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The monopole-charged Vaidya model containing a naked singularity is analyzed for
outgoing radial null geodesics. Using the Clarke and Krolak criteria, the curvature
strength of naked singularity is examined to show that this is a strong curvature sin-
gularity, providing a counter example to cosmic censorship hypothesis (CCH). The
graphs of the apparent horizons for different values of parameters have been drawn.
An interesting feature which emerges is that, the monopole component pushes the
apparent horizon towards the radial axis and thereby increases the radius of the
apparent horizon in Vaidya collapse.
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1. Introduction

Naked singularities are one of the fascinating objects in classical general rela-
tivity. It is believed that they are formed by the gravitational collapse of massive
star or by density fluctuations in the very early universe. It has been shown in
Ref. [1] that under physically reasonable conditions, the gravitational collapse of a
massive star must form singularities. But the important question is whether these
singularities can be observed? In this respect, in 1969, R. Penrose made a cele-
brated proposal known as cosmic censorship hypothesis (CCH) which states that
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under physically reasonable initial data, the gravitational collapse of the spacetime
cannot yield a naked singularity. That is, if singularity forms, it must be covered
by an event horizon of the gravity [2]. Although there is a long history of research
on CCH, we are far away from its proof. On the contrary many counter examples
to this hypothesis have been found. Various models studied in this respect include
radiation [3 – 7], dust [8 – 12], perfect fluid [13, 14], strange quark matter [15, 16]
etc.

One of the most important examples having naked singularities is the Vaidya
solution representing an imploding (exploding) null dust fluid with spherical sym-
metry [17]. Papapetrou [18] first showed that this solution admits naked singulari-
ties and thus provides one of the earlier counter examples to CCH. Since then, this
solution is being used to discuss the gravitational collapse of the null dust [19 – 23].

A. Wang introduced a more general family of Vaidya spacetimes which covers
monopole solution, de Sitter and anti-de Sitter solutions and charged-Vaidya solu-
tions as special cases [24]. In Ref. [25], gravitational collapse of monopole-Vaidya
and charged-Vaidya has been discussed independently and it has been shown that
the central singularities arising in these spacetimes are naked and strong curva-
ture type. Since the energy-momentum tensor is linear in terms of the mass func-
tions, a linear superposition of particular solutions is also a solution of the Einstein
field equations [24]. Hence it would be interesting to investigate the nature of
singularities arising in such a composite solution. Hence in the present work, we
shall investigate the possibility of cosmic censorship violation in monopole-charged
Vaidya spacetime. We also discuss the apparent horizon formation in this general-
ized Vaidya spacetime.

The paper is organized as follows. In Sec. 2, we give a brief review of the
generalized Vaidya spacetimes. The nature of the singularities arising in monopole-
charged Vaidya spacetimes is discussed in Sec. 3. In Sec. 4, we discuss the apparent
horizons formed in the generalized Vaidya spacetimes. The final Sec. 5 summerises
the implications and conclusions.

2. Generalized Vaidya spacetimes

The metric of spherically-symmetric generalized Vaidya spacetime is given by
[24]

ds2 = −

[

1 −
2m(v, r)

r

]

dv2 + 2dvdr + r2
(

dθ2 + sin2 θ dφ2
)

, (1)

where v is the advanced Eddington time coordinate ; r is the radial coordinate which
decreases towards the future along a ray v= constant, with 0 < r < ∞; m(v, r) is
the mass function, and represents the gravitational mass inside the sphere of radius
r. dθ2 + sin2 θ dφ2 is a metric on unit 2-sphere.
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Non-vanishing components of Einstein tensor are

G0
0 = G1

1 = −
2m′

r2
, G1

0 =
2ṁ

r2
, G2

2 = G3
3 = −

m′′

r
, (2)

where

{xµ} = {v, r, θ, φ} , (µ = 0, 1, 2, 3),

and

ṁ(v, r) =
∂m

∂v
, m′ =

∂m

∂r
.

