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We apply the phase-integral condition to the motion of a quantal particle in the
Rosen-Morse potential V (x) = B0 tanh (x/x0) − U0 cosh

−2 (x/x0) to show that
it yields the energy eigenvalues exactly in any order of approximation, when the
base function is chosen conveniently. Thereafter, we show that the phase-integral
formula for the normalization factors of bound states agrees very satisfactorily with
the exact calculation. Finally, we apply the phase-integral formula for the reflexion
coefficient to the transmission of a quantal particle through the above potential to
show that it gives very accurate results.

1. Introduction

The calculation of the exact bound-state energy eigenvalues, the normalization
factors and reflexion coefficients for a quantal particle in the Rosen-Morse potential

V (x) = B0 tanh (x/x0)− U0 cosh
−2 (x/x0) (1.1)

has been performed in Refs. 1, 2 and 3, respectively. The investigation of the
potential (1.1) started in early days of the development of quantum mechanics when
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it was used as a model potential in the study of the vibrations of certain polyatomic
molecules along a given axis. During the further development of quantum mechanics
this potential has also been used for other purposes. The symmetric form of the
potential (1.1) obtained when B0 = 0, occurs for example in the study of solitons.
An extensive list of references on particular applications of the potential (1.1) is
found in Ref. 2.

The aim of the present paper is to investigate the application of the phase-
integral method (i.e. the improved JWKB method) to the motion of a quantal
particle in the potential (1.1). We consider the bound-state energy eigenvalues,
normalization factors of bound states and reflexion coefficients and compare the
phase-integral results with the exact results given in Refs. 1–3. Although these exact
results are known, the application of the phase-integral method to this potential is
of interest to show the power of the phase-integral method and the high accuracy
of the results.

The time-independent Schrödinger equation for the motion of a quantal particle,
with energy E and mass M , in the one-dimensional potential (1.1), can be written
as

d2Ψ

dz2
+R(z)Ψ = 0, (1.2)

where z = x/x0 is the dimensionless variable and

R(z) = A−B tanh z − C tanh2 z (1.3)

is the dimensionless function.

In Eq. (1.3) we introduced

A =
2Mx2

0

h̄2 (E + U0) (1.4a)

B =
2Mx2

0

h̄2 B0 (1.4b)

C =
2Mx2

0

h̄2 U0 (1.4c)

and the bound-states in the potential (1.1) may exist if the conditions

C > 0 (1.5a)

|B| < 2C (1.5b)
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−B2

4C
< A < C − |B| (1.5c)

are satisfied.

2. Review of the exact results

2.1. Bound states

2.1.1. Bound-state energy eigenvalues

The problem of finding the bound states in the potential (1.1) has been consid-
ered in Ref. 1 and in our notation the exact bound-state energies, obtained from
(6c) in Ref. 1, are

ES = − h̄2

2Mx2
0

(m− s)2 − 2Mx2
0

h̄2

B2
0

4(m− s)2
, (2.1)

where s is an integer satisfying inequality

0 < s < m−
( |B|

2

)1/2

, (2.2)

and m is a positive real number (cf. Eq. (3.6) in Ref. 2)

m = (C +
1

4
)1/2 − 1

2
. (2.3)

Using (1.4a,b,c) Eq. (2.1) gives

A− C = −(m− s)2 − B2

4(m− s)2
. (2.4)

Solving Eq. (2.4) for (m − s), with due regard to (2.2) and (2.3), gives the exact
quantization condition

(C +
1

4
)1/2 − 1

2
(C −A+B)1/2 − 1

2
(C −A−B)1/2 = s+

1

2
. (2.5)
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2.1.2. Bound state wave functions

The exact normalized bound-state wave functions corresponding to the energy
eigenvalues (2.1) are given by Eq. (3.5) in Ref. 2, which in our notation reads

