THE NUCLEUS ¹⁹⁸Au INVESTIGATED WITH NEUTRON CAPTURE AND TRANSFER REACTIONS.

II. CONSTRUCTION OF THE LEVEL SCHEME AND CALCULATION OF LEVEL DENSITIES

ULRICH MAYERHOFER, TILL von EGIDY, JÖRG KLORA, HELMUT LINDNER, HANS G. BÖRNER^a, STEPHEN JUDGE^a, BERND KRUSCHE^a, STEPHEN ROBINSON^a, KLAUS SCHRECKENBACH^a, ANATOLY M. SUKHOVOJ^b, VALERY A. KHITROV^b, STEFKA T. BONEVA^b, VLADIMIR PAAR^c, SLOBODAN BRANT^c and ROBERT PEZER^c

Physik-Department, Technische Universität München, D85748 Garching, Germany ^aInstitut Laue-Langevin, F 38042 Grenoble, France

^b Joint Institute for Nuclear Research, 141980 Dubna, Russia

^cDepartment of Physics, Faculty of Science, University of Zagreb, HR 10 000 Zagreb, Croatia

Received 27 June 1996

UDC 539.17

PACS 25.45.Hi

The level scheme of $^{198}{\rm Au}$ was constructed. Up to 1560 keV a total of 111 (d,p) and 125 (n, γ) levels was included, frequently with spin and parity assignments. The results for level densities are calculated in interacting boson–fermion–fermion model (IBFFM) and Gaussian polynomial method (GPM) and are compared to the present data.

1. Introduction

In the preceding paper [1], which will be referred to as I, new measurements were reported for ¹⁹⁸Au, performed with the bent crystals spectrometers GAMS for (n,γ) radiation and the conversion electron spectrometer BILL for the (n,e)reaction, and with the Q3D spectrograph for the (d,p) reaction. On the basis of these data, we extend here the level scheme up to 1560 keV. Details of this level scheme can be found in Ref. 2.

The most recent compilation of 198 Au was published in 1995 [3]. This compilation mentions that γ lines of 198 Au are recommended as calibration standards

(which is actually only true for the decay lines), but it uses still γ -lines which were measured and calibrated more than 20 years ago. Our new (n,γ) measurements give energies which are by a factor about 1.0005 larger than the previous values, although these previous energies are given with an error of about $2 \cdot 10^{-5}$.

The calculation of low-lying states in 198 Au was performed previously in the framework of interacting boson-fermion-fermion model IBFFM [3,4]. The IBFFM model is based on coupling one proton and one neutron quasiparticle to the IBM boson core [5,6], which corresponds to a generalisation of the interacting boson model (IBM) of Iachello and Arima [7,8]. In the present paper, we perform the IBFFM calculation for 198 Au up to higher excitation energies than given in Refs. 3 and 4.

In the second step, we perform the calculation of the nuclear level densities of 198 Au by using generating function method which is based on the Gaussian polynomial method [9–11].

2. Construction of the level scheme

The level scheme of ¹⁹⁸Au, including spin and parity assignments in Table 1, was constructed up to 1560 keV using the following data and arguments: i) All experimental information from previous experiments and compilations [3,4,12]. These

TABLE 1.

Comparison of levels obtained from secondary γ -rays [1] and summed coincidences [16]. n – number of secondary transitions from $(n, \gamma \gamma)$. "Q"– the correspondence between the levels in both experiments is questionable.

Levels	from			(n,	$\gamma\gamma)$	Levels	from			(n,	$(\gamma \gamma)$
second	lary			da	ita	secon	dary			da	ta
γ -rays	s [1]			[1	6]	γ-ray	s [1]			[1	6]
E_{level}	I^{π}	E_{level}	$I_{\gamma\gamma}$	n		E_{level}	I^{π}	E_{level}	$I_{\gamma\gamma}$	n	
						516.4	6 +				
.0	2 -					529.2	3 -	528.5	126.4	6	Q
55.2	1 -					530.5	1 -	528.5	126.4	6	Q
91.0	0 -					544.0	$_{4}$ -				
192.9	1 -	192.8	2.5	1		548.9	2 -	548.9	1.6	1	
215.0	4^{-}					571.2	1 -	570.4	28.9	7	
236.0	3 -	235.8	21.1	1				576.2	5.7	2	
247.6	1 -	247.6	8.7	1		625.4	3 -	625.4	4.2	2	
259.3	1 -	260.5	43.4	3	Q	632.5	1.2^{-}	631.3	27.8	5	
261.4	2^{-}	260.5	43.4	3	Q	637.1	4 +				
312.2	5^{+}					646.4	0^{+}				
328.5	3 -					672.7	1.2^{-}	672.4	16.8	4	
339.3	0 -					696.7	8 +				
346.9	2^{-}	346.6	6.2	2				699.0	5.0	1	
362.9	2^{-}	362.5	12.6	2		702.5	2^{-}	702.4	51.5	10	Q
368.3	1^{-}	367.7	1.1	1		703.7	1 -	702.4	51.5	10	Q
381.2	3^{+}	380.9	1.5	1		728.6	0 -	726.6	5.0	3	
406.0	2^{-}	406.1	9.5	1		745.2	1.2^{-}	744.4	11.4	4	
449.6	3 -					758.4	4 +				
453.8	2^{-}	453.1	2.8	1		764.5	4 -				
482.3	4^{+}							769.4	3.1	1	
495.5	1 -	495.0	2.9	1				776.9	5.3	2	
511.5	3 -	511.6	18.3	4							

FIZIKA B 5 (1996) 4, 229–253

Levels	from			(n,	$(\gamma \gamma)$	Levels	from			(n,~	$(\gamma \gamma)$
second	lary			da	ta	secon	dary			da	ta
γ-rays	s [1]			[1	6]	γ-ray	s [1]			[1	6]
E_{level}	I^{π}	E_{level}	$I_{\gamma\gamma}$	n]	E_{level}	I^{π}	E_{level}	$I_{\gamma\gamma}$	n	
786.5	2^{-}	788.9	29.2	6	Q	1297.1	1-3 -	1296.9	1.4	1	
789.3	1 -	788.9	29.2	6	Q	1301.1	2^{-}	1304.9	21.6	7	Q
800.0	2^{-}	800.8	144.5	13	Q	1304.8	3 -	1304.9	21.6	7	Q
801.7	1,2 -	800.8	144.5	13	Q	1306.9	2^{-}	1304.9	21.6	7	Q
		804.0	8.8	1	-			1312.6	1.6	1	
810.4	3^{+}					1318.6	1,2 –				
824.6	3^{+}					1325.9	2^{-}				
835.4	3 -	835.6	16.9	3		1335.5	1-3 –	1337.3	18.3	5	Q
868.8	3 -	868.1	9.6	2		1338.2	3 -	1337.3	18.3	5	Q
891.6	1,2 -	891.4	38.4	9				1342.1	3.5	2	
894.3	3 -	896.1	0.9	1	Q	1359.1	1-3 -				
896.6	1,2 -	896.1	0.9	1	Q	1363.4	1-3 -	1363.2	47.5	11	
		911.6	1.7	1	-	1371.5	1,2 –	1370.8	50.4	9	
916.4	1,2 -	915.2	3.6	1		1376.0	1,2 –	1378.5	5.2	3	Q
918.6	1,2 -	918.2	56.1	11		1380.9	3 -	1378.5	5.2	3	Q
		921.5	1.6	1		1390.2	2^{-}				
		926.3	2.0	1		1396.2	3 -	1395.6	9.6	4	
932.0	3 -					1399.4	$_{2,3}$ –	1401.8	3.0	2	Q
951.4	3^{+}					1402.1	1,2 -	1403.7	12.6	2	Q
957.0	1,2 –					1404.9	$_{2,3}$ –	1404.9	10.2	3	Q
960.6	3^{+}					1409.4	3 -	1408.8	163.3	13	Q
971.8	3 -	971.0	16.0	6				1414.2	18.6	6	
983.1	2^{+}	983.5	1.9	1		1418.7	3,4 +	1420.4	1.8	1	
987.6	3 -	986.6	86.0	16		1423.8	3 -	1426.8	31.5	5	
		992.0	9.8	2		1431.6	$_{2,3}$ –	1430.6	4.2	1	
999.2	1,2 -	998.7	15.0	5		1434.6	1,2 -	1434.8	32.8	6	
		1005.5	4.0	1				1440.1	2.4	1	
1018.4	1,2 –	1018.1	54.4	8		1444.4	3 -				
	~ -	1025.8	3.3	1		1453.9	3 -				
1032.2	3					1459.0	3 -				
1038.3	3	1038.0	60.3	11				1465.9	2.7	1	
1047.4	$1,2^{-}$	1046.0	14.5	6		1472.1	3 -	1470.2	26.6	6	
1056.7	2					1475.6	2 -	1476.4	14.0	4	
1061.3	3							1482.0	4.4	2	
1075.6	1-3	1000 -	1.0			1487.1	1,2 -	1488.2	4.2	2	
1000.0	0 -	1083.7	1.8	1		1496.2	3			~	
1092.9	0 +	1092.6	15.5	4		1505.2	1,2	1504.9	4.8	2	
1095.5	3 '					1513.6	1,2 -	1512.6	88.7	13	
1104.8	0-2	1100 8	- 0			1500 7	1.0 -	1517.9	1.9	1	
1108.9	1,2	1109.7	(.8	4		1530.7	1,2	1530.4	2.3	1	
1115.3	ა ე –	1110.7	14.7	3		1530.4	0-3	1538.5	17.0	5	
1124.9	2	1123.8	11.0	5 E		1542.8	3	1544.7	1.6	1	
		1140.3	10.3	Э 1		1554.4	1,2	1554.0	97.9	15	
1157.9	2 -	1156.9	1.9	0		1560.4	3	1560.0	6.2	1	
1160.0	0 9 -	1162.6	40.0	4				1503.1	2.4	1	
1100.0	12+	1103.0	12.2	-4				1575.4	1.5	っ 1	
1191.0	1-3	1194.9	49.1	1				1585.8	3.7	2	
1202.5	2	1205.9	43.1	9				1605.8	3.7	1	
1209 /	3 -	1210.5	0.0 9 5	1 9				1608.5	41.1	12	
1203.4	0	1210.0	2.5	1				1614.7	41.2	9	
1232.8	3 -	1232.3	68.2	10				1624.5	38.8	9	
1240 4	3 -	1240.2	4.8	1				1645.4	31.5	9	
1256.0	1.2 -	1210.2	1.0	Ŧ				1659.0	39.8	7	
1265.5	1-3 -							1666.4	17.2	6	
1272.1	3 -	1275.5	2.0	1				1710.3	14.1	1	
1286.7	2 -	1286.2	42.4	11				1712.0 1715.0	112.8	16	
1293.9	1.2 -	1290.9	28.6	6				1110.9	12.0	ა	
	•,=		-0.0	~		L					

Mayerhofer et al.: The nucleus $^{198}\mathrm{Au}$ investigated with neutron capture \ldots

FIZIKA B **5** (1996) 4, 229–253

	С	
C	٥	
Ň	C	

TABLE 2.

