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Exact solutions of the Einstein’s field equations in Lyra geometry in D = 4+ n di-
mensional spacetime with time-increasing G and decaying cosmic fluid and density
are obtained and discussed in some details. We suggest the phenomenological dissi-
pative law β2 ∝ H/t for the square of the non-zero component of the displacement
vector field φA. H is the Hubble parameter in the extra-dimensional spacetime met-
ric. It has been observed that the cases n ≥ 6 are within the observational limit,
the four-dimensional spacetime is in the stage of accelerated expansion, while the
extra-dimensions are contracting in time.
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It is very interesting that many of the new developments and achievements in
theoretical high-energy physics required the introduction of extra-dimensions. We
believe today that extra-dimensions play a crucial role at the high energy as at
the cosmological level. In fact, they are considered as one of the most interesting
attempts to solve some of the major problems in fundamental physics, including
the initial inevitable singularity in the cosmological past and the hierarchy problem
in particle physics [1 – 5]. There exist in literature many extra-dimensional theories
following the theoretical progress in mathematical physics, including the modern
Kaluza-Klein (KK) theories, where the isometries of the extra dimensions are gauge
symmetries, supersymmetry as a powerful symmetry theory combining fermions
and bosons, supergravity which are field theories having the local supersymmetry
(the spacetime is enlarged by adding fermionic coordinates), supergravities in vari-
ous spacetime dimensions and their relevance to string dualities, superstrings (string
theory with fermions), M-theory, which is supposed to be the eleven-dimensional
theory underlying the five known superstring theories and eleven-dimensional su-
pergravity.
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In return to cosmologies governed by the Einstein’s field equations, it has been
observed that extra-dimensions may provide a possible solution to the flatness and
horizon problem by producing large amount of entropy during contraction pro-
cess, as compared to the standard inflationary scenario [6, 7]. Others claimed that
time-variation of fundamental constants in physics could produce the evidence of
extra-dimensions [8]. In the last few decades, there has been much interest to
study higher-dimensional cosmological models within the context of Lyra geometry
[9 – 13]. Lyra geometry, based on Einstein’s idea of geometrizing gravitational field
in the form of general relativity theory, is of interest because it produces effects
similar to those produced in Einstein’s field theory. In particular, the vector field
in the theory plays a similar role as the Einstein’s cosmological constant. Most of
these studies were done in five-dimensional spacetime geometry of the universe in
which gravitational constant varies with time. In this work, we will explore Lyra
geometry in D = 4+n dimensions. Moreover, we will assume that the square of the
non-zero component of the displacement vector field φA decays as α/H where α is
a positive parameter and H(t) is the Hubble parameter in the higher-dimensional
metric.

In Lyra geometry, the Einstein’s field equations in D = 4 + n dimensions read
as
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C = −κTAB . (1)

The displacement vector is defined as φA = (β, 0, 0, . . . , 0) and the energy-mom-
entum tensor is defined usually as TAB = (p + ρ)uAuB − pgAB for A ,B =
1, 2, 3, . . . , 4 + n, and p = pa + pb is the total pressure of the cosmic fluid and ρ is
its corresponding density We consider in the following a spatially flat Friedmann-
Robertson-Walker (FRW) metric extended with two scale factors [14]

ds2 = gAB dXAdXB = dt2 − a2(t) γij dx
idxj + b2(t) γ̃kl dy

kdyl . (2)

Here i, j = 1, 2, 3 and k, l = 4. The field equations look like:

3

(
ȧ2
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ä

a
+

ȧ2
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It is obvious that the term 3β2/4 plays the role of the cosmological constant Λ. For
convenience, we will assume that pa = pb + ξ, where ξ is a pressure-like quantity
playing the role of the bulk viscosity. Thus, subtracting Eq. (5) from (4) gives easily
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ḃ

b
−

b̈

b
+ (n− 1)

ḃ2
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In what follows, we will assume a power-law form of the scale factors a(t) and b(t)
of the type a(t) ∝ tp and b(t) ∝ tq, where p and q are real parameters. Further,
we will assume that the gravitational constant, the extra-pressure ξ and the cosmic
fluid density and pressure vary with time like G(t) = G0(t/t0)

r, ξ(t) = ξ0(t0/t)
s,

ρ(t) = ρ0(t0/t)
x, pb(t) = p0,b(t/t0)

y, and pa(t) = p0,a(t/t0)
z, r, s, x, y and z are

real parameters, while G0, ξ0, ρ0, p0,b and p0,a are the present values of G, ξ, ρ, pb
and pa. Equation (6) consequently gives1

3p2 − p+ (n− 3)pq − 2q2 + q + nq2

t2
= 8πG0ξ0

(
t

t0

)r−s

. (7)

Thus, a consistent relation corresponds to r = s − 2. Note that for s = 2, r = 0,
i.e. G is constant with time. For s > 2, r > 0, and hence G increases in time, while
the cosmic fluid density decreases in time.