ΨS = NRM (s)epz cosh−m+s zF (−s, 2m− s+ 1;m− s+ p+ 1;u) (2.6)

where (cf. Eq. (3.7) in Ref. 2, where U0 should be replaced by B0 and a missing
sign should be introduced)

p = − B

2(m− s)
, u =

1

2
(1 + tanh z) (2.7)

and NRM (s) is given by Eq. (3.15) in Ref. 2, which in our notation reads

NRM (s) = (2πx0)
−1/2

·
(

2πΓ(m− s
2 + 1

2 )Γ(m− s
2 + 1)Γ(m− s− p+ 1)Γ(m+ p+ 1)

(m−s)Γ( s2+
1
2 )Γ(

s
2+1)Γ(m−s+p)Γ(m−s−p)Γ(m−s+p+1)Γ(m−p+1)

)1/2

.

(2.8)

2.1.3. Asymptotic form of the wave function in the limit z → +∞
In the limit z → +∞ the exact wave function (2.6) acquires the following form

ΨS = Ge exp [−(m− s− p)z] (2.9)

where

Ge = 2m−sNRM (s)F (−s, 2m− s+ 1;m− s+ p+ 1; 1). (2.10)

Using (2.7) and the formulae

F (α, β; γ; 1) =
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)
,

γ /=0,−1,−2, ... , Re(γ − α− β) ≥ 0, (2.11)

Γ(2z) = (2π)−1/222z−1/2Γ(z)Γ(z +
1

2
), (2.12)
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Γ(z + 1) = zΓ(z) (2.13)

Eqs. (2.10) and (2.8) give the following result

Ge = (2πx0)
−1/2

(

1 +
p

m− s

)1/2 √
2π(m− s− p)

Γ(m− s− p+ 1)

·
[

Γ
(

2m− s+ 1
2 + 1

2

)

Γ
(

s+ 1
2 + 1

2

)

]1/2 [

Γ
(

m+ 1
2 − p+ 1

2

)

Γ
(

m+ 1
2 + p+ 1

2

)

]1/2

. (2.14)

Using the asymptotic formula for the gamma function given by Eq. (5) in Section
2.11 of Ref. 4, i.e.

Γ

(

z +
1

2

)

=
√
2π (z/e)z exp

(

− 1

24z
+

7

2880z3
− 31

40320z5
+ ...

)

,

|arg z| < π − ǫ, ǫ > 0, (2.15)

in the fourth and fifth factor of (2.14) and Stirling’s formula, given by Eq. (1) in
Section 2.11 of Ref. 4, i.e.

Γ (z + 1) =
√
2πz (z/e)z exp

(

1

12z
− 1

360z3
+

1

1260z5
− ...

)

,

|arg z| < π − ǫ, ǫ > 0, (2.16)

in the third factor of (2.14) gives

Ge = (2πx0)
−1/2

(

1 +
p

m− s

)1/2

·
(

2m− s+ 1
2

)(1/2)(2m−s+1/2)

(m−s−p)(m−s−p)
(

s+ 1
2

)(1/2)(s+1/2)

(

m+ 1
2−p

m+ 1
2+p

)(1/2)(m+1/2)
[

(

m+
1

2

)2

−p2

]−p/2

· exp
[

1

48

(

1

m+ 1
2 + p

− 1

m+ 1
2 − p

+
1

s+ 1
2

− 1

2m− s+ 1
2

− 4

m− s− p

)

+
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1

360

(

− 7

16(m+ 1
2 + p)3

+
7

16(m+ 1
2 − p)3

− 7

16(s+ 1
2 )

3
+

+
7

16(2m− s+ 1
2 )

3
− 1

(m− s− p)3

)

+ . . .