				γ .	decay of the	e levels (a: n	nultipole	arity; m	= mult	tiply j	placed).		
	E_i	E_f	I^{π}	E_{γ}	Branching	$Comment^a$		E_i	E_f	I^{π}	E_{γ}	Branching	$Comment^a$
(k	eV	(keV)		(keV)	(%)			(keV)	(keV)		(keV)	(%)	
1	55.2	1-					1		192.9	1-	146.3	66(6)	M1
		.0	2^{-}	55.2	100(4)	95M1 + 5E2		346.9	2^{-}				
	91.0	0^{-}							.0	2^{-}	346.9	23.55(19)	M1
		.0	2^{-}	91.0	53(10)	E2			55.2	1^{-}	291.7	56(5)	M1
		55.2	1^{-}	35.8	46.6(16)	M1			91.0	0^{-}	255.9	1.27(23)	
19	92.9	1-							192.9	1^{-}	154.0	3.0(8)	(M1)
		.0	2^{-}	192.9	27.6(4)	E2			215.0	4^{-}	132.0	9(2)	E2
		55.2	1^{-}	137.8	11.3(5)	M1			247.6	1^{-}	99.3	6.5(19)	M1
		91.0	0^{-}	101.9	61(3)	M1		362.9	2^{-}				
2	15.0	4^{-}							55.2	1^{-}	307.7	22.9(6)	M1+E2
		.0	2^{-}	215.0	100(2)	E2			91.0	0^{-}	271.9	10.4(4)	
23	36.0	3^{-}							192.9	1^{-}	170.0	6.7(10)	m
		.0	2^{-}	236.0	86.6(5)	M1+E2			259.3	1^{-}	103.6	59(8)	M1
		55.2	1^{-}	180.9	13.3(4)	E2		368.3	1^{-}				
2	47.6	1-							.0	2^{-}	368.2	8.92(10)	M1
		.0	2^{-}	247.6	58(3)	M1			55.2	1^{-}	313.1	3.45(19)	m
		55.2	1^{-}	192.4	40.5(3)	M1			91.0	0^{-}	277.2	17(2)	M1
		91.0	0^{-}	156.6	.96(18)	M1			192.9	1^{-}	175.3	6.8(10)	
2	59.3	1^{-}							259.3	1^{-}	108.9	63(8)	M1
		.0	2^{-}	259.3	.41(4)	M1		381.2	3^{+}				
		91.0	0^{-}	168.3	91.9(7)	M1			.0	2^{-}	381.2	78.3(3)	E1
		192.9	1^{-}	66.4	7.5(19)				215.0	4^{-}	166.2	9.4(6)	E1
20	61.4	2^{-}							236.0	3^{-}	145.2	12.2(8)	E1
		.0	2^{-}	261.4	89(3)	M1		406.0	2^{-}				
		55.2	1^{-}	206.2	3.91(19)	M1			.0	2^{-}	406.0	2.02(17)	
		91.0	$^{0-}$	170.4	6.7(4)				55.2	1^{-}	350.8	56.6(4)	M1
3	12.2	5^{+}							192.9	1^{-}	213.1	5.7(5)	M1
		215.0	4^{-}	97.2	100(17)	E1			236.0	3^{-}	170.0	7.6(11)	m
- 31	28.5	3^{-}							259.3	1^{-}	146.7	16.8(17)	M1
		.0	2^{-}	328.5	91.9(4)	M1			261.4	2^{-}	144.6	11.0(18)	M1
		55.2	1^{-}	273.3	2.5(8)			449.6	3^{-}				
		215.0	4^{-}	113.5	5.5(19)	M1+E2			.0	2^{-}	449.6	37.7(3)	M1
- 3	39.3	0^{-}							55.2	1^{-}	394.4	.90(6)	
		55.2	1^{-}	284.1	33(4)	M1	1		215.0	4^{-}	234.6	3.5(8)	m

FIZIKA
В
CT
(1996)
,4
229 - 253

	236.0	3^{-}	213.5	1.07(16)	M1
	261.4	2^{-}	188.2	48.4(13)	M1
	328.5	3^{-}	121.1	8.2(24)	M1
453.8	2-	-		- ()	
	.0	2^{-}	453.8	4.79(18)	
	55.2	1^{-}	398.7	4.1(3)	
	192.9	1^{-}	260.9	70(5)	M1
	328.5	3^{-}	125.3	6(2)	M1
	346.9	2^{-}	106.9	13(3)	M1
482.3	4^{+}				
	312.2	5^{+}	170.1	100.0(15)	M1
495.5	1^{-}			()	
	55.2	1^{-}	440.3	64.4(4)	M1
	91.0	0^{-}	404.5	1.82(15)	M1
	192.9	1^{-}	302.6	.94(5)	
	236.0	3^{-}	259.5	1.56(15)	
	247.6	1^{-}	247.9	4.4(5)	
	259.3	1^{-}	236.2	18(3)	
	261.4	2^{-}	234.1	5.7(5)	M1
	346.9	2^{-}	148.6	2.7(13)	m,M1
511.5	3^{-}				
	.0	2^{-}	511.5	81(7)	M1
	215.0	4^{-}	296.5	2.9(3)	
	236.0	3^{-}	275.5	5.0(9)	m
	261.4	2^{-}	250.1	6.0(8)	
	362.9	2^{-}	148.6	4.6(22)	$_{m,M1}$
516.4	6^{+}				
	312.2	5^{+}	204.2	100(9)	M1
529.2	3^{-}				
	.0	2^{-}	529.2	86(2)	M1
	55.2	1^{-}	474.0	2.22(4)	
	215.0	4^{-}	314.2	1.26(10)	
	236.0	3^{-}	293.1	4.0(10)	M1
	261.4	2^{-}	267.8	3.4(3)	
	346.9	2^{-}	182.3	2.6(7)	
530.5	1^{-}				
	.0	2^{-}	530.5	7.25(21)	
	192.9	1-	337.5	26.2(4)	M1

	247.6	1-	282.9	2.4(5)	M1
	259.3	1^{-}	271.1	15.3(13)	m,(M1)
	261.4	2^{-}	269.1	22.6(17)	M1
	339.3	0^{-}	191.2	26.0(23)	M1
544.0	4^{-}				
	.0	2^{-}	544.0	68.1(23)	E2
	215.0	4^{-}	329.0	2.43(10)	
	328.5	3^{-}	215.5	6.4(12)	M1
	406.0	2^{-}	138.0	22(5)	
548.9	2^{-}				
	.0	2^{-}	548.9	63.2(16)	M1
	215.0	4^{-}	334.0	3.08(14)	
	247.6	1^{-}	301.4	1.40(14)	
	406.0	2^{-}	142.9	32(3)	M1
571.2	1^{-}				
	55.2	1^{-}	516.1	24.8(5)	M1
	91.0	0^{-}	480.2	2.22(15)	
	192.9	1^{-}	378.3	12.8(3)	M1
	236.0	3^{-}	335.2	1.00(10)	
	259.3	1^{-}	311.9	33.8(8)	m,M1
	328.5	3^{-}	242.8	1.5(4)	m
	346.9	2^{-}	224.3	4.9(8)	
	362.9	2^{-}	208.3	.21(21)	
	368.3	1^{-}	203.0	18.4(7)	M1
625.4	3^{-}				
	.0	2^{-}	625.4	61(3)	M1
	236.0	3^{-}	389.3	3.4(9)	
	259.3	1^{-}	366.1	7.8(6)	
	261.4	2^{-}	364.0	16.0(4)	m,M1
	362.9	2^{-}	262.5	7.4(13)	
	449.6	3^{-}	175.9	3.2(13)	
632.5	$1,2^{-}$				
	.0	2^{-}	632.5	7.7(5)	
	55.2	1^{-}	577.3	26.3(5)	M1
	236.0	3-	396.4	.65(7)	
	259.3	1-	373.2	7.6(11)	M1
	261.4	2-	371.1	43.9(4)	M1
	362.9	2^{-}	269.6	3.5(7)	