We will assume in what follows the phenomenological law
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where H = (ȧ/a) + (1/3)(ḃ/b) = (3p+ ρ)/(3t), α = β2
0 , the present value of β and

H the present value of H0. Consequently, Eqs. (3) – (5) give:
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and thus from Eqs. ( – (11), a compatible equation corresponds to x−r = 2, z−r = 2
with x = y = z = s. Equations (9) and (10) are rewritten like:
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1The reader may be refereed to the recent works of Demianski et al. and Amendola et al. [15]
to explore the important role of scaling solutions in accelerating cosmology.
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In fact, the parameter t0 may be approximated then by t0 ∼
√

3/(8πG0ρ0) which
results from the standard Friedmann equations in the inflationary paradigm [16].
Subtracting Eq. (14) from (13) gives

3 = 3p2 − p+ (n− 3)pq + q − nq2 . (15)

An interesting feature may arise if we take n = 3, thus 3 = (p− q)(3p+3q− 1) and
at least two possible solutions may exist: p−q = 1 and 3p+3q = 4, yielding q = 1/6
and p = 19/6 or p− q = 3, and 3p+ 3q = 2, yielding q = −7/6 and p = 11/6. The
second case is of interest because it corresponds to a seven-dimensional spacetime
where the FRW scale factor accelerates with time while the extra-dimensional scale
factor decreases with time as a power law. In the first case Ht ≈ 6.55, which is
ruled out by the observational limits, while the second case gives Ht ≈ 1.44 and
this is an acceptable age of the universe. Admitting the second solution, Eq. (12)
gives α ≈ −6.9H0/t0 < 0 and thus β2 < 0 as is expected. It has been pointed out
that β2 ≈ −4Λ/3 and thus Λ > 0. In the case n = 1 (five-dimensional spacetime),
3 = (p− q)(3p+ q−1) and again at least two possible solutions may exist p− q = 1
and 3p + q = 4, yielding p = 5/4 and q = 1/4. The fifth dimension in this special
case increases with time. The second possible case corresponds to p − q = 3 and
3p + q = 2 giving p = 5/4 and q = −7/4. This particular case is appealing since
it gives an accelerating universe and a contracting fifth dimension. In association
with the case n = 3, the seven-dimension case is more interesting because a more
accelerating expansion occurs. Further, for n = 6, 3 = (p− q)(3p+ 6q − 1).

At least two possible solutions may exist: the first corresponds to p− q = 3 and
3p + 6q = 2 for which p = 20/9 and q = −7/9, and the second case corresponds
to p − q = 1 and 3p + 6q = 4 for which p = 10/9 and q = 1/9. In fact, it may be
proved that for all n ≥ 6, at least one of the acceptable solutions corresponds to
an accelerated expansion, while the extra-dimensional scale factor decreases with
time. All the previous cases hold even in the presence of dissipation or bulk viscosity
Π (∝ ξ), for which the effective pressure turns out to be peffective = p + Π. This
indicates that for n-dimensional spacetime, the extra dimension is either expanding
at a very slow rate or collapsing, while the three others (for D = 5) or the five others
(for D = 7) continue to expand.

More generally, assuming the relation p = Nq or a(t) ≈ bN (t). From Eq. (15),
we obtain easily the quadratic equation(

3N2 + (n− 3)N − n
)
q2 + (1−N)q − 3 = 0 , (16)
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and two values of N may exist if we admit the unique solution

q =
37(n+ 3)

n2 − 105n+ 9
, (17)

for which the discriminant is equal to zero and thus N1 = 1 and N2 = (1−12n)/37.
Thus the value of N2 is more interesting. For n = 1, N2 ≈ −0.3, while for n = 3,
N2 ≈ −0.94. Thus for n = 1, q = −1.55 and p = 0.465, while for n = 3, q = −0.75
and p = 0.705. Thus a is expanding and b is contracting. It may be easily proved
that for n = 6, N2 = −1.918, q = −0.57 and p = 1.1. For n = 7, N2 = −2.24,
q = −0.54 and p = 1/2. For n = 10, N2 = −3.21, q = −0.511 and p = 1.64,
in agreement with the recent astrophysical observations [17 – 19]. Cosmology in
ten dimensions was proven to hold important characteristics and features [20, 21].
It is worth noting that as long as n ≤ 104, p > 0 and q < 0. For a much higher
dimension, q approaches zero (constant extra-dimension) and p → −12 (contracting
to four-dimensional spacetime). Cosmology in six dimensions and higher is explored
in the literature and many important features were revealed [22 – 26].

In summary, in the present short communication we have investigated the
D = 4 + n cosmological model with dynamical gravitational constant and cosmic
fluid density. Moreover, we have assumed that pa = pb+ξ, where ξ is a pressure-like
quantity playing the role of the bulk viscosity. We have assumed power-law behav-
ior for G, ρ, pa, pb and ξ, and furthermore we suggested the dissipative law for the
square of the non-zero component of the displacement vector field φA, β

2 ∝ αH/t.
Exact solutions of the Einstein’s field equations are obtained. It has been observed
that the gravitational constant increases in time, while ρ, pa, pb and ξ decrease in
time. Assuming the relation p = Nq or a(t) ≈ bN (t), we noticed that as long as
n ≥ 6, a is expanding and b is contracting. The case n = 10 (eleven-dimensional
spacetime) fits well with supernova and radio sources observations. While a vast
literature exists to address the observational fact of the current expansion and evo-
lution of the universe from the higher-dimensional point of view, we are not aware
of models similar to the one developed in this paper. Further details, consequences
and numerical confrontations with observations are in progress.
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LYRINA KOZMOLOGIJA U D = n+ 4 DIMENZIJA: ZANIMLJIVI
SLUČAJEVI n ≥ 6 I n ≤ 104

Postigli smo i podrobno raspravljamo egzaktna rješenja Einsteinovih jednadžbi
polja u Lyrinoj geometriji i D = 4 + n dimenzijskom prostoru-vremenu, s vre-
menski rastućim G i opadajućom kozmičkom tekućinom i gustoćom. Predlažemo
fenomenološki zakon disipacije β2 ∝ H/t za kvadrat ne-nulte sastavnice vektora
posmačnog polja φA. H je Hubbleov parametar u dodatno-dimenzijskoj prostorno-
vremenskoj metrici. Nalazi se da su slučajevi n ≥ 6 u granicama opažanja, a četiri-
dimenzijski prostor-vrijeme se ubrzano širi dok se dodatne dimenzije sužavaju s
vremenom.
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