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Bianchi type-I stiff-fluid tilted cosmological model with bulk viscosity is investi-
gated. To get the deterministic model of the universe, we have assumed that the
universe is filled with a stiff fluid, a condition A = (BC)n between the metric po-
tentials A, B, C and ζθ =constant, where ζ is the coefficient of bulk viscosity, θ the
expansion and n is a constant. The physical and geometrical aspects of the model
in the presence and absence of bulk viscosity are discussed.
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1. Introduction

It has been argued for a long time that in the early stage of cosmic expan-
sion, the dissipative process may well account for the high degree of isotropy we
observe today. Dissipative effects, including both the bulk and shear viscosities,
play a significant role in the early stage of evolution of the universe. To study the
effect of bulk viscosity, Eckart [1] developed a relativistic theory of non-equilibrium
thermodynamics. Misner [2, 3] discussed the effect of viscosity on the evolution
in cosmological models. Heller and Klimek [4] obtained viscous fluid cosmological
models without initial singularity. Roy and Prakash [5] investigated Bianchi type-I
viscous fluid cosmological model assuming uniform coefficient of viscosity. Bali and
Jain [6] obtained some expanding and shearing viscous fluid cosmological models
in which coefficient of shear viscosity is proportional to the expansion in the model.
Padmanabhan and Chitre [7] pointed out that the presence of bulk viscosity leads
to inflationary-like solutions in general relativity. Saha [9] and Saha and Rikhvit-
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sky [9, 10] in a series of papers discussed Bianchi type-I cosmological models for
viscous-fluid distribution. Recently, Bali and Singh [11] investigated Bianchi type-I
cosmological models in the presence of bulk viscosity with time-dependent cosmo-
logical term.

Spatially-homogeneous and anisotropic cosmological models, in which the fluid
flow is not normal to the hypersurface of homogeneity, have considerable interest
in the studies. These models are called tilted cosmological models. The general
dynamics of tilted cosmological models has been discussed by King and Ellis [12],
and Ellis and King [13]. Bradley and Sviestine [14] have shown that the heat flow is
expected for tilted models. Mukherjee [15] investigated Bianchi type-I cosmological
model with heat flux for a perfect-fluid distribution. The tilted universes with heat
flux have been investigated by a number of authors, viz. Banerjee and Sanyal [16],
Coley [17], Roy and Banerjee [18] and Bali and Sharma [19]. Recently, Bali and
Kumawat [20] investigated LRS Bianchi type-V tilted cosmological model with bulk
viscosity for stiff fluid distribution. To get the deterministic model of the universe,
a supplementary condition A = Bn between the metric potentials A and B is also
assumed, where n is a constant.

In this paper, we investigate Bianchi type-I tilted cosmological model with heat
flux and bulk viscosity for the stiff fluid distribution. To get the deterministic
model, we also assume a supplementary condition A = (BC)n between the metric
potentials A, B and C, where n is a constant and ζθ = constant, where ζ is the
coefficient of bulk viscosity, θ the expansion and n is a constant. The physical and
geometrical aspects of the model in the presence and absence of bulk viscosity are
also discussed.

We consider Bianchi type-I metric as

ds2 = A2dx2 +B2dy2 + C2dz2 − dt2, (1)

where A, B and C are functions of t alone.

The energy-momentum tensor (T j
i ) for heat conduction given by Ellis [21] and

for bulk viscosity given by Landau and Lifshitz [22] is given by

T j
i = (ǫ+ p)viv

j + pgji + qiv
jviq

j − ζθ(gji + viv
j) , (2)

together with

gijv
ivj = −1 , (3)

qiq
i > 0 , (4)

qiv
i = 0 , (5)

where p is the isotropic pressure, ǫ the matter density and qi the heat con-
duction vector orthogonal to vi. The fluid-flow vector vi has the components
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(

sinhλ

A
, 0, 0, coshλ

)

satisfying (3) where λ is the tilt angle. Einstein’s field equa-

tions are

Rj
i −

R

2
gji = −8πT j

i (6)

(in the geometrized units c = 1, G = 1, and taking Λ = 0).