					TABLE	2 2. (cont.	inuation).				
E_i	E_f	I^{π}	E_{γ}	Branching	$Comment^a$		E_i	E_f	I^{π}	E_{γ}	Branching
(keV)	(keV)		(keV)	(%)			(keV)	(keV)		(keV)	(%)
	368.3	1-	264.2	6.1(6)	m			548.9	2^{-}	154.8	28.2(18)
	406.0	2^{-}	226.5	4.0(7)			728.7	0^{-}			
637.1	4^{+}							55.2	1^{-}	673.5	53(3)
	312.2	5^{+}	324.9	20.9(8)				192.9	1^{-}	535.8	5.5(12)
	482.3	4^{+}	154.8	79(5)	m,M1			259.3	1^{-}	469.3	36.2(22)
646.4	0^{+}							406.0	2^{-}	322.8	4.8(22)
	55.2	1^{-}	591.2	100.0(18)			745.2	$^{1,2^{-}}$			
672.7	$1,2^{-}$.0	2^{-}	745.2	23.2(16)
	.0	2^{-}	672.7	45.3(16)	M1			55.2	1^{-}	690.0	61.9(22)
	215.0	4^{-}	457.7	2.9(10)	m			259.3	1^{-}	485.9	5.6(4)
	236.0	3^{-}	436.6	2.48(12)				362.9	2^{-}	382.3	6.49(23)
	247.6	1^{-}	425.1	2.12(6)				495.5	1^{-}	249.7	2.5(7)
	259.3	1^{-}	413.3	4.42(12)			758.4	4^{+}			
	328.5	3^{-}	344.2	1.63(12)	m			236.0	3^{-}	522.4	25.4(4)
	346.9	2^{-}	325.8	7.20(18)	M1			312.2	5^{+}	446.2	15.1(4)
	406.0	2^{-}	266.6	19.6(5)	M1			482.3	4^{+}	276.1	$59(4)^{-1}$
	449.6	3^{-}	223.1	2.5(5)			764.5	4^{-}			
	453.8	2^{-}	218.8	11.6(10)	(M1)			215.0	4^{-}	549.5	10.0(4)
696.7	8+				. ,			247.6	1^{-}	516.9	4.6(4)
	516.4	6^{+}	180.3	100(7)	E2			362.9	2^{-}	401.6	5.01(20)
702.5	2^{-}							406.0	2^{-}	358.5	3.6(4)
	.0	2^{-}	702.5	65.1(9)	M1			449.6	3^{-}	314.9	72.9(12)
	55.2	1^{-}	647.3	15.7(9)	m,M1			529.2	3^{-}	235.3	3.8(20)
	247.6	1^{-}	454.9	3.97(18)	m		786.5	2^{-}			
	261.4	2^{-}	441.1	11.1(3)	M1			236.0	3^{-}	550.5	2.9(4)
	362.9	2^{-}	339.6	2.93(9)	m			247.6	1^{-}	539.0	1.4(3)
	368.3	1^{-}	334.2	.94(9)				259.3	1^{-}	527.2	4.5(5)
703.7	1^{-}							261.4	2^{-}	525.1	29.3(9)
	.0	2^{-}	703.8	2.8(3)	m,M1			328.5	3^{-}	458.0	25.3(3)
	55.2	1^{-}	648.6	2.1(3)	m			346.9	2^{-}	439.6	6.7(23)
	91.0	0^{-}	612.7	7.6(3)	M1			362.9	2^{-}	423.6	1.62(6)
	192.9	1^{-}	510.8	2.4(3)				368.3	1^{-}	418.3	1.81(6)
	247.6	1^{-}	456.2	10.2(9)	M1			453.8	2^{-}	332.7	2.33(12)
	259.3	1^{-}	444.4	40.7(3)	M1			495.5	1^{-}	291.0	1.6(3)
	339.3	0^{-}	364.4	1.29(16)				548.9	2^{-}	237.6	1.6(4)
	406.0	2^{-}	297.7	4.47(21)	M1			571.2	1^{-}	215.3	16.7(11)

Mayerhofer et al.: The nucleus $^{198}\mathrm{Au}$ investigated with neutron capture \ldots

 $Comment^a$

m,M1M1M1m

M1M1m

M1 M1

 \mathbf{m}

M1m

m,M1

M1 \mathbf{m} M1

FIZIKA
В
Ű
(1996)
4
229 - 253

	632.5	$1,2^{-}$	154.1	3.8(11)	(M1)
789.3	1^{-}				
	55.2	1^{-}	734.1	7.2(5)	M1
	91.0	0^{-}	698.3	14.9(7)	M1
	236.0	3^{-}	553.0	2.5(13)	m
	259.3	1^{-}	529.9	40.8(15)	M1
	346.9	2^{-}	442.4	3.75(15)	m
	406.0	2^{-}	383.3	24.5(3)	
	571.2	1^{-}	218.0	6.1(13)	M1
800.0	2^{-}				
	.0	2^{-}	800.1	6.0(12)	
	55.2	1^{-}	744.9	10.0(6)	m
	236.0	3^{-}	564.0	1.7(3)	m
	247.6	1^{-}	552.5	9.60(21)	M1
	346.9	2^{-}	453.1	2.61(14)	
	362.9	2^{-}	437.1	1.69(7)	
	381.2	3^{+}	418.8	67.3(4)	E2
	449.6	3^{-}	350.5	.77(14)	
801.7	$^{1,2^{-}}$				
	.0	2^{-}	801.7	13.9(6)	M1
	91.0	0^{-}	710.7	3.7(3)	
	192.9	1^{-}	608.8	.84(21)	
	247.6	1^{-}	554.1	1.11(10)	
	259.3	1^{-}	542.4	7.46(15)	m
	261.4	2^{-}	540.3	34.7(8)	M1
	328.5	3^{-}	473.2	1.00(15)	
	362.9	2^{-}	438.8	.74(5)	
	368.3	1^{-}	433.5	1.64(5)	
	406.0	2^{-}	395.7	4.6(4)	M1
	453.8	2^{-}	347.9	7.67(15)	m,M1
	495.5	1^{-}	306.2	3.91(10)	m,M1
	511.5	3^{-}	290.2	1.1(3)	
	530.5	1^{-}	271.2	12.1(6)	(M1)
	632.5	$^{1,2^{-}}$	169.2	5.2(10)	M1
810.4	3^{+}				
	215.0	4^{-}	595.4	13.0(15)	
	328.5	3^{-}	481.9	31.2(15)	
	362.9	2^{-}	447.5	20.5(8)	m

$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		449.6	3^{-}	360.9	13.0(8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		482.3	4^{+}	328.1	7.9(8)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		625.4	3^{-}	185.0	14(4)	E1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	824.6	3^{+}				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0	2^{-}	824.6	60(11)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		362.9	2^{-}	461.7	12.9(8)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		482.3	4^{+}	342.2	12(4)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		511.5	3^{-}	313.2	13(6)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	835.4	3^{-}				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		215.0	4^{-}	620.4	5.8(7)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		261.4	2^{-}	574.0	63.4(12)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		453.8	2^{-}	381.6	14.8(3)	M1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		529.2	3^{-}	306.2	10.3(3)	m,M1
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		632.5	$^{1,2^{-}}$	202.9	5.3(23)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	868.8	3^{-}				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0	2^{-}	868.8	64(6)	M1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		55.2	1^{-}	813.6	3.2(10)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		215.0	4^{-}	653.8	6.9(6)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		346.9	2^{-}	521.9	2.5(5)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		449.6	3^{-}	419.2	11.67(22)	M1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		453.8	2^{-}	415.0	3.7(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		482.3	4^{+}	386.4	.57(11)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		529.2	3^{-}	339.6	3.54(11)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		625.4	3^{-}	243.3	2.9(9)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	891.6	$^{1,2^{-}}$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0	2^{-}	891.6	10.7(21)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		55.2	1^{-}	836.4	52(7)	M1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		247.6	1^{-}	644.0	6.51(24)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		259.3	1^{-}	632.3	18.6(7)	m,M1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		261.4	2^{-}	630.2	4.8(4)	M1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		449.6	3^{-}	442.1	1.31(16)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		529.2	3^{-}	362.5	3.7(4)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		571.2	1^{-}	320.3	1.64(24)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	894.3	3^{-}				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		328.5	3^{-}	565.8	95.5(12)	M1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		548.9	2^{-}	345.2	4.4(18)	m
247.6 1 ⁻ 649.0 11.7(6) M1	896.6	$^{1,2^{-}}$				
~ /		247.6	1-	649.0	11.7(6)	M1

					TABLE	2. (continua	ation).					
E_i	E_f	I^{π}	E_{γ}	Branching	$Comment^a$		E_i	E_f	I^{π}	E_{γ}	Branching	$\overline{\mathrm{Comment}^a}$
(keV)	(keV)		(keV)	(%)		(k	(eV)	(keV)		(keV)	(%)	
	261.4	2^{-}	635.2	48.7(19)	M1	9.	51.4	3^{+}				
	328.5	3^{-}	568.1	6.7(12)				312.2	5^{+}	639.2	100(7)	
	346.9	2^{-}	549.7	3.1(6)	m	9.	57.0	$^{1,2^{-}}$				
	449.6	3^{-}	447.0	3.01(15)	m			192.9	1^{-}	764.0	46.2(15)	M1
	571.2	1^{-}	325.3	1.80(15)				236.0	3^{-}	720.9	12.5(5)	M1
	625.4	3^{-}	271.1	21.0(18)	m,(M1)			247.6	1^{-}	709.4	7.5(10)	
	632.5	$1,2^{-}$	264.1	3.6(3)				259.3	1^{-}	697.6	13.8(10)	
916.4	$^{1,2^{-}}$							362.9	2^{-}	594.2	7.8(13)	m
	.0	2^{-}	916.4	33.0(16)	M1			406.0	2^{-}	550.9	6.1(7)	
	236.0	3^{-}	680.4	13.0(8)				571.2	1^{-}	385.7	2.0(3)	
	261.4	2^{-}	655.0	9.9(5)	M1			625.4	3^{-}	331.6	1.09(13)	
	406.0	2^{-}	510.4	24(8)	M1			703.7	1^{-}	253.2	2.6(3)	
	529.2	3^{-}	387.3	5.9(6)	M1	9	60.6	3^{+}				
	571.2	1^{-}	345.2	2.3(10)	m			362.9	2^{-}	597.7	24.6(18)	m
	625.4	3^{-}	291.0	2.4(5)	m			449.6	3^{-}	511.1	69(10)	
	632.5	$1,2^{-}$	283.9	8.2(15)				482.3	4^{+}	478.3	5.9(9)	
918.6	$^{1,2^{-}}$					9	71.8	3^{-}				
	259.3	1^{-}	659.2	12.1(3)	M1			449.6	3^{-}	522.2	45(3)	
	339.3	0^{-}	579.3	25.4(16)				625.4	3^{-}	346.4	17.3(8)	M1
	346.9	2^{-}	571.7	23.9(9)	M1			632.5	$1,2^{-}$	339.3	25.3(16)	
	362.9	2^{-}	555.7	5.99(17)	M1			672.7	$^{1,2^{-}}$	299.2	11.8(12)	m
	406.0	2^{-}	512.6	8.3(21)	M1	9	83.1	2^{+}				
	449.6	3^{-}	469.0	1.54(7)				.0	2^{-}	983.0	11.2(10)	m
	453.8	2^{-}	464.8	8(2)				368.3	1^{-}	615.0	1.7(7)	m
	495.5	1^{-}	423.1	1.00(7)				495.5	1^{-}	487.6	7.6(6)	m
	529.2	3^{-}	389.4	1.40(4)				824.6	3^{+}	158.5	79(3)	M1
	548.9	2^{-}	369.6	.68(7)		9	87.6	3^{-}				
	672.7	$^{1,2^{-}}$	246.0	.35(7)				215.0	4^{-}	772.6	3.8(5)	
	703.7	1^{-}	214.9	9.3(18)				236.0	3^{-}	751.6	6.3(12)	m
	745.2	$^{1,2^{-}}$	173.4	1.6(5)				261.4	2^{-}	726.2	4.5(15)	
932.0	3^{-}							346.9	2^{-}	640.7	61(4)	M1
	261.4	2^{-}	670.6	45(6)				449.6	3^{-}	538.0	2.34(15)	m
	381.2	3^{+}	550.7	30(4)				453.8	2^{-}	533.7	5.6(3)	
	544.0	4^{-}	387.9	8.4(10)				495.5	1^{-}	492.1	8.02(15)	
	548.9	2^{-}	383.0	15.7(10)				530.5	1^{-}	457.1	.75(22)	m
				. /				625.4	3^{-}	362.1	5.6(5)	

