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1. Introduction

One of the most important unsolved problem in cosmology is the cosmological
constant (Λ) problem. The problem is related with the extensive efforts to explain
the age, formation and structure of Universe [1, 2, 3]. After the introduction of Λ
by Einstein in 1917, it has been studied by various researchers [4, 5] from time to
time. The results for Λ /=0 are favoured by recent supernovae (SNe) Ia observations
[6 – 10] which are in accord with the recent anisotropy measurements of the cos-
mic microwave background (CMB) made by the WMAP experiment [11]. However,
there is a fundamental problem related with the existence of Λ, which has been
extensively discussed in the literature. The value of Λ expected from the quan-
tum field theory-calculations is about 120 orders of magnitude higher than that
estimated from the observations. A phenomenological solution to the problem is
suggested by considering Λ as a function of time, so that it was large in the early
Universe and became reduced with the expansion of the Universe [12 – 20].

Several modifications of general relativity have been proposed to allow for a
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variable gravitational constant, G, based on different arguments [21 – 23]. To con-
sider a jointly the variation of G and Λ within the framework of general relativity
has been introduced recently [24 – 28]. At the present state of evolution, the Uni-
verse is spherically symmetric and the matter distribution in it is on the whole
isotropic and homogeneous. But in its early stages of evolution, it could not have
had such a smoothed out picture, so the forms of matter fields in the early Uni-
verse are uncertain. Friedmann-Robertson-Walker (FRW) models, being isotropic
and homogeneous, represent best the large-scale structure of the present Universe.
But to describe the early stages of the evolution of the Universe, models with
anisotropic background are suitable. The simplest anisotropic models of the uni-
verse are Bianchi type-I homogeneous models whose spatial sections are flat, but
the expansion or contraction rate are directionally dependent. For a simplification
and description of the large scale structure and behaviour, for the description of
the actual Universe, anisotropic Bianchi type I models have been considered by a
number of authors. Researchers [29 – 32] have studied anisotropic Bianchi type-I
model in different context. Saha [33 – 35] has investigated Bianchi type-I models
with variables G and Λ.

In this paper, we consider the space-time to be of the Bianchi type-I with
variable G and Λ, in the presence of a perfect fluid. In order to solve the field
equations, we apply a law of variation for Hubble’s parameter [36 – 38] that yields a
constant value of the deceleration parameter. This law, together with the Einstein’s
field equations, leads to a number of new solutions of the Bianchi type-I space-time.
The physical behaviour of the models is discussed in detail and the nature of initial
singularity is clarified.

2. Model and field equations

The spatially homogeneous and anisotropic Bianchi type-I space-time is de-
scribed by the line element

ds2 = −dt2 +A2(t)dx2 +B2(t)dy2 + C2(t)dz2 . (1)

The spatial volume of this model is given by

V 3 = ABC . (2)

We define R3 = (ABC) as the average scale factor so that the Hubble’s parameters
is anisotropic and may be defined as

H =
Ṙ

R
=

1

3

(

Ȧ

A
+

Ḃ

B
+

Ċ

C

)

, (3)

where θ is the expansion scale.

44 FIZIKA B 18 (2009) 1, 43–54



tiwari et al.: a model to explain varying g and Λ with constant . . .

Here and elsewhere a dot stands for the ordinary time-derivative of the con-
cerned quantity.

Also, we define

H =
1

3

(

H1 +H2 +H3

)

, (4)

where H1 = Ȧ/A, H2 = Ḃ/B and H3 = Ċ/C are directional Hubble’s factors in
the directions of x, y and z, respectively.

We assume that the cosmic matter is represented by the energy-momentum
tensor of a perfect fluid

Tij = (ρ+ p)vivj + pgij , (5)

where ρ and p are energy density and thermo-dynamical pressure, and vi is the
four-velocity vector of the fluid satisfying the relation viv

i = −1.