]

. (2.17)

2.2. The reflexion coefficient

The exact reflexion coefficient for the transmission of a quantal particle through
the potential (1.1) is given by Eq. (15) in Ref. 3 and in our notation it can be written
in the form

Re =
cosh (π

√
A+B − C − π

√
A−B − C) + cosh (2π

√

−C − 1
4 )

cosh (π
√
A+B − C + π

√
A−B − C) + cosh (2π

√

−C − 1
4 )

. (2.18)

3. Review of the phase-integral method

3.1. Bound states

3.1.1. Bound-state energy eigenvalues

The eigenvalue problem of finding the bound-state energies in the potential
(1.1), when the conditions (1.5a,b,c) are fulfilled, is solved by means of the phase-
integral quantization condition, which in the (2N+1)-th order approximation reads
(c.f. Eq. (10.20) in Ref. 5 and Refs. 6–8)

N
∑

n=0

L(2n+1) =

(

s+
1

2

)

π, s = 0 , 1, 2, . . . , (3.1)

with

L(2n+1) =
1

2

∫

Λ

Z2nQ(z) dz, (3.2)

where Q(z) is a so far unspecified base function, and

Z0 = 1 , Z2 = ǫ0/2 , Z4 = ǫ20/8, . . . (3.3)

with

152 FIZIKA B 3 (1994) 3, 147–166



dalarsson: phase-integral approach . . .

ǫ0 = Q−3/2(z)
d2

dz2
Q−1/2(z) +

R(z)−Q2(z)

Q2(z)
. (3.4)

Fig. 1. The contours Λ and Γ(z) in the complex z-plane with the phase of Q1/2(z):
(a) Transition points are on the real axis; (b) Transition points are not on the real
axis.
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The contour Λ in (3.2) encircles in the clockwise sense the two zeroes of Q2(z),
which are called generalized classical turning points or simply turning points. The
contour Λ with the phase for Q1/2(z) and the corresponding branch cut in the
z-plane is shown in Fig. 1a.

3.1.2. Bound-state wave functions and normalization factors

The phase-integral formula for the normalization factor of a bound-state wave
function in a single-well potential is given in Refs. 9 and 10. The normalized phase-
integral wave function, given by Eq. (30c) in Ref. 9, on the real axis to the right of
the turning point z2 in Fig. 1a, has in this region the form

Ψ(z) = NPIq
−1/2(z) exp {−i[w(z)− π/4]}, z > z2 (3.5)

where q(z) is given by

q(z) =

N
∑

n=0

q(2n+1)(z) =

N
∑

n=0

Y2nQ(z) (3.6)

with

Y0 = 1 , Y2 = ǫ0/2 , Y4 = −ǫ20
8

− 1

8

d2ǫ0
dζ2

, . . . (3.7)

and

ζ =

z
∫

Q(z)dz (3.8)

while w(z) is given by

w(z) =

N
∑

n=0

w(2n+1)(z) (3.9)

with

w(2n+1)(z) =
1

2

∫

Γ(z)

Y2nQ(z) dz, (3.10)

and the contour Γ(z) is shown in Fig. 1a.

The normalization factor NPI in (3.5) is given by the approximate formula
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|N2
PI | =

Mx0

2πh̄2

dEs

ds
, (3.11)

where Es is the energy of a bound state labeled by the quantum number s.

3.2. The reflexion coefficient

When the potential (1.1) has a shape of a barrier, the phase-integral formula
for the reflexion coefficient, in the (2n+1)th-order, is given by (cf. Ref. 11)

R =
1

1 + exp (−2K)
(3.12)

where

K =

N
∑

n=0

K(2n+1) (3.13)

and K(2n+1) are real quantities defined by

K(2n+1)(z) =
i

2

∫

Λ

Z2nQ(z) dz, (3.14)

with the contour Λ shown in Fig. 1b.

4. Phase-integral calculation

In the present paper we choose the square of the base function Q2(z) in the
form

Q2(z) = a− b tanh z − c tanh2 z, (4.1)

where a, b and c are parameters to be chosen later.