Mayerhofer et al.: The nucleus $^{198}\mathrm{Au}$ investigated with neutron capture \ldots

FIZIKA B 5 (1996) 4, 229–253

FIZIKA
Β
Ű
(1996)
, 4
229 - 253

	632.5	$1,2^{-}$	355.1	1.59(22)	m
999.2	$^{1,2^{-}}$				
	247.6	1^{-}	751.6	19(3)	m
	362.9	2^{-}	636.3	8.0(5)	
	368.3	1^{-}	630.9	10.6(18)	
	406.0	2^{-}	593.2	48(2)	M1
	449.6	3^{-}	549.7	4.9(9)	m
	625.4	3^{-}	373.8	8.4(5)	
1018.4	$^{1,2^{-}}$				
	.0	2^{-}	1018.4	15.4(10)	
	91.0	0^{-}	927.4	25(9)	m
	192.9	1^{-}	825.5	25(2)	M1
	261.4	2^{-}	757.0	4.7(4)	m
	339.3	0^{-}	679.1	5.9(6)	
	362.9	2^{-}	655.5	17.0(5)	M1
	495.5	1^{-}	522.9	2.21(24)	
	529.2	3^{-}	489.3	2.95(18)	m
1032.3	3^{-}				
	236.0	3^{-}	796.2	23.7(16)	
	261.4	2^{-}	770.8	35.4(21)	E2
	328.5	3^{-}	703.8	6.3(7)	m,M1
	511.5	3^{-}	520.6	31(12)	m
	548.9	2^{-}	483.4	1.68(12)	m
	625.4	3^{-}	406.8	.84(12)	m
1038.3	3^{-}				
	55.2	1^{-}	983.0	22.1(19)	m
	259.3	1^{-}	779.0	10.7(13)	m
	406.0	2^{-}	632.3	39.1(13)	m,M1
	672.7	$^{1,2^{-}}$	365.6	16.4(5)	
	810.4	3^{+}	227.8	4.8(17)	
	835.4	3^{-}	202.9	6(2)	m
1047.1	$^{1,2^{-}}$				
	.0	2^{-}	1047.1	65.6(18)	m
	346.9	2^{-}	700.3	17.3(22)	
	449.6	3^{-}	597.5	7.8(15)	m
	646.4	0^{+}	400.7	9.1(15)	m
1056.7	2^{-}				
	339.3	0^{-}	717.3	37(8)	m
L					

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1061.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
511.5 $3^ 549.7$ $3.6(7)$ m 520.2 $3^ 532.2$ $2.9(4)$ m	
$520.2 3^{-} 532.2 2.0(4) m$	
523.2 5 532.2 $2.3(4)$ III	
$625.4 3^- 435.9 1.40(17)$	
$894.3 3^- 167.0 5.8(10) m,M1$	
$896.6 1,2^- 164.7 49(4)$	
1075.5 $1-3^{-}$	1075.5
$236.0 3^- 839.5 93(22)$	
$362.9 2^{-} 712.7 4.4(6) m$	
511.5 $3^ 564.0$ $2.3(4)$ m	
$1092.9 0^-$	1092.9
453.8 2 ⁻ 639.0 $43.3(22)$ m	
$632.5 1,2^- 460.4 56.6(22)$	
1095.5 3 ⁺	1095.5
$529.2 3^{-} 566.3 13.3(20) m$	
$637.1 4^+ 458.4 86.6(12) M1$	
$1104.8 0-2^{-}$	1104.8
247.6 1 ⁻ 857.2 $29(6)$ m	
$530.5 1^{-} 574.4 60.5(17) M1$	
$672.7 1,2^- 432.2 4.4(3)$	
728.7 0^- 376.2 5.3(3)	
1108.9 1, ⁻	1108.9
$192.9 1^{-} 915.9 20(3) m$	
236.0 3^{-} 872.9 $29(3)$ m	
$259.3 1^{-} 849.6 25(4) M1$	
$339.3 0^- 769.6 14(2) m$	
625.4 $3^ 483.4$ $3.18(22)$ m	
702.5 2^{-} 406.4 $3.1(5)$ m	
$835.4 3^- 273.5 3.8(5)$	
1115.3 3-	1115.3
$530.5 1^{-} 584.7 22(8)$	

					TABLE Z .	(CO	ntinuatioi	1).				
E_i	E_f	I^{π}	E_{γ}	Branching	$Comment^a$		E_i	E_f	I^{π}	E_{γ}	Branching	$Comment^a$
(keV)	(keV)		(keV)	(%)			(keV)	(keV)		(keV)	(%)	
	548.9	2^{-}	566.3	11.5(17)	m			957.0	$1,2^{-}$	245.3	35(3)	
	786.5	2^{-}	328.8	54.1(7)	M1			960.6	3^{+}	241.7	6.2(21)	
	800.0	2^{-}	315.2	12(3)	m		1209.4	3^{-}				
1124.9	2^{-}	1146.						192.9	1^{-}	1016.3	5.6(8)	m
	236.0	3^{-}	888.6	19(6)	m			261.4	2^{-}	947.9	45.5(14)	M1
	247.6	1^{-}	877.3	70(15)	M1			328.5	3^{-}	881.0	11.0(22)	m
	764.5	4^{-}	360.4	9.9(5)				381.2	3^{+}	828.0	5.7(22)	
1157.2	3^{-}							449.6	3^{-}	759.7	11.6(15)	
	.0	2^{-}	1157.3	15(4)	M1			745.2	$^{1,2^{-}}$	464.2	1.05(10)	m
	247.6	1^{-}	909.6	10.3(13)	m			896.6	$1,2^{-}$	312.8	3.2(3)	
	328.5	3^{-}	828.9	5.8(11)	m			960.6	3^{+}	248.7	16.1(10)	
	632.5	$^{1,2^{-}}$	524.7	30(8)			1232.8	3^{-}				
	672.7	$^{1,2^{-}}$	484.5	1.35(16)	m			449.6	3^{-}	783.2	29(4)	M1
	758.4	4^{+}	398.8	1.27(8)				453.8	2^{-}	779.0	12.1(15)	m
	801.7	$1,2^{-}$	355.5	35.4(6)	M1			745.2	$1,2^{-}$	487.6	17.0(13)	m
1160.0	3^{-}							800.0	2^{-}	433.0	4(2)	
	236.0	3^{-}	923.9	10.4(8)	m			868.8	3^{-}	364.0	28.2(8)	m,M1
	261.4	2^{-}	898.5	18(2)	m			932.0	3^{-}	300.8	4.1(4)	
	362.9	2^{-}	797.1	7.3(13)				983.1	2^{+}	249.7	4.3(11)	m
	702.5	2^{-}	457.7	4.5(15)	m		1240.4	3^{-}				
	703.7	1^{-}	456.3	58.7(6)				215.0	4^{-}	1025.5	10.5(8)	m
1191.6	$1-3^{+}$							495.5	1^{-}	744.9	23.9(15)	m
	215.0	4^{-}	976.5	12(2)	m			544.0	4^{-}	696.4	9.7(5)	M1
	328.5	3^{-}	863.0	33(3)	m			625.4	3^{-}	615.0	3.3(13)	m
	362.9	2^{-}	828.9	11.4(23)	m			632.5	$^{1,2^{-}}$	607.9	6.8(7)	
	571.2	1^{-}	620.4	6.9(8)	m			987.6	3^{-}	252.8	7.8(20)	
	786.5	2^{-}	405.1	1.65(16)				1157.2	3^{-}	83.1	37(15)	
	824.6	3^{+}	367.0	1.65(16)	m		1256.0	$^{1,2^{-}}$				
	868.8	3^{-}	322.8	2.4(11)	m			55.2	1^{-}	1200.8	16.7(13)	M1
	957.0	$^{1,2^{-}}$	234.6	10.4(23)	m			215.0	4^{-}	1040.8	14.8(7)	m
	1032.3	3^{-}	159.3	19(3)				328.5	3^{-}	927.4	50(19)	m
1202.3	2^{-}							530.5	1^{-}	725.5	11.1(7)	
	339.3	0^{-}	863.0	48(5)	m			894.3	3^{-}	361.7	6.4(8)	
	745.2	$^{1,2^{-}}$	457.1	2.3(7)	m		1265.5	$1-3^{-}$				
	835.4	3^{-}	367.0	2.39(23)	m			259.3	1^{-}	1006.3	23.5(22)	m
	916.4	$^{1,2^{-}}$	285.8	4.7(5)				449.6	3-	816.0	25(3)	M1