We assume that the matter content obeys the equation of state

p = ωρ, 0 ≤ ω ≤ 1 . (6)

The Einstein’s field equations with time dependent G and Λ are

Rij −
1

2
gij = −8πG(t)Tij + Λ(t)gij . (7)

For the metric (1) and energy-momentum tensor (5) in co-moving system of coor-
dinates, the field equation (7) yields

B̈

B
+

C̈

C
+

Ḃ

B

Ċ

C
= −8πGp+ Λ , (8)

Ä

A
+

C̈

C
+

Ȧ

A

Ċ

C
= −8πGp+ Λ , (9)

Ä

A
+

B̈

B
+

Ȧ

A

Ḃ

B
= −8πGp+ Λ , (10)

Ȧ

A

Ḃ

B
+

Ḃ

B

Ċ

C
+

Ȧ

A

Ċ

C
= 8πGp+ Λ . (11)

In view of the vanishing divergence of the Einstein tensor, we have

8πG

[

ρ̇+ (ρ+ p)

(

Ȧ

A
+

Ḃ

B
+

Ċ

C

)]

+ 8πρĠ+ Λ̇ = 0 . (12)
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The usual energy conservation equation T j
i;j yields

ρ̇+ (ρ+ p)

(

Ȧ

A
+

Ḃ

B
+

Ċ

C

)

= 0 . (13)

Equation (12) together with (13) give

8πρĠ+ Λ̇ = 0 . (14)

The non-vanishing components of the shear tensor σij , defined by

σij = ui;j + uj;i −
2

3
giju

.k
,k ,

are obtained as

σ1
1 =

4

3

Ȧ

A
−

2

3

(

Ḃ

B
+

Ċ

C

)

, (15)

σ2
2 =

4

3

Ḃ

B
−

2

3

(

Ċ

C
+

Ȧ

A

)

, (16)

σ3
3 =

4

3

Ċ

C
−

2

3

(

Ȧ

A
+

Ḃ

B

)

. (17)

Thus the shear scalar σ is obtained as

σ2 =
1

3

[

Ȧ2

A2
+

Ḃ2

B2
+

Ċ2

C2
−

(

Ȧ

A

Ḃ

B
+

Ḃ

B

Ċ

C
+

Ċ

C

Ȧ

A

)]

. (18)

From Eq. (18) and equation Eq. (3), we obtain

σ̇

σ
= −

(

Ȧ

A
+

Ḃ

B
+

Ċ

C

)

= −3H . (19)

Einstein’s field equations (8) – (11) can also be written in terms of Hubble’s param-
eters H, shear scalar σ and deceleration parameter q as

H2(2q − 1)− σ2 = 8πGp− Λ , (20)

3H2 − σ2 = 8πGp+ Λ , (21)
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where the deceleration parameter is given by

q = −1−
Ḣ

H2
= −

RR̈

Ṙ2
. (22)

On integrating Eqs. (8) – (10), we obtain

Ȧ

A
−

Ḃ

B
=

k1
ABC

, (23)

and

Ḃ

B
−

Ċ

C
=

k2
ABC

. (24)

where k1 and k2 are constants of integration.

3. Solution of the field equations

Equations (6), (8) – (11) together with Eq. (13) are only six independent equa-
tions in seven unknowns A, B, C, ρ, p, G and Λ. One extra equation is needed
to solve the system completely, which we shall obtain in the following by using a
law of variation of Hubble’s parameter. Initially, this variation law was proposed
by Berman [36] in FRW models. It yields a constant value of the deceleration pa-
rameter. This variation of the Hubble’s parameter is consistent with observations.
Recently, we used a similar type of law of variation for Hubble’s parameter in
Bianchi type-I space time in self-creation cosmology that yields a constant value of
the deceleration parameter [38].