4.1. Bound states

4.1.1. Bound-state energy eigenvalues

We now calculate the integrals (3.2) up to the fifth order approximation (n =
0, 1, 2) and show that when the parameters a, b and c are chosen in such a way
that the higher-order contributions (n = 1, 2) vanish, the first-order phase-integral
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quantization condition (3.1) agrees with the exact quantization condition (2.5). To
simplify the calculation we introduce the new variable

t = tanh z. (4.2)

Then (3.2) becomes

L(2n+1) =
1

2

∫

Λt

Z2nQ
dt

1− t2
(4.3)

where Λt (See Fig. 2) is a contour in the complex t-plane which corresponds to the
contour Λ in the complex z-plane. It encircles the zeroes of Q2, which according to
(4.1) and (4.2) are

t1,2 = − b

2c
±
[

b2

4c2
+

a

c

]1/2

,

but it does not encircle the points t = ±1.

Fig. 2. The contours Λt and Λ
′

t in the complex t-plane.

From (4.3) we obtain
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L(2n+1) =
1

2

∫

Λ
′

t

Z2nQ
dt

1− t2
+ πi

(

Res
t=+1

Z2nQ

1− t2
+Res
t=+1

Z2nQ

1− t2

)

(4.4)

where Λ
′

t (see Fig.2) is a contour which encircles both the points t1 and t2 and the
points t = ±1. Since there are no singular points of the integrand in (4.4) outside

the contour Λ
′

t, it can be extended to infinity. Using Eqs. (3.3), (3.4), (4.1) and
(4.2), we obtain

Q → −i
√
ct, as |t| → ∞ (4.5)

Z2n → δn,0 +
C + 1

4 − c

2c
δn,1 −

(C + 1
4 − c)2

8c2
δn,2

n = 0, 1, 2 as |t| → ∞. (4.6)

Performing now simple residue calculations, using (4.1), (4.2) and (4.6), we obtain

L(2n+1) = π
√
cδn,0 + π

C + 1
4 − c

2
√
c

δn,1 − π
(C + 1

4 − c)2

8c3/2
δn,2−

−π

2

√
c− a+ bZ2n(t = +1)− π

2

√
c− a− bZ2n(t = −1), n = 0, 1, 2. (4.7)

Inserting (4.6) into (4.7) we obtain

L(1) = π

(√
c− 1

2

√
c− a+ b− 1

2

√
c− a− b

)

, (4.8a)

L(3) = π
C + 1

4 − c

2
√
c

− π

4

(

D+√
c− a+ b

+
D−√

c− a− b

)

, (4.8b)

L(5) = −π
(C + 1

4 − c)2

8c3/2
+

π

16

(

D2
+

√

(c− a+ b)3
+

D2
−

√

(c− a− b)3

)

(4.8c)

where D± = (C − c)− (A− a)± (B − b). We now choose the parameters a, b and
c in such a way that all higher contributions (n = 1, 2) on the left hand side of
the quantization condition (3.1) vanish, and that in any order of approximation the
only surviving term is L(1). From (4.8a, b, c) we see that it is the case if
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a = A+
1

4
, b = B, c = C +

1

4
. (4.9)

Thus the phase-integral quantization condition (3.1) in any order of approximation
becomes

√
c− 1

2

√
c− a+ b− 1

2

√
c− a− b = s+

1

2
, s = 0, 1, 2, . . . (4.10)

and in view of (4.9) it is identical to the exact quantization condition (2.5). The
square of the base function Q2(z) is then given by

Q2(z) = R(z) +
1

4 cosh2 z
. (4.11)

4.1.2. Bound-state wave function and normalization factors

Inserting (2.1) into (3.11), we obtain

|N2
PI | =

1

2πx0
(m− s)

[

1− p2

(m− s)2

]

. (4.12)

Using (1.3), (3.4), (3.7), (4.1) and (4.2) we now calculate the integrals (3.10) to
obtain

w(1)(z) = − i

2

[√
c−a+b+

√
c−a−b

]

z − i

2

[√
c−a+b+

√
c−a−b

]

ln(ez + e−z)+

+i
√
c−a−b ln

[

b+2a+(2c− b) tanh z − 4
√
c−a−b

√

c tanh2 z + b tanh z − a
]