FIZIKA B 5 (1996) 4, 229–253

	453.8	2^{-}	811.7	20.5(11)		1		406.0	2^{-}	891.2	10(4)	
	625.4	3^{-}	640.1	11.1(9)				529.2	3^{-}	767.9	12.1(10)	m
	646.4	0^{+}	619.1	19.4(9)				530.5	1^{-}	766.7	3.2(10)	
1272.1	3^{-}							835.4	3^{-}	461.7	1.46(9)	m
	.0	2^{-}	1272.2	10.5(11)	m			891.6	$1,2^{-}$	405.5	1.46(9)	
	192.9	1^{-}	1079.2	25.6(20)	(M1, E2)			957.0	$^{1,2^{-}}$	340.2	3.2(9)	
	259.3	1^{-}	1012.8	6.1(6)	m		1301.0	2^{-}				
	449.6	3^{-}	822.5	11.1(12)	m			.0	2^{-}	1300.9	26(10)	
	453.8	2^{-}	818.3	7.9(11)				236.0	3^{-}	1064.8	26(5)	m
	495.5	1^{-}	776.6	12.9(13)	m			544.0	4^{-}	757.0	10.5(8)	m
	529.2	3^{-}	742.9	4.9(18)	m			632.5	$1,2^{-}$	668.6	28.9(13)	
	632.5	$^{1,2^{-}}$	639.7	5.5(4)				810.4	3^{+}	490.6	6.1(3)	
	810.4	3^{+}	461.7	1.30(8)	m			894.3	3^{-}	406.8	.94(13)	m
	824.6	3^{+}	447.5	4.23(16)	m		1304.8	3^{-}				
	894.3	3^{-}	377.9	6.6(4)				.0	2^{-}	1304.8	31(5)	
	957.0	$^{1,2^{-}}$	315.2	2.8(7)	m			236.0	3^{-}	1068.5	6.9(6)	m
1286.7	2^{-}							328.5	3^{-}	976.5	7.2(15)	m
	236.0	3^{-}	1050.7	51(5)	M1			482.3	4^{+}	822.5	12.7(13)	m
	261.4	2^{-}	1025.5	8.6(7)	m			511.5	3^{-}	793.4	3.0(9)	m
	362.9	2^{-}	923.9	15.4(12)	m			868.8	3^{-}	436.0	2.13(18)	
	544.0	4^{-}	742.9	8(3)	m			918.6	$1,2^{-}$	386.2	.74(9)	
	810.4	3^{+}	476.2	2.2(3)				957.0	$1,2^{-}$	347.9	13.4(3)	$^{\rm m,N}$
	835.4	3^{-}	451.4	1.65(13)				960.6	3^{+}	344.2	2.50(18)	m
	951.4	3^{+}	335.3	4.9(3)	M1			987.6	3^{-}	317.3	11.0(21)	
	987.6	3^{-}	299.2	3.8(4)	m			1032.3	3^{-}	272.6	8.4(6)	
	1047.1	$^{1,2^{-}}$	239.6	2.8(10)	m		1306.8	2^{-}				
1293.9	$^{1,2^{-}}$.0	2^{-}	1306.8	54.0(10)	E2
	247.6	1^{-}	1046.2	32.4(19)				368.3	1^{-}	938.7	6.5(3)	M1
	259.3	1^{-}	1034.5	18.4(10)				449.6	3^{-}	857.2	5.7(12)	m
	495.5	1^{-}	798.4	24(2)	m,M1			529.2	3^{-}	777.7	6.6(8)	M1
	891.6	$^{1,2^{-}}$	402.3	2.8(9)				544.0	4^{-}	762.9	2.5(4)	
	896.6	$^{1,2^{-}}$	397.3	1.97(21)				625.4	3^{-}	681.4	1.4(3)	
	1018.4	$^{1,2^{-}}$	275.5	12.5(21)	m			764.5	4^{-}	542.4	8.05(17)	m
	1092.9	0^{-}	201.0	7.2(21)	M1			932.0	3^{-}	374.9	3.7(3)	m
1297.1	$1-3^{-}$							1104.8	$0-2^{-}$	202.0	6.6(7)	M1
	.0	2^{-}	1297.1	53(10)	M1			1124.9	2^{-} 1146.	182.0	4.6(11)	M1
	362.9	2^{-}	934.3	6.5(5)			1318.6	$^{1,2^{-}}$				
	381.2	3^{+}	915.9	8.1(13)	m			339.3	0-	979.5	12.7(23)	

m,M1 m

FIZIKA B 5 (1996) 4, 229–253

TABLE 2. (continuation).

						(55		/				
E_i	E_f	I^{π}	E_{γ}	Branching	$Comment^a$		E_i	E_f	I^{π}	E_{γ}	Branching	$Comment^a$
(keV)	(keV)		(keV)	(%)			(keV)	(keV)		(keV)	(%)	
	368.3	1-	950.4	9.9(11)	M1			983.1	2^{+}	355.1	2.3(3)	m
	453.8	2^{-}	864.8	11.9(19)				1047.1	$^{1,2^{-}}$	291.0	2.7(6)	m
	511.5	3^{-}	807.0	6.8(11)				1056.7	2^{-}	281.4	5.8(16)	
	530.5	1^{-}	788.2	17.3(22)	M1		1359.1	$1-3^{-}$				
	548.9	2^{-}	769.6	7.6(14)	m			247.6	1^{-}	1111.6	28(2)	M1+E2
	703.7	1^{-}	615.0	2.4(10)	m			362.9	2^{-}	996.1	7.0(12)	m
	745.2	$^{1,2^{-}}$	573.3	21.3(6)	m			548.9	2^{-}	810.1	20.5(5)	M1
	786.5	2^{-}	532.2	2.08(24)	m			646.4	0^{+}	712.7	2.7(3)	m
	801.7	$^{1,2^{-}}$	516.9	2.82(24)	m			745.2	$^{1,2^{-}}$	613.8	3.49(23)	
	835.4	3^{-}	483.3	2.08(12)	m			1047.1	$^{1,2^{-}}$	311.9	37.2(9)	m,M1
	960.6	3^{+}	357.9	2.7(6)	m		1363.3	$1-3^{-}$				
1325.8	2^{-}							.0	2^{-}	1363.4	17.2(11)	M1
	192.9	1^{-}	1132.9	31(4)	M1			55.2	1^{-}	1308.5	7.7(12)	M1
	261.4	2^{-}	1064.5	11.8(6)				91.0	0^{-}	1272.2	6.4(7)	m
	346.9	2^{-}	978.9	17.3(11)				261.4	2^{-}	1101.9	11.5(4)	M1
	672.7	$^{1,2^{-}}$	653.2	2.5(5)				346.9	2^{-}	1016.3	2.6(4)	m
	800.0	2^{-}	525.8	5.8(6)				362.9	2^{-}	1000.4	7.1(11)	
	868.8	3^{-}	457.1	.9(3)	m			449.6	3^{-}	913.8	20(2)	M1
	932.0	3^{-}	393.9	27.4(5)	M1			453.8	2^{-}	909.6	6.0(8)	m
	983.1	2^{+}	342.8	2.1(4)				482.3	4^{+}	881.0	5.1(10)	m
1335.5	$1-3^{-}$							632.5	$^{1,2^{-}}$	730.8	4.5(14)	m
	.0	2^{-}	1335.5	32(6)	M1			764.5	4^{-}	598.8	1.48(14)	
	215.0	4^{-}	1120.5	14.7(15)				810.4	3^{+}	553.0	1.6(8)	m
	259.3	1^{-}	1076.4	13.2(21)	m			891.6	$^{1,2^{-}}$	471.7	1.33(10)	
	511.5	3^{-}	824.1	5.5(18)				918.6	$^{1,2^{-}}$	444.8	3.26(10)	
	891.6	$^{1,2^{-}}$	443.9	17(2)	m			957.0	$^{1,2^{-}}$	406.4	.69(10)	m
	960.6	3^{+}	374.9	9.9(8)	m			1124.9	1146.	238.5	2.8(7)	
	999.2	$^{1,2^{-}}$	336.3	6.3(12)			1371.5	$^{1,2^{-}}$				
1338.2	3^{-}							55.2	1^{-}	1316.5	51(4)	
	.0	2^{-}	1338.1	18(2)	M1			571.2	1^{-}	800.3	6.9(19)	
	261.4	2^{-}	1076.8	16.5(20)	m			625.4	3^{-}	746.1	31.7(15)	m
	449.6	3^{-}	888.6	8(3)	m			801.7	$^{1,2^{-}}$	570.0	4.9(4)	
	544.0	4^{-}	794.2	25.9(12)	M1			957.0	$^{1,2^{-}}$	414.6	1.9(4)	
	625.4	3^{-}	712.7	5.3(7)	m			1075.5	$1-3^{-}$	296.0	2.6(5)	m
	894.3	3^{-}	443.9	12.8(19)	m		1376.0	$^{1,2^{-}}$				
	971.8	3^{-}	366.3	1.43(11)				247.6	1^{-}	1128.5	17.5(8)	E2