The line-element (1) leads to

B44

B
+

C44

C
+

B4C4

BC
= −8π

[

(ǫ+ p) sinh2 λ+ p+
2q1 sinhλ

A
−K cosh2 λ

]

, (7)

A44

A
+

C44

C
+

A4C4

AC
= −8π(p−K) , (8)

A44

A
+

B44

B
+

A4B4

AB
= −8π(p−K) , (9)

A4B4

AB
+
B4C4

BC
+
A4C4

AC
=−8π

[

−(ǫ+p) cosh2 λ+p− 2q1 sinhλ

A
+K sinh2 λ

]

, (10)

(ǫ+ p)A sinhλ coshλ+ q1 coshλ+ q1
sinh2 λ

coshλ
−KA sinhλ coshλ = 0 , (11)

where

ζθ = K , (12)

and the subscript ‘4’ denotes the differentiation with respect to t.

2. Solution of the field equations

Equations (7) – (11) are five equations in seven unknowns A, B, C, ǫ, p, λ and
q1. For the complete determination of these quantities, we assume that

p = ǫ (stiff − fluid condition) , (13)

and

A = (BC)n. (14)

From Eqs. (7), (10), (13) and (14), we have

(BC)44 +
n[(BC)4]

2

BC
= 8πK(BC) . (15)

FIZIKA B (Zagreb) 19 (2010) 2, 91–102 93



bali et al.: bianchi type-i stiff-fluid tilted cosmological model with . . .

Using BC = µ and
B

C
= ν in (15), we have

df2

dµ
+

2n

µ
f2 = 16πKµ , (16)

where

µ4 = f(µ), µ44 = ff ′ and f ′ = df/dµ .

Equation (16) is a linear differential equation in f2. Its integrating factor is µ2n.
Equation (16) leads to

∫

µn dµ
√

8πK/(n+ 1) µ2n+2 +N
=

∫

dt , (17)

where N is a constant of integration. Let µn+1 = ξ. From Eq. (17), we have

µ=

{

(n+1)
√
N

sinh(at+b)

a

}

=

{

(n+1)
√
N

E1

a

}

, where E1=sinh(at+b) , (18)

b is a constant of integration and a2 = 8πK(n + 1). We introduced above the
abbreviation E1 for the expression sinh(at+b) because it appears repeatedly in the
following equations.

Equations (8) and (9) lead to

ν4
ν

=
L

µn+1
, (19)

where L is a constant of integration. From Eqs. (19) and (18), we have

ν = F

[

cosec(at+ b) + coth(at+ b)

]−L/(n+1)
√
N

, (20)

where F is a constant of integration. We assume

F = a−L/(n+1)
√
N . (21)

Thus the metric (1) leads to

ds2 = −dt2 +

{

E1

a

}2n/(n+1)

dX2

+

{

E1

a

}1/(n+1)
[

a{cosec(at+ b) + coth(at+ b)}
]−L/(n+1)

√
N
dY 2
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+

{

E1

a

}1/(n+1)
[

a{cosec(at+ b) + coth(at+ b)}
]L/(n+1)

√
N
dZ2, (22)

where
{√

N (n+ 1)

}n/(n+1)

x = X ,

{√
N (n+ 1)

}1/2(n+1)

y = Y ,

{√
N (n+ 1)

}1/2(n+1)

z = Z .

In the absence of viscosity, i.e. when K → 0, the metric (1) leads to

ds2 = −ℓ2dτ2 + (ℓτ)2n/(n+1)dX2

+(ℓτ)1/(n+1)

{

(

2

ℓτ

)−L/(n+1)
√
N

dY 2 +

(

2

ℓτ

)L/(n+1)
√
N

dZ2

}

, (23)

where we have used the transformation

sinh(at+ b) = ℓ sin aτ , (24)

where ℓ is a constant.

3. Geometrical and physical properties

In the following, we use the replacement

E2 =
L2

N
− 4n− 1 ,

because is appears repeatedly in the following equations.

Using the replacements E1 and E2, the pressure p, density ǫ, λ, θ, σij , q1 and
q4 are given by

8πp = 8πǫ =
a2

4(n+ 1)2

{

(2n+ 3− 4n2)− E2

E2
1

}

, (25)

coshλ =

{

n(2n− 1)E2
1 + E2

E2 − (2n− 1)E2
1

}1/2

, (26)
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θ =
a coth(at+ b)

{

E2
2 − (2n− 1)2nE4

1 + 2n(2n− 1)E2E
2
1

}

{E2 − (2n− 1)E2
1}

3/2 {n(2n− 1)E2
1 + E2}1/2

, (27)

σ11 =
N1

3(n+ 1) {E2 − (2n− 1)E2
1}

5/2
, (28)

where the numerator in Eq. (28) is given by

N1 = (2n− 1)a coth(at+ b)
{√

N (n+ 1)E1/a
}2n/(n+1)

