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By considering an Ernst space time background describing a Black hole in an ax-
ial magnetic field, we discuss the radial and polar dependence of the field of a Q
matter layer in such a background. Such a configuration may mimic the physical
state surrounding a condensed neutron star that may represent a potential source
of high energy gamma ray bursts.

1. Introduction

With the advent of spontaneously broken gauge theories, fundamental generic
reasons for the gauge boson and fermion mass spectrum have emerged that fol-
low from a vacuum expectation value and a symmetry group of the fundamental
lagrangian1,2). Along with these great strides in understanding particle theory a
whole host of both topological and non-topological solutions to the gauge Higgs
system exist that may have profound significance in early universe cosmology3).
Monopoles4), cosmic strings5), domain walls6) and texture7) all emerge when the
true or false vacuum is realized along a line or surface. There is a wide popular
belief that strings, domain walls and texture figure into the origin of large scale
structure8). There is also another class of objects that are termed non-topological
solitons9) and are the results of a global symmetry that generates a conserved
charge for a bound configuration of fields, this conserved charge is identical to that
of a collection of free excitations in the theory, the mass of the bound configuration
being less than that of free excitations of the theory. Q ball is the generic name
invented by Coleman to describe this class of objects10). After the original idea
suggested by Coleman (Ref. 10), L balls were ”studied ”which were configuration
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of Fermi fields and scalar fields inspired by the Gelmini Roncadelli model11) of neu-
trino mass generation which were stabilized by a conserved lepton number except
for slow decay into fermions at the surface12). If gauge symmetries are considered
simultaneously with global symmetries, gauged Q balls result, these objects have
been shown to be stable as long as the gauge charge is not to large13). The stability
criteria for gauged Q balls is similar to that of a large Z nucleus where the large
electric charge (gauge charge) of a high Z nucleus to Coulomb instability. Thus
within a general astrophysical picture both topological configurations of fields and
non-topological configurations of fields (Q balls, L balls, neutrino balls, gauged
Q balls) could exist in the cosmos and both their properties and signatures for
identification are worthwhile considering.

In a previous note we have considered an SO2 configuration of Q matter in
the atmosphere of an Ernst Black Hole (Black hole immersed in an axial magnetic
field)14). The configuration of Q matter was both radially dependent as well as polar
dependent because of the axial magnetic field. In this note, we choose to improve
on this idea by considering a configuration of U(1) Q matter in the field of an Ernst
Black Hole where the Q matter is gauged. We develop a formalism to calculate the
Legendre components of both the U(1) field and the associated scalar potential.
Our analysis applies when the gauged Q configuration does not appreciably alter
the background Ernst space time. It is hoped that such a model might inspire the
astrophysical community to look for gamma ray signatures that might result from
the interplay between the gauged Q matter and the strong magnetic field of the
Ernst space time.

2. Gauged Q matter in an Ernst space time background

We begin our analysis by writing down the metric for an Ernst space time as15

(ds)2 =

[

1 +
B2Gr2 sin2 θ

c4

]2 [(

1− 2GM

rc2

)

(dx4)
2

−
(

1− 2GM

rc2

)

−1

(dr)2 − r2dθ2

]

− r2 sin2 θ(dϕ)2
(

1 +B2Gr2 sin2 θ/c4
)2 (2.1)

with

λ = 1 +
B2Gr2 sin2 θ

c4

and

g44 = λ2

(

1− 2GM

rc2

)

g11 = − λ2

(1− 2GM/(rc2))
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g22 = −λ2r2

g33 = −λ−2r2 sin2 θ

We next consider a layer of U(1) gauged Q matter far enough from an Ernst horizon
so that the Q matter does not appreciably alter the background space time. For
the lagrangian of the U(1) complex scalar field and U(1) gauge field we have

L =

(

DµΦ(D
µΦ)∗ − A2

4

(

ΦΦ∗ − A1

A2

)2

− 1

16π
FµνF

µν

)

√
−g (2.2)

The four vector potential of the Ernst space time is (Aµ)

A1 = A2 = A3 = 0, A4 = −r2 sin2 θB

2
(2.3)

Here B is in the z direction.

