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We obtain two classes of exact solutions to the Einstein’s field equations by ap-
plying a special law of variation of the Hubble’s parameter for a Bianchi type V
space-time in the presence of an imperfect fluid with both shear and bulk viscosities
together with heat flow. The coefficient of the shear viscosity is determined on the
basis of the physical assumption that it is proportional to the Hubble’s expansion
parameter, whereas the bulk viscosity coefficient is determined when the energy-
density and the kinetic pressure satisfy the barotropic equation of state. These
classes of solutions represent expanding cosmological models with and without a
finite physical singularity. The physical and kinematical features of the models in
two types of cosmologies are discussed.
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1. Introduction

Astronomical observations of the large-scale distribution of galaxies in the uni-
verse show that the distribution of matter can be satisfactorily described by a
perfect fluid. The adequacy of cosmological models with perfect fluid is no basis for
expecting that it is equally suitable for describing its early stages of evolution. At
the early stages of evolution of the universe, when radiation in the form of photon
as well as neutrino decoupled, the matter behaved like a viscous fluid. Since vis-
cosity counteracts the cosmological collapse, a different picture at the initial state
of the universe may appear due to the dissipative processes caused by viscosity. A
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number of authors have presented exact solutions of Einstein’s field equations by
considering viscous fluid in isotropic as well as anisotropic cosmological models.

Misner [1, 2] studied the effect of viscosity on the evolution of the cosmological
models and suggested that the strong dissipation due to the neutrino viscosity may
considerably reduce the anisotropy of the black-body radiation. The viscosity mech-
anism in cosmology has explained the anomalously high entropy per baryon in the
present universe [3, 4]. Murphy [5] developed a uniform cosmological model of the
Friedmann type taking into account the effect of bulk viscosity. The solutions that
he presented exhibit an interesting feature that the big-bang type singularity ap-
pears in the infinite past. A number of authors obtained exact solutions of Einstein’s
field equations by considering viscous fluid in isotropic as well as anisotropic cosmo-
logical models. Banerjee and Santosh [6, 7], Banerjee, Duttachoudhury and Sanyal
[8], Dunn and Tupper [9], Coley and Tupper [10] etc. constructed and discussed
cosmological models under the influence of both shear and bulk viscosity. Goener
and Kowalewski [11] have given a method for obtaining irrotational anisotropic
viscous fluid matter solutions of Bianchi type I with barotropic equation of state.
Saha and Rikhvitsky [12] investigated the nature of cosmological solution for a spa-
tially homogeneous Bianchi type I model in the presence of a cosmological term
by taking into account dissipative process due to viscosity. Grøn [13] presented
an excellent review of research works on viscous cosmological models and studied
inflationary cosmological models of Bianchi type I with shear and non-linear bulk
viscosities. Banerjee and Sanyal [14] presented an irrotational Bianchi type V cos-
mological model under the influence of both shear and bulk viscosity together with
heat flow. Coley [15] investigated Bianchi type V spatially homogeneous imperfect
fluid cosmological models which contain both viscosity and heat flow. Coley and
Hoogan [16], while generalizing the work of Coley and Tupper [10], studied diagonal
Bianchi type V imperfect fluid cosmological models with both viscosity and heat
conduction and presented cosmological models with and without the cosmological
term using the technique from dynamical system theory. Singh and Chaubey [17]
investigated the evolution of a spatially homogeneous and anisotropic Bianchi type
V cosmological model with viscous fluid and a cosmological term.

The Einstein’s field equations are a coupled system of highly non-linear differ-
ential equations and we seek solutions to the field equations for their applications
in cosmology and astrophysics. In order to find solutions of field equations, one has
to make certain physical and mathematical assumptions at the cost of physics of
the problem. Solutions to the field equations may also be generated by applying a
law of variation for Hubble’s parameter as proposed by Berman [18]. In this pa-
per, we obtain two classes of exact solutions to the Einstein’s field equations for
a Bianchi type V model filled with an imperfect fluid with both bulk and shear
viscosities together with heat flow by applying the law of variation for Hubble’s
parameter. One class of solutions represents a cosmological model of the universe
with power-law expansion having a big-bang singularity at a finite time, whereas
the other class of solutions corresponds to an exponentially expanding model of
the universe having singularity in the infinite past. The physical and kinematical
behaviors of the models in the two types of cosmologies are studied.
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2. Einstein’s field equations and general expressions

The metric for the spatially homogeneous and anisotropic Bianchi type V cos-
mological model is

ds2 = dt2 −A2dx2 − e2mx
(

B2dy2 + C2dz2
)

, (1)

where A(t), B(t) and C(t) are the cosmic scale factors and m is a constant.