To determinate the solution of the field equations (8) – (11), we assume the
variation of the Hubble parameter given by Berman [36]

H = DR−m = D(ABC)−m/3, (25)

where D > 0 and m ≥ 0 are constants. From Eqs. (3) and (25), we get

R = (mDt+ c1)
1/m, if m /=0 , (26)

R = c2e
Dt, if m = 0 , (27)

where c1 and c2 are constants of integration. Substituting (26) into (22), we get

q = m− 1 . (28)

This shows that the deceleration parameter is constant.
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4. Power law cosmology (m =/ 0)

When m /=0, using Eqs. (23),(24) and (26), we obtain the line-element (1) in
the form

ds2 = −dt2 + (mDt+ c1)
2/m exp

[

2(2k1 + k2)

3D(m− 3)
(mDt+ c1)

(m−3)/m

]

dx2 (29)

+(mDt+ c1)
2/m exp

[

2(k2 − k1)

3D(m− 3)
(mDt+ c1)

(m−3)/m

]

dy2

+(mDt+ c1)
2/m exp

[

−2(k1 + 2k2)

3D(m− 3)
(mDt+ c1)

(m−3)/m

]

dz2 .

Now we discuss the model for Zel’dovich fluid, radiation dominated case and
vacuum case.

4.1. Zel’dovich fluid distribution (ω = 1)

It corresponds to the equation of state ρ = p. This equation of state has been
widely used in general relativity [39]. We find that the model in this case is described
by

V 3 = (mDt+ c1)
3/m, (30)

ρ = p =
k3

(mDt+ c1)6/m
, (31)

σ =

√

(k21 + k1k2 + k22)

3

1

(mDt+ c1)3/m
, (32)

G(t) =
1

8πk3

[

mD2

(mDt+ c1)2(m−3)/m
−

(k21 + k1k2 + k22)

3

]

, (33)

Λ(t) =
2D2(3−m)

(mDt+ c1)2
, (34)

θ =
3D

(mDt+ c1)
. (35)

The anisotropy parameter is defined by

Ā =
1

3

3
∑

i=1

(

∆Hi

H

)

, (36)
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where ∆Hi = Hi −H, (i = 1, 2, 3). The directional Hubble’s factors, as defined in
(4), are given by

H1 =
D

(mDt+ c1)
+

2k1 + k2
3(mDt+ c1)3/m

, (37)

H2 =
D

(mDt+ c1)
+

k2 − k1
3(mDt+ c1)3/m

, (38)

H3 =
D

(mDt+ c1)
−

k1 + 2k2
3(mDt+ c1)3/m

. (39)

Using Eqs. (35), (37), (38) and (39) in (36), we get

Ā =
2

9

(k22 + k1k2 + k22)

D2(mDt+ c1)(6−2m)/m
. (40)

We observe that the spatial volume V is zero at t = −c1/(mD) = t0 (say), and
expansion scalar θ is infinite at t = t0 which shows that the universe starts evolving
with zero volume and infinite rate of expansion at t = t0. Initially, at t = t0, the
spacetime exhibits a ‘point type’ singularity. At t = t0, ρ, p, Λ, θ, σ, G and Ā are
all infinite. As t increases the spatial volume increases, but the expansion scalar
decreases. Thus, the expansion rate decreases as the time increases.

As t → ∞, the spatial volume V becomes infinitely large. All parameters, ρ, p,
Λ, θ, σ, H1, H2 and H3 tend to zero, and G is constant at late times. Therefore, the
model essentially gives an empty universe for large t. The ratio σ/θ → 0 as t → ∞,
which shows that the model approaches isotropy for large value of t. We see that
Λ is positive and also Λ ∼ 1/t2, i.e., Λ is a decreasing function of time [25]. This
supports the results obtained from recent supernova Ia observations [40]. Also, G
is a decreasing function of time and becomes negligible for large t. Therefore, the
model represents shearing, non-rotating and expanding universe with a big-bang
start.