−

−i
√
c−a+b ln

[

b−2a+(2c+ b) tanh z + 4
√
c− a+ b

√

c tanh2 z + b tanh z − a
]

+

+
i
√
c

2
ln

[

b

2
+ c tanh z −

√
c
√

c tanh2 z + b tanh z − a

]

−

− i
√
c

2
ln

[

b

2
+ c tanh z +

√
c
√

c tanh2 z + b tanh z − a

]

+
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+
i

4

[√
c− a+ b−

√
c− a− b

]

ln(ca+
b2

4
) (4.13a)

w(3)(z) = − i

8

(2b2 + 4ac) tanh z − 2ab

(b2 + 4ac)
√

c tanh2 z + b tanh z − a

·
[

1− b2 + 4ac

12c[(b2 + 2ac) tanh z − ab]

·
(

(2c tanh z + b)(4c2 − 4ac+ b2)

b2 + 4ac
− [b2 + 2c(c− a)] tanh z − b(a+ c)

c tanh2 z + b tanh z − a

)

−

− (b2 + 4ac)(2c tanh z − b)(1− tanh2 z)

2[(b2 + 2ac) tanh z − ab](c tanh2 z + b tanh z − a

]

(4.13b)

w(5)(z) = − i(2c tanh z + b)

192c2(b2 + 4ac)
√

c tanh2 z + b tanh z − a

·
{

12c2 − 12ac+ b2 +
6c4 + 28ac3 − 18a2c2 + 28ab2c− 38b2c2 + 19b4

6c

·
(

1

c tanh2 z + b tanh z − a
− 8b

b2 + 4ac

)

− 1

60c2
(

28c6 − 36ac5 + 20a2c4−

−12a3c3 + 82a2b2c2 + 112ab2c3 − 62ab4c− 30b2c4 + 32b4c2 − 11b6
)

·
[

3

(c tanh2 z + b tanh z − a)2
− 16c

(b2 + 4ac)(c tanh2 z + b tanh z − a)
+

+
128c2

(b2 + 4ac)2

]}

+
ib

128c2
√

c tanh2 z + b tanh z − a
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·
[

1 +
6c2 + 6ac− 8b2

9c(c tanh2 z + b tanh z − a)
−

−40c4 − 48ac3 + 24a2c2 + 40ab2c− 32b2c2 + 11b4

30c2(c tanh2 z + b tanh z − a)2

]

+ r(z) (4.13c)

where r(z) → 0 as z → +∞. Its analytic form is not essential here. From (4.13a,
b, c), using (2.3), (2.4) and (4.9) we obtain

w(1)(z) = −i(m− s− p)z + i lnG(1), z → +∞ (4.14a)

w(3)(z) = i lnG(3), z → +∞ (4.14b)

w(5)(z) = i lnG(5), z → +∞ (4.14c)

where

G(1) =

(

2m− s+ 1
2

)(1/2)(2m−s+1/2)

(m− s− p)(m−s−p)
(

s+ 1
2

)(1/2)(s+1/2)

(

m+ 1
2 − p

m+ 1
2 + p

)(1/2)(m+1/2)

·
[

(

m+
1

2

)2

− p2

]−p/2

(4.15a)

G(3) = exp

[

1

48

(

1

m+ 1
2 + p

− 1

m+ 1
2 − p

+
1

s+ 1
2

− 1

2m− s+ 1
2

− 4

m− s− p

)]

(4.15b)

G(5) = exp

[

1

360

(

− 7

16(m+ 1
2 + p)3

+
7

16(m+ 1
2 − p)3
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− 7

16(s+ 1
2 )

3
+

7

16(2m− s+ 1
2 )

3
− 1

(m− s− p)3

)]

. (4.15c)

Using Eqs. (3.5), (3.9), (4.12) and (4.15a, b, c), we obtain the phase-integral
asymptotic wave function

ΨS = G exp[−(m− s− p)z] (4.16)

where

G =
1√
2πx0

√

1 +
p

m− s

N
∏

n=0

G(2n+1). (4.17)

Comparing the exact asymptotic formula (2.17) with the phase-integral asymp-
totic formula (4.17) and (4.15a, b, c) for the normalization factors of the bound
states, we see that they are identical. Thus the accuracy of the phase-integral
asymptotic expansion is the same as the accuracy of the asymptotic expansion
(2.17) in any order of approximation.