The energy-momentum tensor of a viscous fluid with heat flow is given by

Tµν = (ρ+ p̄)uµuν − p̄gµν + ηδβν [uµ;β + uβ;µ − uµu
αuβ;α − uβu

αuµ;α]

+hµuν + hνuµ, (2)

where

p̄ = p−

(

ξ −
2

3
η

)

θ, (3)

and semi-colon denotes co-variant differentiation.

Here uµ is the 4-velocity of the fluid, ρ its energy density, p the kinetic pressure,
p̄ is the effective pressure, ξ(> 0) and η(> 0) the co-efficients of bulk and shear
viscosities, respectively, and hµ is the heat flow vector satisfying hµuµ = 0. We
assume that the heat flow is in the x-direction only, then hµ = (h1, 0, 0, 0), h1 being
a function of time. In co-moving system of co-ordinates, we have uµ = (0, 0, 0, 1).
Expansion and shear scalars are defined by

θ = uµ
;µ, (4)

σ2 =
1

2
σµνσ

µν , (5)

where

σµν =
1

2
(uµ;αP

α
ν + uν;αP

α
µ )−

1

3
θPµν . (6)

Here the projection tensor Pµν is given by

Pµν = gµν − uµuν . (7)

The expansion scalar, which determines the volume behavior of the fluid, and the
shear scalar for Bianchi type V metric (1), are given by

θ =
Ȧ

A
+

Ḃ

B
+

Ḃ

B
=

V̇

V
, (8)
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and

σ2 =
1

2





(

Ȧ

A

)2

+

(

Ḃ

B

)2

+

(

Ċ

C

)2


−
θ2

6
, (9)

where a dot denotes differentiation with respect to t. The average scale factor a of
the metric (1) is defined as

a = (ABC)
1/3

. (10)

The volume scale factor V is given by

V = a3 = ABC . (11)

We also define the directional Hubble’s parameters

H1 = Ȧ/A , H2 = Ḃ/B , H3 = Ċ/C , (12)

in the directions of x, y and z, respectively, and the average Hubble’s parameter H
as

H =
ȧ

a
=

1

3

3
∑

µ=1

Hµ =
1

3
θ . (13)

As the measure of the anisotropy, we take

Am =
1

3

3
∑

µ=1

(Hµ −H)2

H2
. (14)

Also, the deceleration parameter q is defined by

q = −
äa

ȧ2
. (15)

In the system of units 8πG = 1, the Einstein’s field equations for a viscous fluid
with heat flow, in view of Eqs. (2) and (3) for Bianchi type V space-time (1), are
given as the following set of equations:

B̈

B
+

C̈

C
+

Ḃ

B

Ċ

C
−

m2

A2
=

(

−p̄+ 2η
Ȧ

A

)

, (16)

Ä

A
+

C̈

C
+

Ȧ

A

Ċ

C
−

m2

A2
=

(

−p̄+ 2η
Ḃ

B

)

, (17)
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Ä

A
+

B̈

B
+

Ȧ

A

Ḃ

B
−

m2

A2
=

(

−p̄+ 2η
Ċ

C

)

, (18)

Ȧ

A

Ḃ

B
+

Ȧ

A

Ċ

C
+

Ḃ

B

Ċ

C
−

3m2

A2
= ρ , (19)

m

(

2
Ȧ

A
−

Ḃ

B
−

Ċ

C

)

= h1. (20)

From the energy conservation law Tµ
ν;µu

ν = 0, we obtain

ρ̇+ (ρ+ p̄)

(

Ȧ

A
+

Ḃ

B
+

Ċ

C

)

− 2η





(

Ȧ

A

)2

+

(

Ḃ

B

)2

+

(

Ċ

C

)2


 =
2m

A2
h1. (21)

From the field equations (16) – (19), the effective pressure p̄ and the energy density
ρ, in terms of physical parameters, can be written as follows

p̄ = H2 (2q − 1)− σ2 +
m2

A2
+

2

3
ηθ , (22)

ρ = 3H2 − σ2 −
3m2

A2
. (23)

Here we follow the approach of Saha and Rikhvitsky [12], Singh and Chaubey [17]
and Singh et al. [19] to solve the field equations (16) – (20). Subtracting Eqs. (16)
and (17), Eqs. (17) and (18) and Eqs. (16) and (18), we get the following quadrature
solutions of the field equations, respectively,

B

A
= d1 exp

[

k1

∫

exp
(

−2
∫

ηdt
)

a3
dt

]

, (24)