FIZIKA
Β
CT.
(1996)
<u>4</u>
229 - 253

	261.4	2^{-}	1114.5	22.0(10)	
	362.9	2^{-}	1012.8	7.1(7)	m
	449.6	3^{-}	926.6	4.0(4)	m
	728.7	0^{-}	647.3	15.6(8)	m,M1
	916.4	$1,2^{-}$	459.5	2.43(18)	
	999.2	$1,2^{-}$	376.8	3.5(11)	
	1092.9	0^{-}	283.1	2.2(5)	M1
	1104.8	$0-2^{-}$	271.1	13.1(11)	m,(M1)
	1240.4	3^{-}	135.6	12(3)	,
1380.9	3^{-}				
	192.9	1^{-}	1187.7	19(4)	m
	368.3	1^{-}	1012.8	7.3(7)	m
	381.2	3^{+}	999.7	30.1(15)	M1+E2
	482.3	4^{+}	898.5	19(2)	m
	764.5	4^{-}	616.4	5.6(8)	
	789.3	1^{-}	591.6	3.7(5)	m
	891.6	$1,2^{-}$	489.3	4.6(3)	m
	932.0	3-	448.9	3.09(19)	
	1018.4	$1,2^{-}$	362.5	4.4(5)	m
	1061.3	3-	319.6	2.4(3)	
1390.2	2^{-}			. ,	
	362.9	2^{-}	1027.1	24.9(13)	
	544.0	4^{-}	846.2	38(7)	
	672.7	$1,2^{-}$	717.7	13(2)	
	894.3	3^{-}	496.0	13.1(16)	
	1032.3	3^{-}	357.9	5.8(13)	m
	1160.0	3^{-}	230.2	4.5(8)	
1396.1	3^{-}				
	.0	2^{-}	1396.1	21.5(20)	m,M1
	247.6	1^{-}	1148.7	41.4(14)	M1
	346.9	2^{-}	1049.2	16.1(16)	M1
	362.9	2^{-}	1033.1	8.1(6)	m,M1
	896.6	$^{1,2^{-}}$	499.6	1.94(22)	m
	932.0	3^{-}	464.2	1.14(11)	m
	987.6	3^{-}	408.6	3.09(11)	
	1038.3	3^{-}	357.9	2.5(6)	m
	1095.5	3^{+}	300.6	4.00(22)	
				. ,	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1399.4	2.3-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1000.1	55 2	1-	1344.3	24(3)	M1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		381.2	3+	1018.0	16(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		625.4	3-	774.1	8.3(12)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		703.7	1-	695.7	7.0(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		786.5	2-	612.9	13.6(24)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		801.7	1.2^{-}	597.7	5.8(4)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		824.6	3+	574.8	15.4(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		835.4	3-	564.0	2.7(4)	m
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		957.0	1.2^{-}	442.4	5.29(21)	m
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1061.3	3-	338.1	.97(10)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1402.1	1.2-	0	00011	.01(10)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		215.0	4^{-}	1187.3	13.7(7)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		406.0	2^{-}	996.1	7.9(14)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		449.6	3^{-}	952.5	16.6(11)	(E2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		529.2	3^{-}	872.9	8.5(11)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		571.2	1^{-}	830.8	6.3(8)	M1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		625.4	3^{-}	776.6	10.3(10)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		632.5	$1,2^{-}$	769.6	4.0(8)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		786.5	2^{-}	615.6	4.6(3)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		789.3	1^{-}	612.9	8.2(15)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		810.4	3^{+}	591.6	2.5(3)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		835.4	3^{-}	566.8	1.8(3)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		916.4	$1,2^{-}$	485.6	14.1(12)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		918.6	$1,2^{-}$	483.4	.91(7)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1405.0	$^{2,3-}$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		215.0	4^{-}	1189.8	30(6)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		328.5	3^{-}	1076.4	18(2)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		672.7	$^{1,2^{-}}$	732.2	29.8(12)	m,M1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		789.3	1^{-}	615.6	15.0(8)	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		957.0	$1,2^{-}$	448.0	2.75(21)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1108.9	$^{1,-}$	296.0	3.1(6)	m
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1409.4	3^{-}				
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		192.9	1^{-}	1216.6	13.4(8)	$_{m,E2}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		346.9	2^{-}	1062.6	4.9(3)	
571.2 1^- 838.2 7.7(12)		381.2	3^{+}	1028.2	6.5(16)	
		571.2	1^{-}	838.2	7.7(12)	
$745.2 1,2^{-} \qquad 664.2 \qquad 3.4(3)$		745.2	$1,2^{-}$	664.2	3.4(3)	

					TABLE 2	?. (coi	ntinuation	ı).				
E_i	E_{f}	I^{π}	E_{γ}	Branching	$Comment^a$]	E_i	E_{f}	I^{π}	E_{γ}	Branching	$Comment^a$
(keV)	(keV)		(keV)	(%)			(keV)	(keV)		(keV)	(%)	
	894.3	3^{-}	515.1	6.2(3)	m			529.2	3^{-}	902.5	27.1(23)	
	1075.5	$1-3^{-}$	333.8	6.81(13)	M1			625.4	3^{-}	806.1	4.6(5)	
	1095.5	3^{+}	313.8	.64(13)	m			646.4	0^{+}	785.4	2.7(7)	m
	1286.7	2^{-}	122.7	50(4)				983.1	2^{+}	448.6	8.25(15)	
1418.7	$^{3,4^{+}}$							1056.7	2^{-}	374.9	3.4(3)	m
	406.0	2^{-}	1012.8	6.4(6)	m			1075.5	$1-3^{-}$	356.1	.77(5)	
	529.2	3^{-}	889.5	8.2(17)				1095.5	3^{+}	336.1	.31(5)	
	625.4	3^{-}	793.4	2.7(8)	m			1108.9	$1,^{-}$	322.8	.7(4)	m
	632.5	$^{1,2^{-}}$	786.2	6.6(10)	m		1434.6	$^{1,2^{-}}$				
	672.7	$^{1,2^{-}}$	746.1	15.1(8)	m			55.2	1^{-}	1379.4	9.4(8)	M1
	758.4	4^{+}	660.3	7.3(5)				247.6	1^{-}	1187.3	10.5(5)	m
	764.5	4^{-}	654.2	10.2(8)	M1			406.0	2^{-}	1028.6	31.0(22)	M1
	801.7	$^{1,2^{-}}$	617.0	2.2(3)	m			449.6	3^{-}	984.9	6.8(14)	
	824.6	3^{+}	594.2	4.8(8)	m			548.9	2^{-}	885.6	11.4(12)	M1
	957.0	$^{1,2^{-}}$	461.7	1.35(8)	m			702.5	2^{-}	732.2	7.1(3)	m,M1
	960.6	3^{+}	458.0	33.1(3)	m,M1			703.7	1^{-}	730.8	4.5(14)	m
	1032.3	3^{-}	386.4	.42(8)	m			896.6	$^{1,2^{-}}$	538.0	1.56(10)	m
	1104.8	$0-2^{-}$	313.8	1.1(3)	m			987.6	3^{-}	447.0	1.00(5)	m
1423.8	3^{-}							1061.3	3^{-}	373.4	1.7(5)	
	236.0	3^{-}	1187.7	21(4)	m			1092.9	0^{-}	341.7	5.4(9)	
	346.9	2^{-}	1076.8	16.5(20)	m			1297.1	$1-3^{-}$	137.5	9(2)	m
	362.9	2^{-}	1060.9	28.6(15)	M1		1444.4	3^{-}				
	625.4	3^{-}	798.4	12.3(14)	m,M1			362.9	2^{-}	1081.6	31(7)	
	800.0	2^{-}	623.8	6.3(4)	M1			368.3	1^{-}	1076.4	21(3)	m
	835.4	3^{-}	588.4	9.69(22)				453.8	2^{-}	990.6	22(7)	(M1)
	891.6	$^{1,2^{-}}$	532.2	1.87(22)	m			764.5	4^{-}	679.8	8.6(12)	
	971.8	3^{-}	451.9	2.09(11)				786.5	2^{-}	657.8	7.1(22)	m
	1038.3	3^{-}	385.6	.77(11)	m			891.6	$^{1,2^{-}}$	553.0	8(4)	m
1431.6	$^{2,3-}$						1453.9	3^{-}				
	.0	2^{-}	1431.4	10.1(21)				346.9	2^{-}	1107.0	6.3(10)	M1
	215.0	4^{-}	1216.6	15.2(9)	m,E2			368.3	1^{-}	1085.5	6.23(24)	
	236.0	3^{-}	1195.5	10.5(7)				406.0	2^{-}	1047.7	3.06(19)	
	362.9	2^{-}	1068.5	3.8(3)	m			637.1	4^{+}	816.6	1.4(3)	
	406.0	2^{-}	1025.5	3.2(3)	m			800.0	2^{-}	653.8	1.47(12)	m
	495.5	1^{-}	936.1	2.9(5)				932.0	3-	521.9	.53(10)	m
	511.5	3^{-}	920.1	5.9(13)	M1	J		951.4	3^{+}	502.5	5.3(11)	

FIZIKA B 5 (1996) 4, 229–253

FIZIKA
Β
CT
(1996)
4,
229 - 253

	1032.3	3-	421.6	.87(7)	
	1047.1	$1,2^{-}$	406.8	.169(24)	m
	1371.5	$1,2^{-}$	82.4	74(8)	E1
1459.0	3^{-}				
	482.3	4^{+}	976.5	15(3)	m
	511.5	3^{-}	947.6	17(4)	
	672.7	$1,2^{-}$	786.2	15.3(23)	m
	810.4	3+	648.6	7.6(10)	m
	891.6	$1,2^{-}$	567.3	3.9(10)	
	894.3	3-	564.7	5.1(6)	
	957.0	1.2^{-}	502.0	5.6(19)	
	971.8	3-	487.2	15.7(8)	
	1061.3	3^{-}	397.7	1.76(19)	
	1108.9	1	350.1	9.0(6)	
	1124.9	2^{-} 1146.	334.1	2.75(19)	m
1472.1	3-				
	261.4	2-	1210.7	14.9(13)	
	362.9	2-	1109.3	36(6)	M1+E2
	495.5	1-	976.5	4.3(9)	m
	511.5	3-	960.5	5.4(4)	
	702.5	2-	769.6	34(7)	m
	789.3	1-	682.8	81(3)	
	896.6	12^{-1}	575.5	2.76(22)	
	951.4	3+	520.6	14(5)	m
	957 O	1.2^{-}	515.1	75(4)	m
	987.6	3-	484.5	88(11)	m
	1200 /	3-	262.0	13(6)	111
1475.6	1203.4	5	202.1	1.5(0)	
1470.0	236.0	2-	1230.6	47(5)	m E2
	200.0 520.2	3-	046.5	9.6(4)	111,122
	548.0		940.0 026.6	$\frac{9.0(4)}{2.1(2)}$	m
	646.4	$\frac{2}{0^{+}}$	920.0 820.2	3.1(3) 3.8(10)	111
	758 4	4+	049.0 717 9	$\frac{2.0(10)}{7.1(15)}$	m
	100.4 019 F	4' 1 0	111.3	(.1(10))	111
	910.0 097.6	1,2	001.0	2.0(3) 2.74(31)	
	901.0	ა ე_	400.0	2.14(21)	
	1209.4	ა ი_	200.3	3.0(8)	
	1232.8	び 2-	242.8	2.1(5) 1.2(7)	m
	1240.4	3 ⁻	235.3	1.3(7)	m