For the U(l) field we have

DµΦ = (dµ + igAµ)Φ

here

g =
ḡ

h̄c
, ḡ = coupling constant

The charged Q matter will generate a scalar potential

A4 = Ψ(r, θ)

plus a correction to A3. Thus

A1 = 0

A2 = 0

A3 = −r2 sin2 θB

2
+ Ψ(r, θ) (2.4)

A4 = χ(r, θ)

For the U(1) field we write the U(1) symmetric solution as

Φ = Φ(r, θ)e−iωt (2.5)
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Varying Eq. (2.2) with respect to Aµ gives

∂

∂xν

(

1

4π

√
−gFµν

)

+ igΦ(∂βΦ
∗ − igAβΦ

∗)gβµ
√
−g

−igΦ∗(∂αΦ− igAαΦ)g
µα

√
−g = 0 (2.6)

Varying Eq. (2.2) with respect to 0 gives

igAα(∂βΦ
∗ − igAβΦ

∗)gβα
√
−g

−A2

2
Φ∗

(

ΦΦ∗ − A1

A2

)√
−g (2.7)

− ∂

∂xµ
(gµβ(∂βΦ

∗ − igAβΦ
∗)
√
−g = 0

with a similar equation for Φ∗. It turns out that Eq. (2.6) and Eq. (2.7) can be
derived equivalently by substituting the U(1) symmetric solution along with Eq.
(2.4) directly into the matter lagrangian (Eq. (2.2)) and varying with respect to
the unknown components of the fields. For the U(l) solution of gauged Q matter
with azimuthal symmetry we now consider A1 = A2 = 0,

A4 = Ψ(r, θ) =

∞
∑

l=0

Ψl(r)Pl(cos θ)

A3 = −r2 sin2 θB

2
+

∞
∑

l=0

χl(r)Pl(cos θ) (2.8)

Φ =
∞
∑

l=0

Φl(r)Pl(cos θ)e
−iωt

Here Pl(cos θ) = Legendre polynomial of order 1.

The field tensor values corresponding to Eq. (2.8) are

F14 = −
∞
∑

0

Ψ′

l(r)Pl(cos θ)

F24 = −
∞
∑

0

Ψl(r)P
′

l (cos θ)
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F23 = r2 sin2 θ cos θB −
∞
∑

0

χl(r)P
′

l (cos θ)

F13 = r2 sin2 θβ −
∞
∑

0

χ′

l(r)Pl(cos θ)

F 14 = −λ−4F14 (2.9)

F 24 = − λ−4

r2
(

1− 2GM/(rc2)
)F24

F 23 =
1

r4 sin2 θ
F23

F 13 =
1

r2 sin2 θ

(

1− 2GM

rc2

)

F13

Substituting Eq. (2.8) and Eq. (2.9) into Eq. (2.2) we have after much algebra and
integration over the θ, ϕ coordinates

L =
∑

l

∑

l′

all′
ω2r2

c2
ΦlΦl′

1
(

1− 2GM/(rc2)
) − 2gωr2

c

∑

l

∑

l′

∑

l′′ ΦlΦl′χl′′bll′l′′
(

1− 2GM/(rc2)
)

+g2r2
∑

l

∑

l′

∑

l′′

∑

l′′′ ΦlΦl′χl′′χl′′′
(

1− 2GM/(rc2)
) cll′l′′l′′′−

(

1− 2GM

rc2

)

r2
∑

l

∑

l′

Φ′

lΦ
′

l′all′

−
∑

l

∑

l′

ΦlΦl′dll′ − g2r2
∑

l

∑

l′

ΦlΦl′Sll′ + g2r2
∑

l

∑

l′

∑

l′′

ΦlΦl′χl′′rll′l′′

−g2
∑

l

∑

l′

∑

l′′

∑

l′′′

ΦlΦl′χl′′χl′′′ × tll′l′′l′′′ −
A2

4
r2
∑

l

∑

l′

∑

l′′

∑

l′′′

ΦlΦl′Φl′′Φl′′′(hl′l′′l′′′)

+
r2A1

2

∑

l

∑

l′

ΦlΦl′kll′ + Fr2 (2.10)

+
∑

l

∑

l′

Ψ′

lΨ
′

l′r
2αll′ +

∑

l

∑

l′

βll′ΨlΨl′
(

1− 2GM/(rc2)
)

+ (terms containing only χl and terms independent of the fields Φl, Ψl and χl).
Also

Φ′

l =
dΦl

dr
, χ′

l =
dχl

dr
, Ψ′

l =
dΨl

dr
, P ′

l (cos θ) =
d

dθ
Pl(cos θ)

FIZIKA B 2 (1993) 1, 21–31 25



wolf: gauged q matter . . .