C

B
= d2 exp

[

k2

∫

exp
(

−2
∫

ηdt
)

a3
dt

]

, (25)

C

A
= d3 exp

[

k3

∫

exp
(

−2
∫

ηdt
)

a3
dt

]

, (26)

where d1, d2, d3 and k1, k2, k3 are constants of integration. From Eqs. (24) – (26),
we find the quadrature solutions of the metric functions as follow

A = l1a exp

[

X1

∫

exp
(

−2
∫

ηdt
)

a3
dt

]

, (27)
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B = l2a exp

[

X2

∫

exp
(

−2
∫

ηdt
)

a3
dt

]

, (28)

C = l3a exp

[

X3

∫

exp
(

−2
∫

ηdt
)

a3
dt

]

, (29)

where l1 = 3

√

(d1
2d2)−1, l2 =

3

√

d1d2
−1, l3 =

3

√

d1d2
2, and

X1 = −(2k1 + k2)/3, X2 = −(k2 − k1)/3, X3 = (k1 + 2k2)/3,

and these constants X1, X2, X3 and l1, l2, l3 satisfy the relations

X1 +X2 +X3 = 0 and l1l2l3 = 1 . (30)

Let us assume that the shear viscosity η is proportional to the expansion, i.e.,
η ∝ θ = 3H [17]. Here we consider the value of η as

η = η0θ = 3η0H , (31)

which means that the nature of the shear viscosity is dependent upon the expansion
of the universe.

We also make a certain physically valid assumption of the Hubble’s parameter
H as

H = la−n, (32)

where l > 0 and n(≥ 0) are constants. This type of relation, which gives a con-
stant value of deceleration parameter, was initially considered by Bermam [18] and
Berman and Gomide [20] for solving FRW cosmological models. The same concept
of the constant deceleration parameter was used, later on, by many workers (see
Singh and Kumar [21] and references therein) for solving Einstein’s field equations
in FRW models. Singh and Kumar [22] and Kumar and Singh [23] have further
applied the same assumption of the law of variation for Hubble’s parameter for
solving the field equations in anisotropic Bianchi types I and II cosmological mod-
els in general relativity and in different scalar-tensor theories. Recently, Singh et al.
[19, 24] have further extended this work to Bianchi type V perfect fluid cosmological
models with and without heat flow in general relativity. In this paper, we solve the
field equations of Bianchi type V imperfect viscous fluid with heat conduction by
using relations (31) and (32).

From Eqs. (13) and (32), we obtain

ȧ = la−n+1, (33)

ä = −l2 (n− 1) a−2n+1. (34)
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Using Eqs. (33) and (34) into Eq.(15), we get

q = n− 1 . (35)

It is clear here that the law of variation of Hubble’s parameter gives a constant
value of the deceleration parameter. The sign of q indicates the behavior of the
model. The positive sign of q(n > 1) corresponds to the decelerating model of the
universe whereas the negative sign of q(0 ≤ n < 1) shows the inflation. Integrating
Eq. (33), we find two values of the average scale factor as follows

a = (nlt+ c1)
1/n

, n /=0 , (36)

and

a = c2 exp (lt) , n = 0 , (37)

where c1 and c2 are constants of integration.

In the next section, we solve Eqs. (27) – (29) with the help of the above two
expressions of the average scale factor for n /=0 and n = 0 and obtain two classes
of cosmological models having singularity at finite time or in the infinite past.

3. Exact solutions

3.1. Cosmological model with n =/ 0

Using the power-law solution of the average scale-factor obtained in Eq. (36),
the generalized mean Hubble’s parameter H, from Eq. (13), can be obtained as

H = l (nlt+ c1)
−1

. (38)

From Eqs. (31) and (38), the expression for the shear viscosity η is given by

η = 3η0l(nlt+ c1)
−1. (39)

With the help of the values of the average scale factor a and the shear scalar
η, obtained in Eqs. (36) and (39) respectively, the exact solutions of the metric
functions (27) – (29) are obtained as

A(t) = l1 (nlt+ c1)
1/n

exp

[

X1

l(n− 3− 6η0)
(nlt+ c1)

(n−3−6η0)/n

]

, (40)

B(t) = l2 (nlt+ c1)
1/n

exp

[

X2

l(n− 3− 6η0)
(nlt+ c1)

(n−3−6η0)/n

]

, (41)

C(t) = l3 (nlt+ c1)
1/n

exp

[

X3

l(n− 3− 6η0)
(nlt+ c1)

(n−3−6η0)/n

]

, (42)
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provided n /=(3 + 6η0). The directional Hubble’s parameters H1, H2 and H3 can
be written as