	1304.8	3-	170.8	3.7(16)	
	1338.2	3-	137.5	13(4)	m
1487.1	1.9-	0	101.0	10(4)	111
1407.1	1,2	2-	1487 3	8 3(10)	m M1
	55.2	1-	1432.0	9.7(10)	111,1111
	01.0	0-	1306 1	5.7(10) 5.8(6)	m M1
	915 0	4-	1979.9	4.0(4)	m,1011
	210.0	4	1272.2	4.0(4)	III E9
	452.0	1	1239.0	20.7(22)	m, EZ
	400.0	2 1 —	1055.1	2.22(10)	m,m1
	371.2	1	915.9	2.7(5)	m
	632.5	1,2	854.6	6.3(7)	M1
	987.6	3-	499.6	.53(6)	m
	1032.3	3^{-}	454.9	1.31(6)	m
	1047.1	$1,2^{-}$	440.1	2.9(10)	
	1363.3	$1-3^{-}$	123.8	34(3)	
1496.2	3^{-}				
	406.0	2^{-}	1090.1	41(7)	M1
	1095.5	3^{+}	400.7	10.1(17)	m
	1363.3	$1-3^{-}$	132.9	48(9)	
1505.2	$^{1,2^{-}}$				
	.0	2^{-}	1505.5	5.7(8)	m
	511.5	3^{-}	993.7	14(2)	
	571.2	1^{-}	933.9	33(9)	
	800.0	2^{-}	705.1	3.2(5)	
	932.0	3^{-}	573.3	9.2(3)	m
	957.0	$1,2^{-}$	548.2	1.5(3)	
	1047.1	$1,2^{-}$	458.0	20.72(21)	m,M1
	1061.3	3^{-}	443.9	6.1(10)	m
	1160.0	3^{-}	345.2	1.2(5)	m
	1256.0	$1,2^{-}$	249.2	.74(10)	
	1265.5	$1-3^{-}$	239.6	1.1(4)	m
	1338.2	3^{-}	167.0	1.7(3)	m,M1
1513.6	1.2^{-}			()	,
	91.0	0^{-}	1422.7	3.6(7)	
	261.4	2^{-}	1252.1	6.1(8)	
	362.9	2^{-}	1150.6	12.3(9)	M1
	406.0	2^{-}	1107.7	25(3)	E2
	530.5	1^{-}	983.0	4.6(4)	m
				- \ /	

TABLE 2. (continuation). I^{π} Branching $Comment^{a}$ I^{π} E_{γ} Branching $Comment^a$ E_i E_f E_{γ} E_i E_f (keV) (keV) (keV) (%)(keV) (keV) (keV) (%) 632.5 $1,2^{-}$ 3.7(8)1301.0 2^{-} 235.3.5(3)881.0 m m 672.7 $1,2^{-}$ 840.8 3.0(9)1453.9 3^{-} 82.5 54(9)800.0 2^{-} 713.62.03(21)1542.8 3^{-} 3^{+} 824.6 689.0 7.7(6)55.2 1^{-} 1487.312.6(15)m,M1835.4 3^{-} 259.3 1^{-} 1283.522(6)678.320(5) $1,2^{-}$ 617.0 .94(14)261.4 2^{-} 1281.631(6)(E1, E2)896.6 m 960.6 3^{+} 553.01.2(6)m 362.9 2^{-} 1179.97(2)M1+E21047.11047.1 $1,2^{-}$ 466.52.98(10)495.5 1^{-} 9.8(3)m 1115.3 3^{-} 398.3625.4 3^{-} 917.4M14.88(14)2.4(6)1306.8 2^{-} 206.7 4^{+} 784.4.76(10)758.41.8(9) $1,2^{-}$ 1530.7764.5 4^{-} 778.31.2(7).0 2^{-} 1530.628.6(22)800.0 2^{-} 742.92.8(10)m 2^{-} 346.91183.829.5(21)(M1, E2)835.4 3^{-} 707.43.5(3) 2^{-} 453.81076.810.3(13)m 894.3 3^{-} 648.61.84(23) \mathbf{m} 745.2 $1,2^{-}$ 785.43.6(9)1157.2 3^{-} 385.6.33(5) \mathbf{m} m 801.7 1.2^{-} 729.0 10.2(11)1272.1 3^{-} 270.62.5(9)M1891.6 1.2^{-} 639.0 4.06(20)1554.4 $1,2^{-}$ m $1,2^{-}$ 612.14.00(20).0 2^{-} 918.61554.513(4)957.0 $1,2^{-}$ 573.88.6(5)192.9 1^{-} 1361.414.2(12)M1 $1-3^{+}$ 1191.6339.1.82(7)328.5 3^{-} 1226.014.6(6)M1+E21536.4 $0-3^{-}$ 368.3 1^{-} 1186.38.7(22)91.0 0^{-} 5.3(9)529.21025.51445.5 3^{-} 2.47(19)m 261.41275.19.9(10)548.9 2^{-} M1 2^{-} 1005.47.1(8)346.9 2^{-} 1189.3 3.2(3) \mathbf{m} 625.4 3^{-} 929.0 6.7(8)M1 4^{+} 482.31053.96.0(10)632.5 $1,2^{-}$ 921.8 4.7(10)M1495.5 1^{-} 1040.8 3.53(17)786.5 2^{-} 767.95.2(4)m m 571.2 1^{-} 789.3 1^{-} 965.13.10(11)765.18.5(4)702.5 2^{-} 833.9 896.6 1.2^{-} 657.8 4.1(3)1.1(4)m 894.3 3^{-} 642.1.40(9)918.6 $1,2^{-}$ 635.84.36(11)M1983.1 2^{+} 957.0 $1,2^{-}$ 553.0.9(5)597.5.98(19)m m 1032.3 3^{-} 504.12.41(14)987.6 3^{-} 566.81.10(19) \mathbf{m} 1047.1 $1,2^{-}$ 489.31.37(9)1056.7 2^{-} 497.71.25(8) \mathbf{m} 1202.3 2^{-} 334.1.40(3)1075.5 $1-3^{-}$ 478.8.90(8) \mathbf{m} 3^{-} 1191.6 $1-3^{+}$ 1240.4296.0.43(9)362.91.65(11)m 1272.1 3^{-} 264.21335.5 $1-3^{-}$ 218.92.4(5)(M1)2.41(22) \mathbf{m} 1286.7 2^{-} 249.7.63(17)m 1560.4 3^{-} 55.2 1^{-} 1505.510.4(14)m

MAYERHOFER ET AL.: THE NUCLEUS ¹⁹⁸Au investigated with neutron capture :

	236.0	3-	1324.4	24(2)	M1]	1032.3	3^{-}	5474.5	.76(19)
	495.5	1^{-}	1064.8	19(3)	m		1038.3	3^{-}	5474.5	.76(19)
	544.0	4^{-}	1016.3	5.0(8)	m		1056.7	2^{-}	5456.0	.28(14)
	702.5	2^{-}	857.9	9.6(20)			1092.9	0^{-}	5418.8	.35(11)
	703.7	1^{-}	856.6	10.6(20)			1095.5	3^{+}	5418.8	.35(11)
	786.5	2^{-}	773.8	6.7(18)	m		1209.4	3^{-}	5303.0	.71(19)
	894.3	3^{-}	666.2	6.2(18)			1232.8	3^{-}	5279.5	1.3(3)
	1157.2	3^{-}	403.1	4.48(19)			1240.4	3^{-}	5272.1	1.4(7)
	1256.0	$^{1,2^{-}}$	304.4	2.67(19)			1265.5	$1-3^{-}$	5244.4	1.9(7)
6512.5	1^{+}						1272.1	3^{-}	5244.4	1.9(7)
	.0	2^{-}	6512.6	5.0(3)	E1		1286.7	2^{-}	5226.1	1.5(3)
	55.2	1^{-}	6457.4	7.3(4)	E1		1293.9	$^{1,2^{-}}$	5217.8	.57(21)
	236.0	3^{-}	6276.9	3.2(5)			1297.1	$1-3^{-}$	5217.8	.57(21)
	247.6	1^{-}	6265.0	1.7(3)			1304.8	3^{-}	5206.4	.57(21)
	259.3	1^{-}	6253.1	9.0(9)			1306.8	2^{-}	5206.4	.57(21)
	261.4	2^{-}	6251.1	5.3(9)			1338.2	3^{-}	5174.7	.8(3)
	346.9	2^{-}	6165.6	.64(19)			1359.1	$1-3^{-}$	5153.5	2.1(11)
	362.9	2^{-}	6149.6	2.75(14)			1363.3	$1-3^{-}$	5149.9	1.72(2
	368.3	1^{-}	6145.4	1.0(6)			1371.5	$^{1,2^{-}}$	5141.1	1.29(2)
	406.0	2^{-}	6106.4	1.74(11)			1390.2	2^{-}	5118.7	.69(11)
	529.2	3^{-}	5983.2	3.80(19)			1396.1	3^{-}	5118.7	.69(11)
	571.2	1^{-}	5941.3	1.72(10)			1399.4	$^{2,3-}$	5109.5	.57(11)
	632.5	$^{1,2^{-}}$	5880.1	1.1(3)			1402.1	$^{1,2^{-}}$	5109.5	.57(11)
	672.7	$^{1,2^{-}}$	5839.8	.5(3)			1405.0	$^{2,3^{-}}$	5109.5	.57(11)
	702.5	2^{-}	5808.3	.9(3)	m		1409.4	3^{-}	5103.0	3.25(2
	703.7	1^{-}	5808.3	.9(3)	m		1423.8	3^{-}	5086.3	1.84(1 + 1)
	728.7	0^{-}	5783.8	.28(14)			1431.6	$^{2,3-}$	5080.9	.91(14)
	745.2	$^{1,2^{-}}$	5766.6	.33(11)			1459.0	3^{-}	5053.7	.21(7)
	786.5	2^{-}	5724.4	2.0(6)	m		1472.1	3^{-}	5042.5	.6(3)
	789.3	1^{-}	5724.4	2.0(6)	m		1475.6	2^{-}	5035.2	.6(3)
	801.7	$^{1,2^{-}}$	5710.7	4.73(24)			1487.1	$^{1,2^{-}}$	5024.6	.35(21)
	835.4	3^{-}	5677.4	.19(11)			1505.2	$^{1,2^{-}}$	5007.5	.21(14)
	868.8	3^{-}	5643.5	.21(11)			1513.6	$1,2^{-}$	4999.1	1.1(3)
	891.6	$^{1,2^{-}}$	5620.7	1.2(3)	m		1530.7	$^{1,2^{-}}$	4980.5	.33(11
	894.3	3^{-}	5620.7	1.2(3)	m		1536.4	$0-3^{-}$	4973.1	.21(11
	971.8	3^{-}	5540.0	.64(19)			1542.8	3^{-}	4973.1	.21(11)
	987.6	3^{-}	5524.5	2.9(3)			1554.4	$1,2^{-}$	4958.2	2.3(3)
	1018.4	$^{1,2^{-}}$	5493.8	1.5(3)						

