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We discuss the field equations of Brans-Dicke theory for a spatially homogeneous
and anisotropic Bianchi type-V space-time in the presence of a perfect fluid and
obtain their exact solutions by applying the law of variation of Hubble’s parameter
which yields a constant value of deceleration parameter. The corresponding cosmo-
logical models are divided into two categories, (i) singular models with power-law
expansion, (ii) non-singular models with exponential expansion. The physical and
kinematical behaviors of the cosmological models are discussed. These models are
compatible with the results of recent observations.
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1. Introduction

The Brans-Dicke (BD) theory of gravity [1] has been extensively studied by
many workers for the last four decades in different physical contexts. This theory is
one of the simplest modifications of Einstein’s general relativity as it involves prob-
ably the simplest form of non-linear kinetic terms for the BD scalar field which
is not of quantum origin. This theory is arguably the most general choice as the
scalar-tensor generalization of general relativity because of its simplicity and a pos-
sible reduction to general relativity in some limit. In fact, it is classical in nature
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and hence can be expected to serve as a very relevant candidate to play some role
in the late-time evolution of the universe. The simplest inflationary models (Math-
iazhagan and Johri [2]), extended inflation (La and Steinhardt [3]; Steinhardt and
Accetta [4] ) and hyper-extended inflation and extended chaotic inflation (Linde [5])
are based on BD theory and other general scalar-tensor theories. Obregon and Pi-
mentel [6] presented exact cosmological models with particle creation taking BD
scalar φ as a linear function of time. They found that the gravitational constant
decreases linearly with time and the mass of the universe increases proportionally
to the square of its age. Uehara and Kim [7] studied BD equations with cosmo-
logical constant and presented exact solutions for spatially flat Robertson-Walker
metric in matter-dominated universe. Johri and Desikan [8] studied cosmological
models with constant deceleration parameter q in the framework of BD theory and
divided the resulting models in two categories: (i) singular models with expansion
driven by big-bang impulses q > 0, (ii) non-singular models with expansion driven
by creation of matter particles (q < 0). Barrow [9] presented a procedure to obtain
exact solutions in BD theory for homogeneous and isotropic cosmological models
in vacuum and with radiation as the matter content for all values of the curva-
ture. Chauvet and Cervantes-Cota [10] discussed isotropization of Bianchi types-I,
V and IX cosmological solutions in BD theory. Cervantes-Cota [11] obtained some
exact solutions in BD theory for a Bianchi type-V metric having the properties
of inflationary expansion, graceful exist and asymptotic evolution to a Friedmann-
Robertson-Walker open model. Kim [12] considered BD theory as a unique unified
model for dark matter-dark energy. He concluded that the BD scalar field inter-
polates smoothly between two late-time stages by speeding up the expansion rate
of the matter-dominated era while slowing down that of the accelerated phase to
some degree. Das and Banerjee [13] have shown that the BD scalar field itself can
serve the purpose of providing an early deceleration and a late time acceleration of
the universe without any need of quintessence field if one considers the transfer of
energy between the dark matter and the BD scalar field.

Berman [14] presented a law of variation of Hubble’s parameter for models of the
universe. Singh and Kumar [15] obtained two categories of Bianchi type-II perfect
fluid cosmological models with the help of special law of variation for Hubble’s
parameter. Motivated by these works, we study here Bianchi type-V anisotropic
solutions in the BD theory because it is one of the simplest steps in increasing the
complexity of the theory and permits the analysis of the anisotropic properties of
the models. We apply the law of variation for Hubble’s parameter to obtain two
classes of solutions for specific values of the coupling constant ω of the BD theory.
We first discuss this special law of variation of Hubble’s parameter for a Bianchi
type-V space-time which yields a constant value of the deceleration parameter and
obtain two explicit forms of the average scale factor, one is of power-law type and the
other of exponential form. Using these forms of the average scale factor, we present
two categories of cosmological models, (i) singular models and (ii) non-singular,
with constant deceleration parameter within the framework of Brans-Dicke theory
with perfect fluid. We also discuss the physical and kinematical behaviors of the
models.
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2. Model and field equations

We consider the spatially homogeneous and anisotropic Bianchi type-V space-
time of the form

ds2 = dt2 −A2dx2
− e2mx

[

B2dy2 + C2dz2
]

, (1)

where A, B and C are the cosmic scale-factors and m is a constant.