H1 = l (nlt+ c1)
−1

+X1 (nlt+ c1)
−(3+6η0)/n , (43)

H2 = l (nlt+ c1)
−1

+X2 (nlt+ c1)
−(3+6η0)/n , (44)

H3 = l (nlt+ c1)
−1

+X3 (nlt+ c1)
−(3+6η0)/n . (45)

The heat conduction h1, in this case can be obtained as

h1 = 3mX1 (nlt+ c1)
−(3+6η0)/n . (46)

The physical parameters θ,σ2, Am and V are given by

θ = 3l (nlt+ c1)
−1

, (47)

σ2 =
1

2

(

X1
2 +X2

2 +X3
2
)

(nlt+ c1)
−(6+12η0)/n , (48)

Am =
n2
(

X1
2 +X2

2 +X3
2
)

3
(nlt+ c1)

2(n−3−6η0)/n , (49)

V = (nlt+ c1)
3/n

. (50)

Using these expressions for H, σ2, Am, η, q and θ, one obtains from Eqs. (22) and
(23) the effective pressure and the energy density as

p̄ =
2nl2

(nlt+ c1)
2 −

n2l2

2
.

(

X1
2 +X2

2 +X3
2
)

(nlt+ c1)
12/n

+
m2

l1
2

1

(nlt+ c1)
2/n

. exp

[

−2nX1

(n− 6)
(nlt+ c1)

(n−6)/n

]

, (51)

ρ =
3l2

(nlt+ c1)
2 −

n2l2

2
.

(

X1
2 +X2

2 +X3
2
)

(nlt+ c1)
12/n

−
3m2

l1
2

1

(nlt+ c1)
2/n

. exp

[

−2nX1

(n− 6)
(nlt+ c1)

(n−6)/n

]

, (52)

provided n /=6.
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To find the value of the bulk viscosity coefficient ξ, we assume that the energy
density and the kinetic pressure satisfy the equation of state p = γρ, 0 ≤ γ ≤ 1.
Then, from Eqs. (3), (51) and (52), we obtain

ξ =
l(3γ−2n+3)

3
(nlt+c1)

−1+

(

X1
2+X2

2+X3
2
)

(1−γ)

6l
(nlt+c1)

(n−6−12η0)/n

−
m2(3γ+1)

3l1
2l

(nlt+c1)
(n−2)/n exp

[

2X1

l(3+6η0− n)
(nlt+c1)

(n−3−6η0)/n

]

. (53)

It can be observed that, with the help of the above solutions, the energy conserva-
tion equation (21) is identically satisfied.

We now investigate the existence of a singularity of this model, which can be
done by investigating the behaviors of the above physical parameters. We study
the characteristics of each parameter obtained above, and find that at the point
t = t1, t1 = −c1/nl, the important parameters such as H, H1, H2, H3, θ, σ

2, η, p
and ρ are all infinite and the volume scalar vanishes. The bulk viscosity coefficient
ξ also tends to infinity at t = t1 if n < 2. This clearly indicates that the model has
a finite physical singularity at t = t1 from which it starts expanding with power-
law expansion. Initially, the rate of expansion is infinite, but for the large time as
t → ∞, the expansion will completely be vanished. The quantities H, H1, H2, H3,
σ2, η, p and ρ are well behaved for t > t1 and will become zero for large time. The
component h1 of heat conduction vector is initially infinite and approaches zero as
t → ∞. The volume scalar of the model will also become infinite for the large time.
The ratio σ2/θ tends to zero as t → ∞, which shows that the model is isotropic
for large time. Thus, the universe is essentially an empty space-time for large t.

3.2. Cosmological model with n = 0

Using the exponential form of the average scale factor obtained in Eq. (37), the
generalized mean Hubble’s parameter H and the expansion scalar θ from Eq. (13)
can be written as

H = l, θ = 3l . (54)

From Eqs. (31) and (54), the shear viscosity η can be given as

η = 3lη0 . (55)

In this case, the solutions for A, B and C, from Eqs. (27) – (29), with the help of
Eqs.(37) and (55), can be obtained as

A(t) = c2l1 exp

[

lt−
X1

3lc23(1 + 2η0)
exp {−3l(1 + 2η0)t}

]

, (56)

B(t) = c2l2 exp

[

lt−
X2

3lc23(1 + 2η0)
exp {−3l(1 + 2η0)t}

]

, (57)
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C(t) = c2l3 exp

[

lt−
X3

3lc23(1 + 2η0)
exp {−3l(1 + 2η0)t}

]

. (58)