Einstein field equations are

Gµν = κTµν , (3)

where Gµν is the Einstein tensor, κ is the gravitational constant and Tµν is the
energy momentum tensor (EMT) given by [24, 26, 27]

Tµν = T (n)
µν + T (m)

µν , (4)

where

T (n)
µν = σlµlν , (5)

T (m)
µν = (ρ + P ) (lµnν + lνnµ) + Pgµν . (6)

The part of the EMT T
(n)
µν can be considered as the component of the matter field

that moves along the null hypersurface v=constant and corresponds to the EMT

of Vaidya null fluid. T
(m)
µν is the EMT for a perfect fluid. σ is the energy density of

the Vaidya null radiation, ρ and P are respectively the energy density and pressure
of a perfect fluid. lµ and nµ are null vectors given by

lµ = δ0
µ, nµ =

1

2

[

1 −
2m(v, r)

r

]

δ0
µ − δ1

µ, lλlλ = nλnλ = 0, lλnλ = −1. (7)

Combining Eqs. (2) – (7), we obtain

σ =
2ṁ

κr2
, ρ =

2m′

κr2
, P = −

m′′

κr
. (8)

In particular, when σ = P = 0, the solution reduces to the pure Vaidya solution
with m = m(v). Therefore, for the general case, we consider the EMT of Eq. (4)
as a generalization of Vaidya solution.

The energy conditions for such fluids are given by [1, 24, 27]:
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(i) The weak and strong energy conditions:

σ > 0, ρ ≥ 0, P ≥ 0, (σ /=0). (9)

(ii) The dominant energy conditions:

σ > 0, ρ ≥ P ≥ 0, (σ /=0). (10)

The nature of the singularity that may form in the gravitational collapse can
be determined by examining the behavior of the radial null geodesics defined by
ds2 = 0, dθ = dφ = 0.

To investigate the nature of the singularity, we follow the method described in
Ref. [6]. Roughly speaking, naked singularities are the singularities that may be
seen by the physically allowed observer. The central shell-focusing singularity (i.e.
the one occurring at r = 0) is naked if the radial null geodesic equation admits one
or more positive real root [28]. Using the null condition KaKa = 0, we obtain the
equation of radial null geodesic for the metric (1) as

dKv

dk
+

(

m

r2
−

m′

r

)

(Kv)2 = 0, (11)

dKr

dk
+

(

ṁ

r
−

m′

r
+

m

r2
+

2mm′

r2
−

2m2

r3

)

(Kv)2 + 2

(

m′

r
−

m

r2

)

KvKr = 0. (12)

We note that Kv and Kr are functions of v and r. We define the function R(v, r)
by

Kv =
dv

dk
=

R(v, r)

r
. (13)

Then from the null conditions we obtain

Kr =
R

2r

[

1 −
2m(v, r)

r

]

, (14)

where R satisfies the differential equation

dR

dk
−

R2

2r2

(

1 −
4m

r
+ 2m′

)

= 0. (15)

It is quite difficult to find an analytic solution of the above geodesic equation.
To simplify the task, we need to choose the mass function m(v, r) such that the
equation becomes homogeneous, and can be solved in terms of elementary functions
[29].
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3. Nature of singularities in monopole-charged Vaidya

spacetime

The mass function for the monopole solution is given by [24]

m0(v, r) =
ar

2
, (16)

where a is an arbitrary positive constant.

For this solution, the physical quantities in Eq. (8) become

ρ =
a

κr2
, σ = P = 0. (17)

Monopoles are formed due to gauge-symmetry breaking and have many properties
of elementary particles. Most of their energy is concentrated in a small region near
the core [30]. Monopole has a mass that grows linearly with the distance from
its core. It has been shown in Ref. [30] that when gravity is taken into account,
the mass of monopole has an effect analogous to that of a deficit solid angle plus
that of a tiny mass at the origin. It has been shown in Ref. [31] that this small
gravitational potential is actually repulsive. It is interesting to note that, though
the static solutions of regular global monopoles are always repulsive, solutions with
an event horizon exist [32, 33].