Brans-Dicke [1] field equations for combined scalar and tensor fields are

Rij−
1

2
gijR+ωφ−2

(

φ,iφ,j −
1

2
gijφ,kφ

,k

)

+φ−1 (φ;ij − gij�φ) = −8πφ−1Tij , (2)

and

�φ = φ,k
;k =

8π

3 + 2ω
T , (3)

where Rij −
1
2gijR is the Einstein tensor, Tij is the energy momentum tensor of

the matter and ω is the dimensionless coupling constant. The continuity equation
reads as

T j
i;j = 0 . (4)

Here comma and semi-colon denote partial and covariant differentiation, respec-
tively.

The energy-momentum tensor for a perfect fluid is given by

Tij = (ρ+ p)uiuj − pgij , (5)

where ui is the fluid 4-velocity vector. In the co-moving system of coordinates, we
have ui = (0, 0, 0, 1). ρ and p are energy density and pressure, respectively. From
Eqs. (1) and (5), the non-vanishing components of T i

j in co-moving coordinates are

T 1
1 = T 2

2 = T 3
3 = −p, T 4

4 = ρ, T = ρ− 3p . (6)

The field Eqs. (2) and (3) for the Bianchi type-V metric (1), in view of Eq. (6), are
given as

Ȧ

A

Ḃ

B
+

Ȧ

A

Ċ

C
+

Ḃ

B

Ċ

C
−

3m2

A2
+

ω

2

(

φ̇

φ

)2

−
1

φ

(

φ̈−�φ
)

=
8πρ

φ
, (7)

B̈

B
+

C̈

C
+

Ḃ

B

Ċ

C
−

m2

A2
+

ω

2

(

φ̇

φ

)2

−
1

φ

(

Ȧ

A
φ̇−�φ

)

=
−8πp

φ
, (8)
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Ä

A
+

C̈

C
+

Ȧ

A

Ċ

C
−

m2

A2
+

ω

2

(

φ̇

φ

)2

−
1

φ

(

Ḃ

B
φ̇−�φ

)

=
−8πp

φ
, (9)

Ä

A
+

B̈

B
+

Ȧ

A

Ḃ

B
−

m2

A2
+

ω

2

(

φ̇

φ

)2

−
1

φ

(

Ċ

C
φ̇−�φ

)

=
−8πp

φ
, (10)

2
Ȧ

A
−

Ḃ

B
−

Ċ

C
= 0 , (11)

�φ = φ̈+

(

Ȧ

A
+

Ḃ

B
+

Ċ

C

)

φ̇ =
8π

2ω + 3
(ρ− 3p) , (12)

where a dot (·) denotes differentiation with respect to time t.

We define the average scale factor a and the volume scalar V as

V = a3 = ABC . (13)

The dynamical scalars such as the expansion θ and the shear scalar σ2 are defined
as

θ = ui
;i , (14)

σ2 =
1

2
σijσ

ij , (15)

where

σij =
1

2
(ui;αP

α
j + uj;αP

α
i )−

1

3
θPij . (16)

The projection tensor Pij has the form

Pij = gij − uiuj . (17)

For the metric (1), these dynamical scalars have expressions

θ =
Ȧ

A
+

Ḃ

B
+

Ċ

C
=

V̇

V
, (18)

and

σ2 =
1

2





(

Ȧ

A

)2

+

(

Ḃ

B

)2

+

(

Ċ

C

)2


−
θ2

6
. (19)
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We define the generalized mean Hubble’s parameter H as

H =
1

3
(H1 +H2 +H3) , (20)

where H1 = Ȧ/A, H2 = Ḃ/B and H3 = Ċ/C are the directional Hubble’s param-
eters in the directions of x, y and z, respectively.

From Eqs. (14), (18) and [20], we obtain

H =
1

3

V̇

V
=

ȧ

a
=

1

3

(

Ȧ

A
+

Ḃ

B
+

Ċ

C

)

. (21)

The anisotropy parameter Am is given as

Am =
1

3

3
∑

i=1

(

∆Hi

H

)2

, (22)

where ∆Hi = Hi −H, (i = 1, 2, 3).