4.2. Radiation dominated solution (ω =
1

3
)

Disordered radiation corresponds to the equation of state ρ = 3p. In this case,
the model is described by

V 3 = (mDt+ c1)
3/m, (41)

ρ = 3p =
k3

(mDt+ c1)4/m
. (42)

Other cosmological parameters are:

θ =
3D

(mDt+ c1)
, (43)

FIZIKA B 18 (2009) 1, 43–54 49



tiwari et al.: a model to explain varying g and Λ with constant . . .

σ =

√

k21 + k1k2 + k22√
3 (mDt+ c1)3/m

, (44)

Ā =
2(k21 + k1k2 + k22)

9D2(mDt+ c1)(6−2m)/m
, (45)

G(t) =
1

16πk3

[

3mD2

(mDt+ c1)(2m−4)/m
−

k21 + k1k2 + k22
(mDt+ c1)2/m

]

, (46)

Λ(t) =
2D2(2−m)

(mDt+ c1)2
+

k21 + k1k2 + k22
6(mDt+ c1)6/m

. (47)

In order to satisfy the reality condition of energy density and pressure, we require
k3 > 0. The model has a singularity at t = −c1/(mD) = t0. The model starts from
a big-bang with ρ, p, A, Ā, θ, σ and G all infinite. The space-time exhibits a ‘point
type’ singularity at t = t0. As t increases, spatial volume V increases, but the
rate of expansion slows down. All physical parameters decrease with time. Spatial
volume V becomes infinitely large as t → ∞, while ρ, p, Ā, Λ, θ, σ and G vanish
asymptotically. Since limt→∞ σ/θ → 0, the model approaches isotropy for large
value of t. Therefore, the model represents non-rotating, shearing and expanding
universe with a big-bang start.

4.3. Vacuum solution: (ω = 0)

In this case, cosmological parameters are:

θ =
3D

(mDt+ c1)
, (48)

σ =

√

(k21 + k1k2 + k22)√
3 (mDt+ c1)3/m

, (49)

Ā =
2(k21 + k1k2 + k22)

9D2(mDt+ c1)(6−2m)/m
, (50)

Λ(t) =
D2(3− 2m)

(mDt+ c1)2
+

k21 + k1k2 + k22
3(mDt+ c1)6/m

, (51)

G(t) =
1

4πk3

[

mD2

(mDt+ c1)(2m−3)/m
−

k21 + k1k2 + k22
3(mDt+ c1)3/m

]

. (52)

Clearly, the spatial volume is zero and expansion scalar is infinite at initial sin-
gularity t = −c1/(mD) = t0. The universe starts expanding with zero volume

50 FIZIKA B 18 (2009) 1, 43–54



tiwari et al.: a model to explain varying g and Λ with constant . . .

and at infinite rate of expansion. At t = t0, the space-time exhibits a ’point type’
singularity. Ā, σ, Λ and G tend to infinity at initial singularity. As t increases,
spatial volume increases, but the rate of expansion slows down. Ā, σ, Λ and G
vanish asymptotically. The ratio σ/θ tends to zero when t → ∞, thus the model
approaches isotropy.

5. Exponential cosmology (m = 0)

When m = 0, using Eqs. (23), (24) and (27), we obtain the line-element (1) in
the form :

ds2 = −dt2 + exp

[

2Dt+
2(2k1 + k2)

9DC3
2

e−3Dt

]

dx2 (53)

+ exp

[

2Dt+
2(k2 − k1)

9DC3
2

e−3Dt

]

dy2 + exp

[

2Dt−
2(k1 + 2k2)

9DC3
2

e−3Dt

]

dz2 .

We analyze the model for Zel’dovich fluid, radiation dominated case and vacuum
case.