The mass function for the charged Vaidya solution is given by [24]

m1(v, r) = f(v) −
q2(v)

2r
, (18)

where f(v) is the Vaidya linear mass and q2(v) is the electric charge at the advanced
time v.

For the above mass function, the quantities in Eq. (8) become

σ =
2

κr3

[

rḟ(v) − q(v)q̇(v)
]

, ρ = P =
q2(v)

κr4
. (19)

In this case, T
(m)
µν corresponds to the EMT of the electromagnetic field, Fµν , given

by

Fµν =
q(v)

r2

(

δ0
µδ1

ν − δ1
µδ0

ν

)

. (20)

To get the analytic solution, we choose

f(v) =
λv

2
and q2(v) = µv2. (21)
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As the EMT is linear in terms of the mass functions, a linear superposition of par-
ticular solutions is also a solution of the Einstein field equations [24]. In particular,
the combination

m(v, r) =
1

2

(

ar + λv −
µv2

r

)

, (22)

where λ and µ are positive constants, would represent the monopole-charged Vaidya
solution.

With this mass function, the spacetime (1) becomes

ds2 = −

(

1 − a −
λv

r
+

µv2

r2

)

dv2 + 2dvdr + r2
(

dθ2 + sin2 θ dφ2
)

. (23)

Substituting the mass function (22) into Eq. (8), we obtain

σ =
1

κr2

(

λ −
2µv

r

)

, ρ =
1

κr2

(

a +
µv2

r2

)

, P =
1

κr4

(

µv2
)

. (24)

(i) For µ = 0, the spacetime (23) reduces to monopole-Vaidya,
(ii) for a = 0, it reduces to charged-Vaidya and
(iii) for µ = a = 0, it reduces to Vaidya null radiation.

The metric (23) is self-similar2, admitting a homothetic killing vector ξa given by

ξa = v
∂

∂v
+ r

∂

∂r
,

which satisfies

Lξ gab = ξa;b + ξb;a = 2gab , (25)

where L denotes the Lie derivative.

It can be seen that ξaKa is constant along radial null geodesics, i.e.

ξaKa = vKv + rKr = S, (26)

where S is a constant.

Inserting the mass function (22) into Eq. (15), we obtain

dR

dk
−

R2

2r2

(

1 − a −
2λv

r
+

3µv2

r2

)

= 0. (27)

Using Eqs. (13), (14) and (26), we obtain the following solution to the differential
equation (27)

R =
2S

2 + (a − 1)X + λX2 − µX3
, (28)

2A spherically symmetric spacetime is self-similar if gtt(ct, cr) = gtt(t, r) and grr(ct, cr) =
grr(t, r) for every c > 0.
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where we have defined X = v/r, and is known as a self-similarity variable.

The situation being considered here is that for v < 0, the spacetime is the
monopole solution with f(v) = 0, q(v) = 0. The radiation is focused into a central
singularity at r = 0, v = 0 of growing mass f(v) and q(v). At v = T , say, the
radiation is turned off. For v > t, the exterior spacetime settles to the Schwarzschild
field embedded in a monopole field. Thus for v = 0 to v = T , the metric is
monopole-charged-Vaidya, whereas for v > T it is a monopole-Reissner-Nordström
solution.

To analyze the nature of the singularity, we consider the radial null geodesics for
the metric (23) defined by ds2 = 0, taking into account the condition dθ = dφ = 0.

Radial null geodesics for the metric (23) are given by

dv

dr
=

2
(

1 − a −
λv

r
+

µv2

r2

) . (29)

It can be observed that the above differential equation has a singularity at r =
0, v = 0.

Let X0 denote the limit of the function X as one approaches the singularity
along the radial null geodesic. Then X0 represents the tangent to the outgoing
geodesics [28], i.e.