{

n(2n− 1)E2
1 + E2

}1/2

×
{

(4n2 + n+ 3)E2E
2
1 + E2

2 − n(2n− 1)2E4
1

}

,

σ22 =
N2

3

{

E2 − (2n− 1)E2
1

}3/2{

n(2n− 1)E2
1 + E2

}1/2
, (29)

where the numerator in Eq. (29) is given by

N2=

{√
N(n+1)E1/a

}1/(n+1)

a coth(at+b)

{

acosech(at+b)+a coth(at+b)

}−L/(n+1)
√
N

×
[

E2
2

{

1− 2n

2(n+ 1)
+

3

2

L

2(n+ 1)
√
N

1
√

E2
1 + 1

}

+(2n− 1)E2E
2
1

{

−4n2 + n+ 3

2(n+ 1)
+

3(n− 1)

2(n+ 1)
√
N

L
√

E2
1 + 1

}

+n(2n− 1)2E4
1

{

2n− 1

2(n+ 1)
− 3

2

L

(n+ 1)
√
N

1
√

E2
1 + 1

}]

,

σ33 =
N3

3

{

E2 − (2n− 1)E2
1

}3/2{

n(2n− 1)E2
1 + E2

}1/2
, (30)

where the numerator in Eq. (30) is given by

N3=

{√
N(n+1)E1/a

}1/(n+1)

a coth(at+b)

{

acosech(at+b)+a coth(at+ b)

}L/(n+1)
√
N
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×
[

E2
2

{

1− 2n

2(n+ 1)
− 3L

2(n+ 1)
√
N

1
√

E2
1 + 1

}

+(2n− 1)E2E
2
1

{

−4n2 + n+ 3

2(n+ 1)
− 3(n− 1)

2(n+ 1)
√
N

L
√

E2
1 + 1

}

+n(2n− 1)2E4
1

{

2n− 1

2(n+ 1)
+

3L

2(n+ 1)
√
N

1
√

E1
1 + 1

}]

,

σ44 =

(2n− 1)2E2
1a coth(at+ b)

[

E2
2 + (4n2 + n+ 3)E2E

2
1 − n(2n− 1)2E4

1

3

{

E2 − (2n− 1)E2
1

}5/2{

n(2n− 1)E2
1 + E2

}1/2
, (31)

σ14 =
N4

3(n+ 1)

{

E2 − (2n− 1)E2
1

}5/2
, (32)

where the numerator in Eq. (32) is given by

N4 = (2n− 1)a coth(at+ b)

{√
N (n+ 1)E1/a

}n/(n+1)

×
{

(2n− 1)(n+ 1)E2
1

}1/2{

− (4n2 + n+ 3)E2E
2
1 − E2

2 + n(2n− 1)E4
1

}

,

v1 =

{

(2n− 1)(n+ 1)E2
1

}1/2

{

E2 − (2n− 1)E2
1

}1/2{

(n+ 1)
√
N E1/a

}n/(n+1)
, (33)

v4 =

{

n(2n− 1)E2
1 + E2

}1/2

{

E2 − (2n− 1)E2
1

}1/2
.

The shear tensor (σij) satisfies the trace-free condition

σijv
j = 0 ,

FIZIKA B (Zagreb) 19 (2010) 2, 91–102 97



bali et al.: bianchi type-i stiff-fluid tilted cosmological model with . . .

which leads to

σ11v
1 + σ14v

4 = 0 . (34)

The components of rotation tensor (ωij) are given by

ω11 = ω22 = ω33 = ω44 = ω14 = 0 . (35)

The components of heat-conduction vector (qi) are given by

q1 =

[

(
√
N)na(n+2)

]1/(n+1)√
2n− 1E1

{

n(2n− 1)E2
1 + E2

}

16π
[

(n+ 1)(n+3)/2E
(n+2)
1

]1/(n+1)
{

E2 − (2n− 1)E2
1

}1/2
, (36)

q4 =
−a2(2n− 1)2

{

n(2n− 1)E2
1 + E2

}1/2

16π(n+ 1)

{

E2 − (2n− 1)E2
1

}1/2
. (37)

The deceleration parameter (ā) is given by

ā = −R44/R

R2
4/R

2
=

2 coth2(at+ b)− 3

coth2(at+ b)
. (38)

The heat conduction vector (qi) satisfies the condition

qiv
i = 0 ,

i.e.

q1v
1 + q4v

4 = 0 . (39)

The rotation tensor (ωij) satisfies the condition ωijv
j = 0. This leads to

ω11v
1 + ω44v

4 = 0 . (40)