here

all′ =

π
∫

0

2πPlPl′ sin θdθ, bll′l′′ =

π
∫

0

2πPlPl′Pl′′ sin θdθ

cll′l′′l′′′ =

π
∫

0

2πPlPl′Pl′′Pl′′′ sin θdθ, dll′ =

π
∫

0

2πP ′

lP
′

l′ sin θdθ

Sll′ =

π
∫

0

2πλ4B2PlPl′ sin
4 θ

4 sin θ
dθ, rll′l′′ = 2π

π
∫

0

λ4

sin θ
sin2 θBPlPl′Pl′′dθ

tll′l′′l′′′ = 2π

π
∫

0

λ4

sin θ
PlPl′Pl′′Pl′′′dθ, hll′l′′l′′′ = 2π

π
∫

0

λ2 sin θPlPl′Pl′′Pl′′′dθ,

kll′ = 2π

π
∫

0

λ2 sin θPlPl′dθ, F = 2π

π
∫

0

A2
1

4A2
λ2 sin θdθ (2.11)

αll′ =
1

4

π
∫

0

PlPl′ sin θdθ

λ2
, βll′ =

1

4

π
∫

0

P ′

lP
′

l′ sin θdθ

λ2

If we calculate out the additional terms containing A3, we find that some of the
terms containing χl, χ

′

l are singular since they contain a term

π
∫

0

1

sin θ
dθ

We assume that the Q matter or the horizon of the black hole develops a mechanism
to eliminate the polar singularities by inducing a current to counterbalance the
effect of the singularity induced by the space time metric. In this note we will not
include the effect of χl and only include the effect due to the original

A3 = −r2 sin2 θB

2

of the Ernst space time. We thus have a lagrangian in terms of Φl and Ψl (the
scalar field and the scalar potential). The lagrangian in Eq. (2.10) thus becomes
up to an additive constant independent of the fields,

L(r) =
∑

l

∑

l′

all′ω
2r2ΦlΦl′

c2
(

1− 2GM/(rc2)
)
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−2gωr2

c

∑

l

∑

l′

∑

l′′

ΦlΦl′Ψl′′bll′l′′
(

1− 2GM/(rc2)
)

+g2r2
∑

l

∑

l′

∑

l′′

∑

l′′′

ΦlΦl′Ψl′′Ψl′′′
cll′l′′l′′′

(

1− 2GM/(rc2)
) (2.12)

−
(

1− 2GM

rc2

)

r2
∑

l

∑

l′

Φ′

lΦ
′

l′all′ −
∑

l

∑

l′

ΦlΦl′dll′

−g2r4
∑

l

∑

l′

Φ′

lΦ
′

l′Sll′ −
A2

4

∑

l

∑

l′

∑

l′′

∑

l′′′

ΦlΦl′Φl′′Φl′′′hll′l′′l′′′r
2

+
r2A1

2

∑

l

∑

l′

ΦlΦl′kll′ +
∑

l

∑

l′

Ψ′

lΨ
′

l′kll′r
2αll′

+
∑

l

∑

l′

βll′ΨlΨl′
(

1− 2GM/(rc2)
)

To find the equations to determine Φl, Ψl we vary Eq. (2.12). If we just have a
single Legendre polynomial of order I, Eq. (2.12) becomes

L =
allω

2r2Φ2
l

c2
(

1− 2GM/(rc2)
) − 2gωr2

c

Φ2
lΨlblll

(

1− 2GM/(rc2)
)

+g2r2
Φ2

lΨ
2
l

(

1− 2GM/(rc2)
)cllll −

(

1− 2GM

rc2

)

r2(Φ′

l)
2all (2.13)

−(Φl)
2dll − g2r4Sll(Φl)

2 − A2

4
(Φl)

4hllll(r
2)

+
r2A1

2
Φ2

l kll + (Ψ′

l)
2r2αll +

(Ψ′

l)
2βll

(

1− 2GM/(rc2)
)
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Varying Eq. (2.13) with respect to Φl gives

− d

dr

(

−
(

1− 2GM

rc2

)

r2Φ′

l2all

)

+ 2all
ω2

c2
r2Φl

(

1− 2GM/(rc2)
)

+
2g2r2ΦlΨ

2
l cllll

(

1− 2GM/(rc2)
) − 4gωr2ΦlΨlblll

c
(

1− 2GM/(rc2)
) − 2Φldll (2.14)

−2g2r4SllΦl −A2Φ
3
l hllllr

2 + r2A1Φlkll = 0 .