The deceleration parameter q in a cosmological model is defined as

q = −
äa

ȧ2
. (23)

From Eqs.(7) – (12), the energy density ρ and the pressure p, in terms of H, q, σ2

and φ, are given by

8πρ =



3H2
− σ2

−
3m2

A2
+ 3H

φ̇

φ
+

ω

2

(

φ̇

φ

)2


φ , (24)

and

8πp =



H2(2q − 1)− σ2 +
m2

A2
− 2H

φ̇

φ
−

ω

2

(

φ̇

φ

)2

−
φ̈

φ



φ . (25)

3. Solution of the field equations

From Eq. (11), we have

A2 = BC . (26)

Now, following the approach of Saha and Rikhvitsky [16], Singh and Chaubey [17]
and Singh et al. [18], we solve the field equations. Subtracting Eqs. (8) and (9),
Eqs. (9) and (10), and Eqs. (8) and (10), we get the following three relations

B

A
= d1 exp

(

k1

∫

dt

a3φ

)

, (27)
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C

B
= d2 exp

(

k2

∫

dt

a3φ

)

, (28)

and
C

A
= d3 exp

(

k3

∫

dt

a3φ

)

, (29)

where d1, d2, d3 and k1, k2, k3 are constants of integration. From Eqs. (27) – (29),
the metric functions can be written explicitly as

A = l1a exp

(

X1

∫

dt

a3φ

)

, (30)

B = l2a exp

(

X2

∫

dt

a3φ

)

, (31)

C = l3a exp

(

X3

∫

dt

a3φ

)

, (32)

where

l1 =
3

√

(d1
2d2)−1, l2 =

3

√

d1d2
−1, l3 =

3

√

d1d2
2,

and

X1 =
−(2k1 + k2)

3
, X2 =

−(k2 − k1)

3
, X3 =

(k1 + 2k2)

3
.

Here the constants X1, X2, X3 and l1, l2, l3 satisfy the relations

X1 +X2 +X3 = 0 and l1l2l3 = 1 . (33)

From Eq. (26) and Eqs. (30) – (32), we obtain

X1 = 0, X2 = −X3 = X, l1 = 1, l2 = l−1
3 = M ,

where X and M are constants. Then the expressions of the metric functions given
in Eqs. (30) – (32) reduce to

A = a, (34)

B = Ma exp

(

X

∫

dt

a3φ

)

, (35)

C = M−1a exp

(

−X

∫

dt

a3φ

)

. (36)
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Now, in order to get the exact solutions of the metric functions, we make certain
physically valid assumptions. It has been shown by Johri and Desikan [8] that for
the flat Robertson-Walker Brans-Dicke models, the necessary and sufficient for the
deceleration parameter to be constant, is a power-law relation between the scale-
factor a and the scalar field φ of the form φ = baα. In order to find physically
realistic solution of the field equations, here we assume that

φ = ba−2, (37)

where b is a proportionality constant.

We also assume that the Hubble’s parameter H is related to the average scale
factor a by the relation

H = la−n, (38)

where l > 0 and n(≥ 0) are constants. This type of relation gives a constant
value of the deceleration parameter which is a very useful tool in solving the field
equations. Earlier Berman [14], and Berman and Gomide [19] have also considered
such type of assumption for solving FRW cosmological models. Later on, many
workers (see Singh and Kumar [15] and references therein) have used the concept
of constant deceleration parameter for the solution of Einstein field equations in
FRW models. Singh and Kumar [15, 20] and Kumar and Singh [21] have extended
this work to anisotropic Bianchi types-I and II cosmological models. Also, Singh et
al. [18] have further extended it to Bianchi type-V models. Here we use the same
concept of the variation law of Hubble’s parameter which yields a constant value
of the deceleration parameter.

From Eqs. (21) and (38), we obtain

ȧ = la−n+1, (39)

ä = −l2 (n− 1) a−2n+1. (40)

Using Eqs. (39) and (40) into Eq. (23), we get

q = n− 1 . (41)

We find that the deceleration parameter is constant. The sign of q indicates the
behavior of the model. The positive sign of q (0 ≤ n ≤ 1) corresponds to the
decelerating model of the universe and the negative sign of q shows inflation.

