
f +

−→∇f ′4 +
−→∇ ′ × f ′ , (86)

−→
J

′
= ∂′4

−→
f ′ +

−→∇ ′
f4 +

−→∇ ×−→f . (87)

Let us discuss the following different cases of generalized field equation.

(i) Bradyonic case

For the description of bradyons, let us substitute B4 = A4,
−→
B =

−→
A, ∂′4 = ∂4,

−→∇ ′
=

−→∇ ≡ ∂ and J ′
4 = J4,

−→
J

′
=
−→
J . Using Eqs. (51), (52) and (56), we find that Eq. (83)

reduces to

DF =




−→∇ .−→H + i
−→∇ .−→E i∂

−→H
∂t

+i
−→∇×−→E− ∂

−→
E
∂t

+
−→∇×−→H

−i∂
−→H
∂t
−i
−→∇×−→E+ ∂

−→
E
∂t
−−→∇×−→H −→∇ .−→H + i

−→∇ .−→E


. (88)

Comparing it with Eqs. (81) and (82), we find that Eq. (88) is analogous to the
split octonionic form of Maxwell’s equation Fµν,ν = Jµ which is the covariant form
of a set of the following four-differential equations, i.e.

−→∇ .−→E = ρe = −iJ4,
−→∇ .−→H = 0 ,

−→∇ ×−→H = −−→J +
∂
−→
E

∂t
,
−→∇ ×−→E = −∂

−→
H

∂t
. (89)

Hence, the octonion field Eq. (81) is identical to the Maxwell’s field equation in
compact and simple split octonion form. Equation (81) may also be written in
terms of potential as

DF = D(D∅) = DD∅ = �∅ = J , (90)

which is equivalent to the split octonion form of covariant field equation �Vµ = Jµ

of classical electrodynamics. As such, we have reformulated the classical electrody-
namics in terms of compact, simple and consistent representation of split octonion
formulations for the case of particles travelling slower than light, namely bradyons.
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(ii) Tachyonic case

In this case, if we may substitute A4 = B4,
−→
A =

−→
B, ∂4 = ∂′4,

−→∇ ′
=
−→∇ ≡ ∂ and

J4 = J ′
4,
−→
J =

−→
J ′. Hence, using Eqs. (61) and (64), we get

DF ′ =

(
J ′

4 −−→J ′

−→
J J4

)
= J ′. (91)

This equation is the split octonionic form of Maxwell’s equation F ′′
µν,ν = J ′

µ in T 4 -
space where we have used the following pairs of Maxwell’s equation for tachyons
[24, 25]

−→∇ ′
.
−→
E t = −ρ0,

−→∇ ′
.
−→
Ht = 0 ,

−→∇ ′ ×−→Ht = −−→J ′ +
∂
−→
Et

∂t
,
−→∇ ′ ×−→Et = −∂

−→
Ht

∂t
. (92)

Hence, Eq. (90) is visualized as the field equation of tachyons in T 4-space in com-
pact, simple and consistent split octonionic formulation. It has already been con-
cluded [20, 21] that T 4-space for tachyons plays the same role as bradyons do in
R4-space.

(iii) Dyonic case

Here we consider {Aµ} and {Bµ} as electric and magnetic four-potentials described
in external space (i.e. R4 -space) only, D is defined by Eq. (75) and ∅ is replaced
by V the generalized four- potential of dyons given by Eq. (74). Subsequently, on
using Eqs. (75), (76) and (79), we get

D(DV ) = DG = J , (93)

where

J = J4u0 ∗+J4u0 + Jiui ∗+Jiui =

(
J4 −−→J−→
J J4

)
(94)

is the split octonion form of generalized four-current associated with dyons. Ac-
cordingly, we get

D(DV ) = (DD)V = DG = J , (95)

or equivalently

�V = J , (96)
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where

� = (DD) = (DD) = ∂2
4 +∇2 = ∂i∂i . (97)

Equations (93) and (95) are the split octonion equivalents of generalized Dirac-
Maxwell’s (GDM) equation of dyons. Hence, we may describe split octonion wave
equation as the generalized field equation of dyons in compact, simple and consistent
manner. Moreover, Eqs. (93) and (95) reproduce the field equations corresponding
to the dynamics of electric charge (magnetic monopole) in the absence of magnetic
(electric) charge on the dyons. Equation (95) is thus the split octonion equivalent of
covariant field equations �Vµ = Jµ of generalized fields of dyons described earlier
[22].

4.3. Current equation

Let us discuss the octonion wave equation as the octonion current differential
equations in eight-dimensions as

DJ = S . (98)

Here D and J are defined earlier in Eqs. (41) and (82) in their split form, and
S = �F is defined as

S =

(
S4 −−→S
−→
S

′
S′

4

)
. (99)

Now using Eqs. (41) and (46) and equation (82) , we get

DJ =

(
∂4J4 −−→∇ .−→J ′ −(∂4

−→
J +

−→∇J ′
4 +
−→∇ ′ ×−→J ′)

∂′4
−→
J ′ +

−→∇ ′
J4 +

−→∇ ×−→J ∂′4J
′
4 −
−→∇ ′
.
−→
J

)
. (100)

Now, using equations (98), (99) and (100) , we get the following set of equations

S4 = ∂4J4 −−→∇.−→J ′ , (101)

S′
4 = ∂′4J

′
4 −
−→∇ ′
.
−→
J , (102)

−→
S = ∂4

−→
J +

−→∇J ′
4 +
−→∇ ′ ×−→J ′ , (103)

−→
S

′
= ∂′4

−→
J ′ +

−→∇ ′
J4 +

−→∇ ×−→J , (104)

where S is the new octonion variable parameter obtained from the operation of
differential operator to current. Hence we may obtain a new kind of field equation
in terms of the new parameter S and, accordingly, we may analyze the different
cases for bradyons, tachyons and dyons.
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TUMAČENJA OKTONIONSKE VALNE JEDNADŽBE

Raspravljamo tumačenja oktonionske valne jednadžbe u osmodimenzijskom prosto-
ru-vremenu. Pokušavamo raspraviti oktonionsku jednadžbu polja kao jednadžbu za
gibanje čestica koje istovremeno nose električan i magnetski naboj (tj. diona) u
vanjskom i unutarnjem prostoru. Zaključujemo da komponenta oktonionskog po-
tencijala nema svojstva kako poopćenog elektromagnetskog polja, tako i diona.
Zapravo, ona ima miješana svojstva elektromagnetskih polja pridruženih vanjskom
i unutarnjim prostorima. Takod–er, smo pokušali istražiti podvojenu oktonionsku
jednadžbu i njeno tumačenje u klasičnoj elektrodinamici, te smo izveli skladne i
sažete oblike osmodimenzijskog potencijala i jednadžbe za struju za dione koje smo
izveli preko Zornove vektorske matrice za podvojene oktonione. Predstavljajući
vanjski četveroprostor kao prostor za smještaj tahiona, pokazujemo da se podvo-
jena oktonionska jednadžba svodi na Maxwellovu jednadžbu (jednadžbu polja) za
bradione u R4-prostoru, a u odsustvu ovih za tahione u T 4-prostoru.
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