Varying with respect to Ψl, we have

− d

dr
(2Ψ′

lr
2all) +

2g2r2ΨlΦ
2
l cllll

c
(

1− 2GM/(rc2)
)

− 2gωr2Φ2
l blll

c
(

1− 2GM/(rc2)
) +

2Ψlβll
(

1− 2GM/(rc2)
) (2.15)

For the boundary conditions in the above system we must know the scalar field and
scalar potential on both boundaries of a layer of inner radius R1 and outer radius
R2. We write

Ψ =

∞
∑

0

c1lPl for r = R1

Ψ =

∞
∑

0

c2lPl for r = R2 (2.16)

c1l, c2l = constants.

For the scalar field we have

Φ =
∞
∑

0

PlD1le
−iωt for r = R1

Φ =

∞
∑

0

PlD2le
−iωt for r = R2 (2.17)

D11, D21are constants.
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To solve the problem for the gauged Q matter layer, we must solve the compli-
cated series of equations found by varying Eq. (2.12) with respect to Φl, Ψl and
then use the boundary conditions in Eq. (2.16) and Eq. (2.17) to find the arbi-
trary constants for each l in the solution for Φl, Ψl. To calculate the conserved Q
charge16) we have under the U(l) symmetry

δΦl = iαΦ, δΦ∗ = iαΦ∗.

Varying Eq. (2.2) and using the field equations we have

L =
∂L
∂Φ

δΦ+
∂L
∂Φ∗

δΦ∗ +
∂L
∂Φ,µ

δΦ,µ +
∂L
∂Φ∗

,µ

δΦ∗

,µ

=
∂

∂χµ

(

∂L
∂Φ,µ

δΦ,µ

)

+
∂

∂χµ

(

∂L
∂Φ∗

,µ

δΦ∗

,µ

)

(2.18)

upon integrating over r, θ, ϕ we have for the conserved Q charge

Q =

2π
∫

0

π
∫

0

R2
∫

R1

(

∂L
∂Φ,4

δΦ+
∂L
∂Φ∗

,4

δΦ∗

)

drdθdϕ

By using Eq. (2.1) and Eq. (2.2) along with δΦ = iαΦ, δΦ∗ = −iαΦ∗ we have finaly

Q = 2π

R2
∫

R1

π
∫

0

− 2ω

c
(

1− 2GM/(rc2)
)

∑

l

∑

l′

ΦlΦl′PlPl′r
2 sin θdθdr

+2π

R2
∫

R1

π
∫

0

2g
∑

l

∑

l′

∑

l′′

ΦlΦ
′

lΨl′′PlPl′Pl′′
(

1− 2GM/(rc2)
)r2 sin θdθdr (2.19)

Eq. (2.19) allows us to calculate the angular frequency in terms of the conserved Q
charge.

3. Conclusion

Our analysis above has suggested a general method to treat gauged Q matter
in the atmosphere of an Ernst space time when the Q matter does not appreciably
alter the background space time. Generalization of this technique to the atmosphere
of a Kerr black hole17) should also have deep astrophysical significance. We have
also chosen a very simple potential and a more complete analysis should involve
a more realistic potential. Since primordial magnetic fields are a likely possibility
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in the early universe and present cosmological studies indicate black holes are also
likely possibility, the fusion of these ideas along with a surrounding shell of Q
matter makes for a plausible as well as interesting astrophysical study. If such
a gauged Q matter configuration decays we would expect a polar dependence of
the radiation emitted, we also point out that any gamma ray bursts from such a
configuration would have signatures that are both polar dependent and sensitive
to the gauge charge of a Q matter layer18). Lastly, since neutrinos are a likely
possibility for dark matter in galaxies, a black hole might trap a neutrino layer
in an axial symmetric magnetic field with a conserved Q number represented by
the lepton number as mentioned in the introduction (Ref. 12). These L balls have
been previously studied as emerging from the Gelmini-Roncadelli model of neutrino
mass generation and a L layer neutrinos around an Ernst black hole would be a
very attractive astrophysical possibility.
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BAŽDARNA Q MATERIJA U ATMOSFERI ERNSTOVE CRNE RUPE

CARL WOLF

Department of Physics, North Adams State College, North Adams, MA (01247), U.S.A.

UDK 530.12

Original scientific paper

Promatrajući prostorno vremensku pozadinu Ernsta koja opisuje crnu rupu u ak-
sijalnom magnetskom polju, diskutiramo radijalnu i polarnu ovisnost polja Q-
materije u takvoj pozadini. Takva konfiguracija može imitirati fizikalno stanje
koje okružuje krutu neutronsku zvijezdu. i može predstavljati potencijalni izvor
bljeskova visokoenergetskog gama zračenja.
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