Integrating Eq. (39), we obtain two different values of the average scale factor
for n /=0 and n = 0 as

a = (nlt+ c1)
1/n

, n /=0 , (42)

a = c2 exp (lt) , n = 0 , (43)

where c1 and c2 are constants of integration.
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Now we solve the quadrature equations (34) – (36) for the metric functions with
the help of Eqs. (37), (42) and (43). In this way, we obtain two categories of
cosmological models, (i) singular model for n /=0, (ii) non-singular model for n = 0
as follows.

3.1. Model of the Universe with n =/ 0

From Eqs. (37) and (42), the expression for the BD scalar field φ is given by

φ = b(nlt+ c1)
−2/n. (44)

Using Eqs.(42) and (44) in Eqs. (34) – (36), the exact solutions of the metric func-
tions A, B, C can be obtained as

A = (nlt+ c1)
1/n

, (45)

B = M (nlt+ c1)
1/n

exp

[

X

lb(n− 1)
(nlt+ c1)

(n−1)/n

]

, n /=1 , (46)

C = M−1 (nlt+ c1)
1/n

exp

[

−
X

lb(n− 1)
(nlt+ c1)

(n−1)/n

]

, n /=1 . (47)

The volume scale factor V can be written as

V = (nlt+ c1)
3/n

. (48)

The dynamical scalars θ and σ2 have the values given by

θ = 3l (nlt+ c1)
−1

, (49)

σ2 =
X2

b2
(nlt+ c1)

−2/n
. (50)

The directional Hubble’s parameters H1, H2 and H3 are obtained as

H1 = l (nlt+ c1)
−1

, (51)

H2 = l (nlt+ c1)
−1

+
X

b
(nlt+ c1)

−1/n
, (52)

H3 = l (nlt+ c1)
−1

−
X

b
(nlt+ c1)

−1/n
, (53)

and the generalized mean Hubble’s parameter is

H = l (nlt+ c1)
−1

. (54)
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With the help of Eqs. (51) – (54), the anisotropy parameter of the model is obtained
as

Am =
2X2

3b2l2
(nlt+ c1)

2(n−1)/n
. (55)

From Eqs. (24) and (25), the energy density ρ and the pressure p are calculated
respectively, by using the above physical parameters as

8πρ = b(2ω − 3)l2 (nlt+ c1)
−2(n+1)/n

− b

(

X2

b2
+ 3m2

)

(nlt+ c1)
−2/n

, (56)

8πp = −b (2ω + 3) l2 (nlt+ c1)
−2(n+1)/n

+ b

(

m2
−

X2

b2

)

(nlt+ c1)
−2/n

. (57)

It can be observed here that the wave Eq. (12) is satisfied if ω = 3(n− 2)/2(3−n),
(n /=3) and X2 = 3m2b2.

From the set of solutions obtained in this section, it is easy to see that in this
model, at the initial epoch t → ts, ts = −c1/nl, the physical parameters such as
θ, σ2, ρ, p, H1, H2, H3 and H are all infinite, whereas the volume scalar vanishes.
The scalar function φ is also infinite at this epoch. The infinite density and pressure
show that the model has a point singularity at t = ts. The metric functions A and
B, at this point singularity, vanish for n ≥ 0 but the metric function C becomes
indeterminate for 0 < n < 1 and zero for n > 1. The anisotropy parameter is
infinite for n < 1 but it will vanish for n > 1 at this epoch. At the final stage of
expansion, as t → ∞, the proper volume, the metric functions; A, B, C(0 < n < 1)
and the anisotropy parameter Am(n > 1) diverge, and all other functions vanish.
The scalar field function will be zero for large time. The metric function C becomes
indeterminate for n > 1. From all these observations, we infer that this model starts
evolving with zero volume with infinite density and pressure at t = ts and expands
with cosmic time t. The model also indicates that as t increases, the expansion
scalar, the shear scalar and the anisotropy parameter for n > 1 decrease which
show that for the large time the expansion will completely be finished and the
model will attain isotropy. The isotropy condition for the large time of the model
can also be verified for limσ2/θ → 0 as t → ∞ for n < 2.