5.1. Zel’dovich fluid distribution (ω = 1)

It corresponds to the equation of state ρ = p. In this case, the physical param-
eters are given by the expressions:

ρ = p =
k3

c62 e
6Dt

, (54)

θ = 3D , (55)

Ā =
2

9D2 c62
(k21 + k1k2 + k22)e

−6Dt, (56)

σ2 =
1

3c32
(k21 + k1k2 + k22)e

−6Dt, (57)

Λ = 3D2, (58)

G = −
(k21 + k1k2 + k22)

24π
. (59)

The model has no initial singularity. ρ, p, θ, Ā and σ are constant at t = 0. The
universe starts evolving with a constant volume and expands with an exponential
rate. The energy density and pressure decrease while spatial volume increases as
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the cosmic time increases. As t → ∞, ρ, p, Ā and σ tend to zero. The cosmologi-
cal constant Λ is finite and gravitational constant G becomes negative during the
whole span of evolution. The negative gravitational constant has been discussed by
Vishwakarma [18]. It is interesting to note that the expansion scalar is a constant
for 0 ≤ t ≤ ∞ and, therefore, the model represents uniform expansion. The ratio
σ/θ → 0 as t → ∞, and the model approaches isotropy for large value of t. Also,
ρ/θ2 = constant. Thus the model approaches homogeneity and matter is dynami-
cally negligible near the origin. This is similar to the result given by Collins [41].
The model represents shearing non-rotating and expanding universe with a finite
start.

5.2. Radiation dominated solution (ω =
1

3
)

In this case the physical parameters are:

ρ = 3p =
k3

c42 e
4Dt

, (60)

θ = 3D , (61)

Ā =
2

9D2 c62
(k21 + k1k2 + k22)e

−6Dt, (62)

σ2 =
1

3c32
(k21 + k1k2 + k22)e

−6Dt, (63)

Λ = 3D2 +
1

6 c62
(k21 + k1k2 + k22)e

−6Dt, (64)

G = −
(k21 + k1k2 + k22)

16πc22k3
e−2Dt. (65)

The model has no initial singularity. Initially, ρ, p, Ā, σ, Λ and G are constant. The
universe starts evolving with a constant volume and expands with an exponential
rate. When t increases, ρ, p, Ā, σ decrease. As t → ∞, ρ, p, Ā, σ and G tend
to zero, whenever Λ is constant. The model expands uniformly and approaches
isotropy for large value of t.

5.3. Vacuum solution (ω = 0)

In this case, the behaviour of the model is the same as in Sec. 5.2 above.
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6. Conclusion

In this paper we present a class of solutions to the Einstein’s field equations
for the orthogonal Bianchi type-I space-time in the presence of a perfect fluid with
variable G and Λ. Cosmological models with a constant deceleration parameter
are presented for m /=0 and m = 0 cosmologies. There are two solutions: one is
the power-law solution and the other is the exponential solution. We discuss both
solutions for Zel’dovich fluid, radiation and vacuum cases. We discuss geometrical
and kinematical properties of different parameters in detail for each phase. The
nature of singularities of the models is clarified and explicit forms of scalar factors
are obtained in each case. For m /=3, the spatial volume V grows linearly with
cosmic time. It has been observed that the model represents shearing, non-rotating
and expanding universe with a big-bang start. For m /=0, cosmological constant
Λ ∝ 1/t2, which is thought to be fundamental [25]. Recent cosmological obser-
vations ([6], [7], [9], [10], [40]) suggest the existence of a positive constant Λ of
magnitude Λ(Gh/c3) ∼ 10−123. These observations on magnitude and redshift of
type Ia supernovae suggest that our Universe may be an accelerating one including
cosmological density through the cosmological term Λ. Thus our models are are in
agreement with the results of recent observations.
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MODEL ZA OBJAŠNJENJE PROMJENLJIVIH G I Λ UZ STALAN
PARAMETAR USPORAVANJA

Proučavamo razvoj za homogene i anizotropne Bianchijeve kozmološke modele tipa
I u prisustvu perfektne tekućine s promjenljivim G i Λ, pretpostavljajući posebnu
ovisnost Hubbleovog parametra koja daje stalnu vrijednost parametra usporavanja.
Raspravljaju se neki fizički ishodi modela za slučaj Zel’dovicheve tekućine i tekućinu
u kojoj prevladava zračenje.
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