The directional Hubble’s parameters, in this case, are given as follows:

H1 = l +
X1

c23
exp [−3l(1 + 2η0)t] , (59)

H2 = l +
X2

c23
exp [−3l(1 + 2η0)t] , (60)

H3 = l +
X3

c23
exp [−3l(1 + 2η0)t] . (61)

The heat conduction h1 is obtained as

h1 =
3mX1

c23
exp [−3l(1 + 2η0)t] . (62)

The shear scalar, anisotropy parameter and volume scalar, in this case, are obtained
as

σ2 =

(

X1
2 +X2

2 +X3
2
)

2c26
exp [−6l(1 + 2η0)t] , (63)

Am =

(

X1
2 +X2

2 +X3
2
)

3l2c26
exp (−6l(1 + 2η0)t) , (64)

and

V = c2
3 exp (3lt) . (65)

The effective pressure p̄ and the energy density ρ, in this case from Eqs. (22) and
(23), are given by

p̄ =
m2

c22l1
2 exp

[

−2

(

lt−
X1

6lc23
exp (−6lt)

)]

−

(

X1
2 +X2

2 +X3
2
)

2c26
exp (−12lt) , (66)

ρ = 3l2 −
3m2

c22l1
2 exp

[

−2

(

lt−
X1

6lc23
exp (−6lt)

)]

−

(

X1
2 +X2

2 +X3
2
)

2c26
exp (−12lt) . (67)
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To determine ξ, we again assume that the energy density and the kinetic pressure
satisfy the equation of state p = γρ, 0 ≤ γ ≤ 1. Then, from Eqs.(3), (66) and (67),
we obtain the coefficient of bulk viscosity as given by

ξ = (γ + 1)l +

(

X1
2 +X2

2 +X3
2
)

(1− γ)

6lc26
exp {−6l(1 + 2η0)t}

−
m2(3γ + 1)

3lc22l1
2 exp

[

2X1

3lc23(1 + 2η0)
exp {−3l(1 + 2η0)t} − 2lt

]

. (68)

It can be seen here that the energy conservation equation (21) is identically satisfied.

Thus, for this model, the bulk viscosity coefficient is time dependent and the
shear viscosity coefficient is constant. The deceleration parameter q = −1 indicates
that the universe represented by this set of solutions is inflationary. The spatial
volume V tends to zero as t → −∞. At this epoch ρ, p, σ2, ξ, h1 are all infi-
nite. Therefore, the universe has a physical singularity in the infinite past. This
shows that the universe is infinitely old and has exponential inflationary phase.
The directional Hubble’s parameters are time-dependent, while the average Hub-
ble’s parameter is constant. The expansion scalar is constant throughout the time
of evolution right from the beginning. The model is well behaved for −∞ < t < ∞.
The physical quantities ρ, p, σ2, ξ and h1 are decreasing functions of time. The
heat function h1 dies out completely for t → ∞. As t → ∞, the spatial volume
becomes infinite and the energy-density becomes constant. The ratio σ2/θ tends
to zero as t → ∞ which shows that the model is isotropic for large time.

4. Conclusions

We have presented two classes of exact solutions to the Einstein’s field equations
by applying the law of variation of the Hubble’s parameter for a Bianchi type
V space-time filled with an imperfect fluid with both bulk and shear viscosities
together together with heat flow. One class of solutions represents the model of
the universe with power-law expansion and having a finite physical singularity. The
other class of solutions represents an exponentially expanding model of the universe
having the singularity in the infinite past. These models approach to isotropy for
large time. The physical and kinematical parameters have also been studied. The
models of the universe in the two types of cosmologies are new and compatible with
the recent observations.
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NESAVRŠENI FLUIDNI KOZMOLOŠKI MODELI BIANCHIJEVOG TIPA V S
TOKOM TOPLINE

Izvodimo dvije vrste točnih rješenja Einsteinovih jednadžbi polja primjenom po-
sebne ovisnosti Hubbleovog parametra u Bianchijevom prostoru-vremenu tipa V,
uz pretpostavku nesavršenog fluida i prisustvo posmične i volumne viskoznosti i
izmjene topline. Koeficijent posmične viskoznosti se odred–uje pretpostavkom da je
razmjeran Hubbleovom parametru širenja, a koeficijent volumne viskoznosti uvje-
tom barotropske ravnoteže gustoće energije i kinetičkog tlaka. Te vrste rješenja
predstavljaju kozmološke modele sa širenjem svemira i s početnom fizičkom singu-
larnošću ili bez nje. Raspravljaju se fizikalne i kinematske odlike dvaju modela.
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