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In this communication we report certain types of exact solutions of supersymmetric
nonlinear Schrödinger equations and coupled KdV-equations by making an ansatz
for the solution in each case.

1. Introduction

During the last two decades, study of the nonlinear wave phenomena has made
a remarkable stride (Scott et al. [1]). It has been confirmed that several nonlinear
partial differential equations are widely applicable to the various nonlinear phenom-
ena in physics. One must solve nonlinear equations to get a knowledge of the system
but the methods of solving are very few up to this time. Each of the methods, viz.,
Inverse scattering method (Gardner et al. [2]), Hirota’s method (Hirota [3]), Trace
method (Wadati and Sawada [4]) and direct algebraic method (Hereman et al. [5])
has some constraints. Here we present certain type of exact solutions of supersym-
metric nonlinear Schrödinger equation (NLSE, Kulish [6]) and of coupled K-dV
equation (Hirota and Satsuma [7]) by making an ansatz for the solution in each
case following the method suggested by Huibin and Kelin (Huibin and Kelin [8,9]).
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2. Formulation

The supersymmetric NLSE’s (Kulish [6]) read as:

iqt = −qxx + 2kq+q2 + kΨΨ+ − i
√
kΨΨx (1a)

iΨt = −2Ψxx + kq+q − i
√
k(2qΨ+

x +Ψ+qx) (1b)

where q(x, t) is the original field and Ψ(x, t), Ψ+(x, t) are the fermionic counterparts
introduced through supersymmetry. In the following we will be working with the
real and imaginary parts of (1a, b) and so we set

q = u0 + iv0 (2a)

Ψ = u1 + iv1 (2b)

whence we have the four nonlinear partial differential equations

u0t = −v0xx + k[2v0(u
2
0 + v20) + v0(u

2
1 + v21)]−

√
k[u1u1x − v1v1x] (3a)

−v0t = −u0xx + k[2u0(u
2
0 + v20) + u0(u

2
1 + v21 ] +

√
k[v1u1x − u1v1x] (3b)

−v1t = −2u1xx + ku1(u
2
0 + v20) +

√
k[2(u0v0 − u0v1x) + (u1v0x − v1u0x)] (3c)

u1t = −2v1xx + kv1(u
2
0 + v20)−

√
k[2(u0u1x + v0v1x) + (u1u0x + v1v0x)] . (3d)

We now look for the travelling wave solutions of (3a – d) that is, we assume that

u0(x, t) = u0(x− λt) = u0(ξ) (4a)

v0(x, t) = v0(x− λt) = v0(ξ) (4b)

u1(x, t) = u1(x− λt) = u1(ξ) (4c)

v1(x, t) = v1(x− λt) = v1(ξ) (4d)

where λ is velocity to be determined. Inserting (4) into (3), we get

−λu0ξ = −v0ξξ + k[2v0(u
2
0 + v20) + v0(u

2
1 + v21)]−

√
k[u1u1ξ − v1v1ξ] (5a)

λv0ξ = −u0ξξ + k[2u0(u
2
0 + v20) + u0(u

2
1 + v21)] +

√
k[v1u1ξ + u1v1ξ] (5b)

λv1ξ = −2u1ξξ + ku1(u
2
0 + v20) +

√
k[2(v0u1ξ − u0v1ξ) + (u1v0ξ − v1u0ξ)] (5c)
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−λu1ξ = −2v1ξξ + kv1(u
2
0 + v20)−

√
k[2(u0u1ξ + v0v1ξ) + (u1u0ξ + v1v0ξ)] . (5d)

To the equations 5(a) – (d), following the method of Huibin and Kelin [8,9], we
make the ansatzs

u0 =

m
∑

i=0

ai(tanhµ)
i , vo =

m
∑

i=0

bi(tanhµ)
i (6a, b)

u1 =

m
∑

i=0

ci(tanhµ)
i , v1 =

m
∑

i=0

di(tanhµ)
i (6c, d)

where the integer m and parameters ai, bi, ci, di (i = 1, . . .m) and µ are to be
determined. The requirement that the highest power of the function (tanhµξ) for
the nonlinear term, say, v0u

2
0 (or u1u1ξ) of 5(a) and that for the derivative term

v0ξξ must be equal gives the following relation

m+ 2 = 3m [or 2m+ 1 = 3m
so here, m = 1 so here m = 1] .