In order to show how the accuracy of the phase-integral normalization factors
depends on parameters A, B and C and on the order of the phase-integral approx-
imation, we compare numerically the phase-integral result (4.17) with the exact
result (2.17). As a measure of the accuracy of the phase-integral normalization
factor G we introduce the quantity

D = − log10
|Ge −G|

Ge
(4.18)

equal to a number of significant digits in G. It is valid even whenD is not an integer.
The number of significant digits D in the phase-integral normalization factor (4.17)
in the first-, third- and fifth-order approximation is plotted in Fig. 3a for B = −144
and C = 930 and in Fig. 3b for B = 0 and C = 930.

FIZIKA B 3 (1994) 3, 147–166 161



dalarsson: phase-integral approach . . .

Fig. 3. The number of significant digits D in the phase-integral normalization factor
in the first-, third- and fifth-order approximation for B = −144 and C = 930 as
well as for B = 0 and C = 930. 2 First order, + third order, ⋄ fifth order.
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4.2. The reflexion coefficient

When the square of the base function Q2(z) is chosen according to (4.1), the
similar procedure as in Section 4.1.1. gives the following results for integrals (3.14)

K(1) = π

(√
−c− 1

2

√
a+ b− c− 1

2

√
a− b− c

)

, (4.19a)

K(3) = −π
C + 1

4 − c

2
√
−c

+
π

4

(

D+√
a− b− c

+
D−√

a+ b− c

)

, (4.19b)

K(5) = −π
(C + 1

4 − c)2

8(−c)3/2
+

π

16

(

D2
+

√

(a− b− c)3
+

D2
−

√

(a+ b− c)3

)

. (4.19c)

The calculation of the reflexion coefficient for the potential (1.1) has been per-
formed in Ref. 12 when the square of the base function Q2(z) is chosen equal to
the function R(z) appearing in the Schrödinger equation (1.2), i. e., when a = A,
b = B, c = C. With such a choice of the base function our results (4.19a, b, c)
agree with Eqs. (8) and (9) in Ref. 12.

On the other hand, when a, b and c are chosen according to (4.11), all higher-
order contributions (n = 1, 2) vanish and we obtain from (3.13) and (4.19a, b,
c)

K = π

(

√

−C − 1

4
− 1

2

√
A+B − C − 1

2

√
A−B − C

)

, (4.20)

in any order of approximation.

In order to compare the numerical results obtained in Ref. 12 with those ob-
tained in the present paper, we write the relations between our parameters A, B,
C and parameters W , V0, V1 used in Ref. 12 as follows

A = 8W − 4V0 − 2V1, B = 4V0, C = −2V1. (4.21)

The numerical example in Table 1 of Ref. 12, where 2 < W < 6, V0 = 1.922 and
V1 = 11.2, corresponds to the case where −14.088 < A < 17.912, B = 7.688 and
C = −22.4. The results for the numbers of significant figures in the reflexion coeffi-
cient, in the case when Q2(z) = R(z), for the above values of the parameters W , V0

and V1 have been calculated in Ref. 12 up to the eleventh order of approximation.
These results are shown in Fig. 1 of Ref. 12.

As a measure of the accuracy of the phase-integral reflexion coefficient, given
by (3.12) with (4.20), we introduce the quantity
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D = − log10
|Re −R|

Re
(4.22)

where Re is the exact reflexion coefficient given by (2.18). D is a number of signif-
icant digits in the phase-integral reflexion coefficient (3.12) with (4.20), valid even
when D is not an integer.