X0 = lim
v→0
r→0

X = lim
v→0
r→0

v

r
= lim

v→0
r→0

dv

dr
(30)

Using Eq. (29), the above equation reduces to the algebraic equation

µX3
0 − λX2

0 + (1 − a)X0 − 2 = 0. (31)

The above equation decides the nature of the singularity. If the equation has a real
and positive root, then there exist future directed radial null geodesics originating
from r = 0, v = 0. In this case the singularity will be naked. If the equation has
no real and positive root, the singularity will be covered and the collapse ends into
a black hole.

The nature of the root of this equation can be determined from the following
rule in the Theory of equations: Every equation of odd degree has at least one real

root whose sign is opposite to that of its last term, the coefficient of the first term

being positive.

Using the above rule one can easily check that Eq. (31) has at least one real
and positive root. Thus the central singularity arising in monopole-charged Vaidya
collapse is naked.

Strength of the singularity

The main importance of determining the strength of the singularity is due to
the fact that the CCH does not need to rule out the possibility of the occurrence
of the weak naked singularity [34].
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A singularity is said to be strong if the collapsing objects do get crushed to a
zero volume at the singularity, and a weak one if they do not. If the singularity is
not strong, then it may not be considered as a physically realistic singularity.

Following Clarke and Krolak [35], a sufficient condition for a singularity to be
strong, in the sense of Tipler [36], is that at least along one radial null geodesic
(with affine parameter k) we must have

lim
k→0

k2Ψ = lim
k→0

k2RabK
aKb > 0, (32)

where Ka is the tangent to the null geodesics and Rab is the Ricci tensor.

Using Eqs. (13) and (14), we obtain

k2RabK
aKb = k2

[

2ṁ

r2
(Kv)

2

]

(33)

= (λ − 2µX)

(

kR

r2

)2

. (34)

As the singularity is approached, k → 0, r → 0 and X → X0. Hence, using the
L’Hospital’s rule, we find that

lim
k→0

(

kR

r2

)

=
1

1 − a − λX0 + µX2
0

. (35)

Then Eq. (34) yields

lim
k→0

k2RabK
aKb =

λ − 2µX0

(1 − a − λX0 + µX2
0 )

2 . (36)

Hence the singularity will be a strong if

λ − 2µX0 > 0. (37)

Using numerical method, we find that for λ = 0.1, µ = 0.001 and a = 0.5, one of
the roots of Eq. (31) is X0 = 94.9562. For this set of values

λ − 2µX0 > 0.

Thus the naked singularity arising in this case is a strong curvature one.

4. Discussion on apparent horizons

When a large amount of mass is contained in a in a small region of a spacetime,
a trapped surface forms around it. Therefore, as the matter collapses under the
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influence of a gravitational force, there is a possibility of the formation of a trapped
surface as the collapse proceeds. If this happens, then on a sufficiently late-time
spatial surface, there will be a boundary that separates the trapped region from the
normal region. This boundary is known as the apparent horizon. For the spacetime
(23) the apparent horizon is given by

(1 − a)r2 − λvr + µv2 = 0 (38)

i.e.

r± =
λv ±

√

λ2v2 − 4(1 − a)µv2

2(1 − a)
(39)

=
v

(

λ ±
√

λ2 − 4(1 − a)µ
)

2(1 − a)
, (40)

where r+ and r− denote, respectively, the outer apparent horizon and the inner

Cauchy horizon.

We will assume that λ2 > 4(1 − a)µ as an initial condition. At the equality,
these two horizons coincide and for λ2 < 4(1 − a)µ they are absent, and the
singularity is visible to an external observer. In other words, if one chooses the
monopole component a and electric charge parameter µ in such a way that the
inequality

λ2 < 4(1 − a)µ

holds, then the discriminant in Eq. (40) becomes negative and no horizons form,
hence the CCH would be violated. Thus the final outcome of the collapse, a naked
singularity or a black hole, depends sensitively on the monopole component and
the electric charge parameter.