For the other equations of the set (5), we obtain m = 1. So the equations (6) can
now be written as

u0 = a tanh(µξ) (7a)

v0 = b1 + b2 tanh(µξ) (7b)

u1 = c tanh(µξ) (7c)

v1 = d1 + d2 tanh(µξ) (7d)

where a, b1, b2, c, d1, d2 and µ are the parameters to be determined. Here in u0

and u1, we have dropped the parameters a0 and c0 and taken a1 = a and c1 = c
in order to avoid complexities. In general, one can incorporate a0, c0. Inserting
now equations (7) into (5) and equating the same power of tanh(µξ), we get the
following parametric equations

−λaµ = k[2b31 + b1d
2
1] +

√
k[d1d2]µ (8a)

λb2 =
√
k(d, c) (8b)

λc2 =
√
k(2cb1 − ad1) (8c)

−λcµ = k(d1b
2
1)−

√
k(2b1d2 + b2d1)µ (8d)
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0 = 2b2µ
2 + k[4b21b2 + 2b2b

2
1 + 2b1d1d2 + b2d

2
1]−

√
k(c2 − d22)µ (8e)

0 = 2aµ2 + k[2ab21 + ad21] +
√
k(2ad2c)µ (8f)

0 = 4cµ2 + k(cb21) + 3
√
k(cb2 − ad2)µ (8g)

0 = 4d2µ
2 + k(2b1b2d1 + b21d2)− 3

√
k(ac+ b2d2) (8h)

λaµ = k[2b1b
2
2 + 2b1a

2 + 4b1b
2
2 + b1c

2 + b1d
2
2 + 2b2d1d2]−

√
k(d1d2)µ (8i)

−λb2µ = k[4ab1b2 + 2ad1d2]−
√
k(d1c)µ (8j)

−λd2µ = k(2b1b2c) +
√
k(ad1 − 2cb1) (8k)

λcµ = k[a2d1 + d1b
2
2 + 2b1b2d2] +

√
k[2b1d2 + b2d1]µ (8l)

0 = −2b2µ
2 + k[2b2a

2 + 2b32 + b2(c
2 + d22)]−

√
k[d22 − c2]µ (8m)

0 = −2aµ2 + k[2a3 + 2ab22 + a(c2 + d22)]−
√
k(2d2c)µ (8n)

0 = −4cµ2 + k[c(a2 + b22)]− 3
√
k[−b2c+ ad2]µ (8o)

0 = −4d2µ
2 + k[d2(a

2 + b22)] + 3
√
k[ac+ b2d2] . (8p)

Since u1, v1 are fermionic, we must assume fermionic character for the coefficients c,
d1, d2. Due to the fermionic character, it is important to note that c2 = d21 = d22 = 0.
Also note that u0, v0 are bosonic. Taking these into consideration, we obtain from
(8)

a =

[

λ

b1
±

√
68k

]

µ

36k

b1 = ±λ/(2
√
k)

b2 = (µ/
√
k)

[

−
1

18
± (λ/36b1)

√

17

k

]

c = ±(µ/9k)(A/B)

d1 = ±9λB

d2 = ±(µ/9k)(A/B)∓ 9a(
√
kBλ)

µ = ±(−λ2/4)1/2
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and two constraint equations relating a, µ, λ, A, B and k

(µ2/81k2)(A2/B2) = ±(µaλ/
√
k)

and µA2 = ∓(µA)± 81aλ(k3/2B2)

where A = [(1/18)− (λ/36b1)(17/k)
1/2]1/2

B =

[

2

k

{

19/(18)2 ∓ (5λ/162b1)(17/k)
1/2 ∓ (λ/36b1)

2(17/k)
}

]1/2

.

We thus obtain one type of exact solutions of (1) with one arbitrary parameter µ
or λ.