3.2. Model of the Universe with n = 0

In this case, the expression for the BD scalar field φ, by using Eq. (43) into
Eq. (37), is given as

φ =
b

c22
exp (−2lt) , (58)

which is a decreasing function of time. The exact solutions of the metric functions
in Eqs. (34) – (36), with the help of Eqs. (43) and (58), can be obtained as

A = c2 exp (lt) , (59)
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B = Mc2 exp

[

lt−
X

blc2
exp (−lt)

]

, (60)

C = M−1c2 exp

[

lt+
X

blc2
exp (−lt)

]

. (61)

The volume scale factor V can be written as

V = c2
3 exp (3lt) . (62)

The dynamical scalars θ and σ2 have the values given by

θ = 3l , (63)

and

σ2 =
X2

b2c22
exp (−2lt) . (64)

The directional Hubble’s parameters are obtained as

H1 = l , (65)

H2 = l +
X

bc2
exp (−lt) , (66)

H3 = l −
X

bc2
exp (−lt) , (67)

whereas H is given by

H = l . (68)

The anisotropy parameter is obtained as

Am =
2X2

3l2b2c22
exp (−2lt) . (69)

Putting the values of H, σ2, φ, q and A from above equations into Eqs. (24) and
(25), the ρ and p are calculated, respectively, as

8πρ =
bl2(2ω − 3)

c22
exp (−2lt)−

b

c24

(

3m2 +
X2

b2

)

exp (−4lt) , (70)

8πp =
−bl2(2ω + 3)

c22
exp (−2lt) +

b

c24

(

m2
−

X2

b2

)

exp (−4lt) . (71)
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We can easily verify that the wave equation (12) is satisfied with these solutions
for ω = −1 and X2 = 3m2b2.

We observe that the physical quantities ρ, p, σ2 and Am are all infinite when
t → −∞, which shows that there is no finite physical singularity in the model. As
t → −∞, the volume scalar and the metric functions A and B vanish, whereas
the metric function C becomes indeterminate. The scalar function φ is infinite for
t → −∞. Thus the model has singularity in the infinite past. The expansion scalar is
constant throughout the time of evolution of the universe. The directional Hubble’s
parameter H1 and the generalized Hubble’s parameter H are constants throughout
the domain −∞ < t < ∞, but two other directional Hubble’s parameters are time
dependent and they have infinite values at this very epoch. We now study the
model for the late time of its evolution. As t → ∞, ρ, p, σ2 and Am will all become
zero. The volume scalar and all three metric functions will diverge for the large
time. The scalar function φ becomes zero as t → ∞. The values of the directional
Hubble’s parameters H2 and H3 will be constant for the late time of the evolution.

After going through the behavior of physical and kinematical parameters for
early and late times of evolution of the universe, we find that the universe is in-
finitely old and has exponential inflationary phase without any finite physical sin-
gularity. It is inferred from all these observations that the universe starts evolving
with zero volume from an infinite past and expands with constant rate and will
finally become isotropic with zero pressure and density for large time. The isotropy
of the universe for the large time can also be verified for limσ2/θ → 0 as t → ∞.

4. Conclusions

We have presented two categories of exact solutions of the field equations of
Brans-Dicke theory for a spatially homogeneous and anisotropic Bianchi type-V
space-time by applying the law of variation for Hubble’s parameter which yields a
constant value of the deceleration parameter. The first category of solutions cor-
responds to the singular cosmological model with power-law expansion, whereas
the second category of solutions corresponds to the non-singular model with ex-
ponential expansion. These solutions are valid for restricted values of the coupling
parameter ω. These models are compatible with the results of recent observations.
We have also discussed the physical and kinematical properties of the cosmological
models.
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PROSTORNO HOMOGENI BIANCHIJEVI KOZMOLOŠKI MODELI TIPA V
U BRANS-DICKEOVOJ TEORIJI

Raspravljamo jednadžbe polja Brans-Dickeove teorije za prostorno homogen i
neizotropan Bianchijev prostor-vrijeme u prisutnosti perfektne tekućine te izvodimo
njihova egzaktna rješenja primjenom varijacija Hubbleovog parametra, što vodi na
stalnu vrijednost parametra usporavanja. Odnosni kozmološki modeli dijele se u
dvije podvrste: (i) singularni modeli sa širenjem s potencijom i (ii) nesingularni
modeli s eksponencijalnim širenjem. Raspravljaju se njihova fizička i kinematička
svojstva. Ti su modeli u skladu s ishodima nedavnih opažanja.
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