Fig. 4. The number of significant digits D in the phase-integral reflexion coefficient
for the transmission of a quantal particle through the potential barrier (1.1) with
−14.088 < A < 17.912, B = 7.688 and C = −22.4.

In our Fig. 4 the number of significant digits D of the phase-integral reflexion
coefficient R is ploted for the same numerical example as in Fig. 1 of Ref. 12. From
Fig. 1 of Ref. 12 and the numerical result presented in our Fig. 4, obtained using
our choice of the base function (4.1) with (4.9), we see that the relative error of our
phase-integral reflexion coefficient is already in the first-order approximation (in
fact in any order of approximation) of the same order of magnitude as the relative
error of the eleventh-order phase-integral reflexion coefficient in Ref. 12. The choice
of the base function (4.1) with (4.9) corresponds in fact to the case of the infinite-
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order phase-integral approximation in Ref. 12, as argued in the discussion of the
phase-integral quantization condition.

5. Conclusions

In conclusion, we note that it was established in Ref. 13 that the first-order
phase-integral quantization condition with Q2(z) chosen according to (4.11) gives
the exact bound-state energy in the special case of the symmetric potential (i.e.
when B0 = 0). Furthermore it has been shown that the choice of Q2(z) accord-
ing to (4.11) is not relevant for the Rosen-Morse potentials only. Choice (4.11)
gives the exact, or significantly improved, phase-integral results for all potentials
with exponential, hyperbolic and circular functions (e.g. exponential potentials in
nuclear models, Morse potential in molecular physics, Pöschl-Teller potentials of
first and second type etc.). In the case of circular functions the cosh−2(z) is of
course substituted by cos−2(z). The unpublished numerical studies indicate that
the choice (4.11) gives improved phase-integral results for the three-dimensional
case of the centrifugal potential l(l + 1)r−2 added to any of the above exactly
solvable potentials.

It should also be noted that we limit our explicit calculations to the terms
with n = 1, 2 only, due to the increasing complexity. However, by performing
the very tedious higher-order calculations, it can be shown that all higher-order
(n = 3, 4,. . . ) contribution to the phase-integral quantization condition consist of
one term proportional to (C+1/4−c)n, and a number of terms proportional to Dn

±,
where D± was introduced in (4.8b, c). Thus the choice (4.11) eliminates all higher
order contributions to phase integral quantization conditions, and is equivalent to
the infinite-order JWKB-approximation for this particular class of potentials. Thus
it is expected that the choice (4.11) gives the exact quantization condition for these
potentials.

It can also be observed that, using the same choice of the base function Q2(z),
we obtain the exact quantization condition (4.10) with (4.9), while we obtain a very
accurate but NOT an exact result for the reflexion coefficient (3.12) with (4.25). It
is however, a logical and expected result since the phase-integral quantization con-
dition is “asymptotically exact” while the expression for the phase-integral reflexion
coefficient is “asymptotically approximate”. In other words, even the infinite-order
expression for the phase-integral reflexion coefficient is an approximate expression.

Finally, as in the case of the quantization condition, it is possible, although very
difficult, to continue the phase-integral calculations of the asymptotic normalization
factors (4.17) for n = 3, 4. . . and show that the phase-integral expansion for the
normalization factors is also “asymptotically exact”.
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Fazno-integralni uvjet primijenjen je na gibanje kvantne čestice u Rosen–
Morseovom potencijalu V (x) = B0 tanh(x/x0) − U0 cosh

−2(x/x0). Pokazano je da
se uz izbor prikladne valne funkcije dobiva egzaktna vrijednost energije u svim re-
dovima aproksimacije, te da se izraz za normalizacijski faktor zadovoljavajuće po-
dudara s rezultatom egzaktnog računa. Takoder je pokazano da fazno–integralna
formula za koeficijent refleksije daje vrlo točne rezultate.
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