We next proceed to obtain exact solutions of the coupled K-dV equations sug-
gested by Hirota and Satsuma [7] that describes the interactions of two long waves
with different dispersions.

These equations look like

ut − a(uxxx + 6uux) = 2bΦΦx (9a)

Φt +Φxxx + 3uΦx = 0 (9b)

where a, b are arbitrary constants.

We now look for travelling wave solutions of (9) that is, we assume

u(x, t) = u(x− wt) = u(ξ) (10a)

Φ(x, t) = Φ(x− wt) = Φ(ξ) (10b)

where w is velocity to be determined. Inserting (10) into (9), we get

−wuξ − a(uξξξ + 6uuξ) = 2bΦΦξ (11a)

−wΦξ +Φξξξ + 3uΦξ = 0 . (11b)

To the equations 11(a), (b) we again make the ansatz

u =

m
∑

i=0

ai(tanhµξ)
i (12a)

Φ =

m
∑

i=0

bi(tanhµξ)
i (12b)

where the integerm, ai, bi (i = 1, . . .m) and µ are the parameters to be determined.
The requirement that the highest power of the function tanh(µξ) for the nonlinear
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term uuξ (or ΦΦξ) of (11a) and that for the derivative term uξξξ must be equal
gives the following relation

2m+ 1 = m+ 3 .

So here, m = 2. For equation 11(b) we also get m = 2. Hence the equations (12a),
(12b) now take the form

u = a0 + a1 tanhµξ + a2 tanh
2 µξ (13a)

Φ = b0 + b1 tanhµξ + b2 tanh
2 µξ (13b)

where a0, b0, a1, b1, a2, b2 and µ are the parameters to be determined. Inserting
now (13) in (11) and equating the same power of tanh(µξ), we get twelve parametric
equations where we get inconsistency in solving the parameters. But if we retain
the highest power of tanh(µ) and the parameters a1, b1 then (13) look like

u = a0 + a2 tanh
2 µξ (14a)

Φ = b0 + b2 tanh
2 µξ . (14b)

Inserting (14) in (11) and equating now the same power of (tanhµ) we get following
six parametric equations

−2wa2 + 16aa2µ
2 − 12aa0a2 = 4bb0b2 (15a)

−2wb2 − 16b2µ+ 6a0b2 = 0 (15b)

−2a2w − 40aa2µ
2 − 12aa22 + 12aa0a2 = 4b(b22 − b0b2) (15c)

2b2 + 40b2µ
2 + 6a2b2 − 6a0b2 = 0 (15d)

24aa2µ
2 + 12aa22 = −4bb22 (15e)

24b2µ
2 + 6a2b2 = 0 . (15f)

On solving, we get

a0 = (1 + 8µ2)/3

a2 = −4µ2

b0 =
1

bb2
[2µ2(2a− 1)− 16µ3 + 16µ4(1 + a)]

b2 = ±
[

−24aµ4

b

]1/2

w = (1− 8µ+ 8µ2) .
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Thus we obtain one type of exact solutions of (9) with one arbitrary parameter µ
(or w) which are different from those obtained by Hirota and Satsuma [7].

3. Conclusion

In our above computations we have shown that the method suggested by Huibin
and Kelin [8,9] is effective in obtaining exact solutions of non-linear partial differ-
ential equations. However, the question of stability of such solutions arises which
is the matter of our present investigation and will be published elsewhere.
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TOČNA RJEŠENJA SUPERSIMETRIČNIH NELINEARNIH
SCHRÖDINGEROVIH JEDNADŽBI I VEZANIH K-dV JEDNADŽBI

R. S. BANERJEE

Condensed Matter Physics Research Centre, Department of Physics, Jadavpur
University, Calcutta 700 032, India

UDK 530.145

Originalni znanstveni rad

U radu smo prikazali neke vrste točnih rješenja supersimetričnih nelinearnih
Schrödingerovih jednadžbi i vezanih K-dV jednadžbi služeći se pretpostavkom o
obliku rješenja u svakom pojedinom slučaju.
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