In the absence of viscosity, the above mentioned quantities lead to

8πp = 8πǫ =
1

4(n+ 1)2
(4n+ 1− L2/N)

ℓ2τ2
, (41)

coshλ = 1 , (42)

θ =
1

ℓτ
, (43)
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σ11 =
2n− 1

3(n+ 1)

{
√
N(n+ 1)

}2n/(n+1)
(ℓτ)(n−1)/(n+1), (44)

σ22 =
(
√
N)1/(n+1)

{

1− 2n+ 3L/
√
N
}

3(n+ 1)n/(n+1)2{L+
√
N(n+1)}/

√
N(n+1)(ℓτ)(n

√
N−L)/

√
N(n+1)

, (45)

σ33 =
(
√
N)1/(n+1)2{L−

√
N(n+1)}/

√
N(n+1)

{

1− 2n− 3L/
√
N
}

3(n+ 1)n/(n+1)(ℓτ)(n
√
N+L)/

√
N(n+1)

, (46)

σ44 = 0 , (47)

σ14 = 0 , (48)

v1 = 0 , (49)

v4 = 1 , (50)

q1 = 0 , (51)

q4 = 0 , (52)

ω11 = ω22 = ω33 = ω14 = 0 . (53)

4. Discussion

The model (22) starts with a big-bang at t = −b/a and the expansion in the
model decreases as time increases. The shear tensor (σij) and the rotation tensor
(ωij) satisfy the trace-free conditions

σijv
j = 0 ,

i.e. σ11v
1 + σ14v

4 = 0 , and

ωijv
j = 0 ,

i.e. ω11v
1 + ω14v

4 = 0.

The heat conduction vector (qi) satisfies the condition

qiv
i = 0 ,

i.e. q1v
1 + q4v

4 = 0.
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The reality conditions (i) (ǫ + p) > 0 and (ii) (ǫ + 3p) > 0 given by Ellis [23]
lead to

(

4n+ 1− L2

N

)

> sinh2(at+ b)(4n2 − 2n+ 3) ,

sinh2(at+ b) <
4n+ 1− L2/N

4n2 − 2n− 3
.

In the presence of bulk viscosity, the model represents accelerating universe if
sech2(at+ b) < 1

3 and it represents decelerating universe if sech2(at+ b) > 1
3 .

In the absence of bulk viscosity, the model starts with a big-bang at τ = 0 and
the expansion in the model decreases as time increases. The shear tensor (σij) and
the rotation tensor (ωij) satisfy the trace-free conditions

σijv
j = 0 and ωijv

j = 0 ,

i.e. σ11v
1 + σ14v

4 = 0 and ω11v
1 + ω14v

4 = 0.

The tilt angle λ = 0. Thus in the absence of bulk viscosity, no tilt model is
possible for stiff-fluid distribution. The reality conditions ǫ+ p > 0 and ǫ+ 3p > 0
lead to 4n + 1 > L2/N . The model (23) has a cigar-type singularity at τ = 0
(MacCallum [24]). In the absence of bulk viscosity, it represents a decelerating
universe.

5. Conclusion

In the models (22) and (23), in the presence and absence of bulk viscosity,
shear tensor and rotation tensor satisfy the trace-free conditions i.e. σijv

j = 0
and ωijv

j = 0. The heat conduction vector qi satisfies orthogonality condition
qivi = 0. The model (22) represents accelerating and decelerating universe under
certain conditions while the model in the absence of bulk viscosity represents a
decelerating universe. The model (22) has point-type singularity at t = −b/a,
while the model (23) has cigar-type singularity at τ = 0. In the absence of bulk
viscosity, no tilt model is possible for the stiff-fluid distribution.
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BIANCIJEV KOZMOLOŠKI MODEL TIPA I S UKOČENOM TEKUĆINOM,
NAHERENOŠĆU I VOLUMNOM VISKOZNOŠĆU U OPĆOJ RELATIVNOSTI

Istražujemo Bianchijev kozmološki model tipa I s ukočenom tekućinom, na-
herenošću i volumnom viskoznošću. Radi postizanja odred–enosti, pretpostavlja se
da je svemir ispunjen ukočenom tekućinom, tj. da vrijedi A = (BC)n za metričke
potencijale A, B, C te ζθ = konst., gdje je ζ koeficijent volumne viskoznosti, θ
širenje a n je stalnica. Raspravljaju se fizička i geometrijska svojstva modela s i bez
viskoznosti.
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