For the particular case λ = 0.1, µ = 0.001, a = 0.25, the equations for
the outer apparent horizon and inner Cauchy horizon for the monopole-charged
Vaidya solution are r+ = (1/8.1670)v and r− = (1/91.8330)v, respectively.
If we remove the monopole and the charge fields (i.e. a = µ = 0 ), then the
solution reduces to the Vaidya solution, and the equation for the apparent horizon
is r = (1/10)v.

To see the effect of the effect of monopole field on the gravitational collapse of
Vaidya and charged Vaidya spacetime we give two different sets of graphs in Fig. 1
and 2.

From the equations of apparent horizons for various values of the parameters
λ, µ and a, it is observed that the introduction of the monopole field increases the
radius of the trapped region, i.e. increases the size of the black hole in Vaidya
collapse. It has also been observed that, with the increase in the magnitude of the
monopole field, the radius of the trapped region increases.
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Fig. 1. (Left) Apparent horizons for Vaidya solution for v = 10r (thin line) and
monopole Vaidya solution for v = 7.5r (thick line). (Right) Outer apparent horizons
for charged Vaidya solution for v = 11.2702r (thin line) and monopole-charged
Vaidya solution for v = 8.1670r (thick line). In all four cases, λ = 0.1, µ = 0.001
and a = 0.25 was assumed.

Fig. 2. (Left) Apparent horizons for Vaidya solution for v = 13.3333r (thin line)
and monopole Vaidya solution for v = 6.6667r (thick line). (Right) Outer apparent
horizons for charged Vaidya solution for v = 11.2702r (thin line) and monopole-
charged Vaidya solution for v = 8.1670r (thick line). In all four cases, λ = 0.075,
µ = 0.001 and a = 0.5 was assumed.
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5. Conclusion

One of the most important issues concerning the nature of spacetime singular-
ities is that of cosmic censorship hypothesis. A rigorous formulation and proof for
CCH is not available, hence, examples showing the occurrence of naked singulari-
ties remain important to arrive at provable formulation for the hypothesis. We have
investigated the possibility of cosmic censorship violation in a composite solution
– the monopole-charged-Vaidya solution. It is found that the central singularities
arising in monopole-charged Vaidya spacetimes are naked, but nakedness of such
singularities sensitively depends upon the monopole component (a) and electric
charge parameter (µ).

Using the Clarke and Krolak criteria [35], we have analyzed the strength of
singularity and have shown that the naked singularities found in this composite
solution is gravitationally strong. Thus the gravitational collapse of monopole-
charged Vaidya spacetimes contradicts the CCH.

We have analyzed the trapped surfaces formation in the generalized Vaidya
spacetime. The presence of monopole component can, in principle, change the
boundary of the trapped region in Vaidya spacetimes. The introduction of monopole
field increases the radius of the trapped region, thereby increases the size of the
black hole in Vaidya collapse. It is also observed that, with increase in the magni-
tude of the monopole field, the radius of the trapped region increases. This might
be the effect of repulsive force exerted by the monopoles against the gravity.
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STRUKTURA RADIJALNIH NULTIH GEODETSKIH LINIJA U
VAIDYA-OVOM PROSTORU-VREMENU S MONOPOLIMA

Analiziraju se izlazne radijalne geodetske linije za Vaidya-ov model s monopolima
koji sadrži golu singularnost. Primjenom Clarke-Krolakovih kriterija ispituje se
jakost zakrivljenosti gole singularnosti kako bi se utvrdila jaka singularnost, što daje
protuprimjer hipotezi o kozmičkoj cenzuri. Prikazuju se dijagrami prividnih hori-
zonata za niz vrijednosti parametara. Zanimljivost ishoda računa jest da monopolna
komponenta potiskuje prividni horizont prema radijalnoj osi i tako povećava polu-
mjer prividnog horizonta u Vaidya-ovom urušavanju.
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