m m m m

 \mathbf{m}

m m m m

 \mathbf{m}

m m m

m

m m

FIZIKA B 5 (1996) 4, 229–253

MAYERHOFER ET AL.: THE NUCLEUS $^{198}\mathrm{Au}$ investigated with neutron capture \ldots

results used mainly old secondary (n,γ) lines [13], primary (n,γ) transitions [14], conversion electron data [15] and average resonance neutron capture (ARC) data [4]. Half–lives of several levels had also been measured [3]. ii) Ritz combinations of our new secondary (n,γ) measurements with the very precise GAMS spectrometers. iii) Multipolarities of the transitions determined with new (n,e) data from the BILL spectrometer. iv) Level energies, intensities and $\Delta \ell$ –values of new (d,p) results. v) Summed γ – γ coincidences. The levels and their γ –decay modes are given in Table 2. The final level energies were calculated with a least squares fit to secondary γ –transitions (Table 2 of Ref. 1). The spins and parities were determined from multipolarities, branching ratios, ARC and transfered $\Delta \ell$ –values. In Table 1, the levels from the Ritz combination of secondary γ –rays (Table 1 of Ref. 1 and the present Table 2) and from the summed coincidences [16] are compared. The agreement is very good.

One of the changes compared to our previous results [4] is the decay of the 381.2 keV level. The E1 character of all transitions to negative-parity states is well established confirming the 3^+ spin-parity of this level [3].

3. Calculation of level densities in IBFFM and GPM

The calculation for ¹⁹⁸Au was performed previously up to 0.9 MeV [3] in IBFFM [5,6] by coupling valence–shell proton and neutron quasiparticles to the IBM boson core [7,8]. In the first step, the boson core was fitted to the even–even nucleus ²⁰⁰Hg in the O(6) limit [8,17]. Employing the parametrization from Ref. 4, we have performed the IBFFM calculation of energy levels up to 4.5 MeV. In Table 3, the calculated spectrum up to 1.5 MeV is is given. In Fig. 1a, we present the IBFFM cummulative number of levels $J^{\pi}=1^{-},2^{-},3^{-}$ as function of energy, in comparison to the present data. In Fig.1b, the corresponding level densities are shown.

ΙB	IBFFM energy spectrum of ^{198}Au up to 1.5 MeV. S – spin and P – parity.										
S	P	ENERGY	S	P	ENERGY	S	P	ENERGY	S	P	ENERGY
2	-	0.0000	6	+	0.4711	5	-	0.6208	5	+	0.7293
1	-	0.0199	7	+	0.4831	3	-	0.6414	2	+	0.7415
0	-	0.0373	2	-	0.4968	4	-	0.6451	6	-	0.7446
1	-	0.1143	2	-	0.5059	2	-	0.6525	7	+	0.7495
1	-	0.1877	1	-	0.5090	6	+	0.6559	3	+	0.7576
2	-	0.2011	4	-	0.5116	8	+	0.6602	5	-	0.7577
4	-	0.2249	3	-	0.5130	4	-	0.6631	3	-	0.7614
3	-	0.2814	5	-	0.5178	7	+	0.6635	2	-	0.7633
2	-	0.2891	3	-	0.5398	2	-	0.6669	5	+	0.7711
5	+	0.3122	0	-	0.5569	5	-	0.6683	6	+	0.7742
0	-	0.3173	6	+	0.5610	1	-	0.6696	4	-	0.7771
3	-	0.3226	3	-	0.5780	3	-	0.6798	3	+	0.7836
4	-	0.3468	1	-	0.5798	6	+	0.6803	1	-	0.7849
2	-	0.3510	2	-	0.5807	4	+	0.6957	3	-	0.7887
3	-	0.3655	5	+	0.5888	4	+	0.7074	2	+	0.7941
3	+	0.3876	1	-	0.5922	2	-	0.7098	4	+	0.7976
2	-	0.3989	7	+	0.5946	0	-	0.7118	8	+	0.7984
1	-	0.4021	4	-	0.6012	1	-	0.7163	3	+	0.8048
3	-	0.4123	2	-	0.6025	5	-	0.7234	1	+	0.8075
4	+	0.4250	6	-	0.6055	4	-	0.7243	7	+	0.8084
5	+	0.4360	0	-	0.6183	1	-	0.7279	9	+	0.8143

TABLE 3.

FIZIKA B 5 (1996) 4, 229–253

S	P	ENERGY	S	P	ENERGY	S	P	ENERGY
12	-	0.8180	4	-	1.0086	1	-	1.1396
4	-	0.8201	3	-	1.0100	5	+	1.1405
8	+	0.8230	5	+	1.0120	2	+	1.1434
2	_	0.8314	7	+	1.0138	3	+	1.1468
8	+	0.8414	5	+	1.0138	7	-	1.1487
6	+	0.8477	5	+	1.0165	11	+	1.1516
7	+	0.8498	6	_	1.0194	2	-	1.1522
4	_	0.8504	3	-	1.0203	5	+	1.1530
2	-	0.8508	2	_	1.0216	2	<u>-</u>	1.1545
5	+	0.8543	5	_	1.0228	6	+	1.1546
3	_	0.8544	4	+	1.0236	9	+	1.1561
6	_	0.8560	2	<u> </u>	1.0245	10	+	1.1565
4	+	0.8582	11	_	1.0262	13	<u>-</u>	1.1638
0	_	0.8586	8	-	1.0298	2	+	1.1644
5	+	0.8646	3	+	1.0410	7	<u>+</u>	1.1670
4	+	0.8684	6	+	1 0449	1	1 1	1 1674
1		0.8690	7		1.0524	8		1 1677
5		0.8765	3		1.0542	a		1 1685
3	_	0.8773	8	+	1.0552	8		1 1696
8	-	0.8775	7	l '	1.0563	6	-	1.1000
3	T	0.8782		-	1.0500		-	1.1704
5	-	0.8853	2	-	1.0555	1		1.1712
7	-	0.8855	6	_	1.0000	10		1.1717
6	_	0.8904	7	- T	1.0013	20		1.1740
2	Ŧ	0.8920	1	+	1.0014		-	1.1747
27	-	0.8920	7	-	1.0001	9	+	1.1701
É	+	0.0979		+	1.0007	3	-	1.1705
1	+	0.9044	9	+	1.0710	4	-	1.1700
1	-	0.9045	0	-	1.0730	0	-	1.1004
4	+	0.9040	1	+	1.0749	9	+	1.1000
0	-	0.9052		-	1.0700	3	-	1.1002
3	-	0.9115	0 C	+	1.0819	1	-	1.18/1
4	-	0.9210	0	+	1.0070			1.1091
3	+	0.9217	2	-	1.0913	3	+	1.1895
0	+	0.9244	0	+	1.0915	4	+	1.1912
2	-	0.9247	3	+	1.0921	2	+	1.1925
0	+	0.9269) 1	-	1.0921		-	1.1953
4	-	0.9342		+	1.0923	1	+	1.1998
1	+	0.9392	4	+	1.0928		-	1.2006
5	-	0.9408	8	+	1.0944	6	-	1.2009
6	+	0.9436	6	-	1.0963	4	+	1.2010
9	+	0.9458	6	+	1.0966	14	-	1.2018
3	-	0.9485	2	+	1.0991	10	-	1.2031
2	-	0.9523	4	+	1.1050	3	+	1.2035
5	+	0.9536	1	+	1.1096	3	-	1.2041
1	-	0.9608	0	-	1.1102	4	-	1.2055
8	+	0.9625	8	+	1.1106		-	1.2058
1	+	0.9694	4	-	1.1126	2	+	1.2083
4	-	0.9703	3	-	1.1142	11	-	1.2094
9	+	0.9718	1	+	1.1143	8	+	1.2114
2	-	0.9754	5	+	1.1168	1	-	1.2132
9	+	0.9857	2	+	1.1239	10	+	1.2147
3	-	0.9865	2	-	1.1253	8	+	1.2211
5	-	0.9869	3	-	1.1257	6	+	1.2215
7	-	0.9879	10	+	1.1281	2	-	1.2245
6	-	0.9905	7	-	1.1291	3	+	1.2247
10	+	0.9957	6	-	1.1295	5	+	1.2255
6	+	0.9994	4	-	1.1316	4	+	1.2265
4	-	1.0009	5	-	1.1323	7	+	1.2273
1	-	1.0068	3	+	1.1334	6	-	1.2277

TABLE 3. (continuation).

S	P	ENERGY	S	P	ENERGY	S	P	ENERGY
8	-	1.2291	5	-	1.3196	6	+	1.4036
9	+	1.2293	9	-	1.3197	7	+	1.4039
5	-	1.2318	4	+	1.3205	4	+	1.4047
4	+	1.2327	1	+	1.3213	4	-	1.4060
1	-	1.2374	10	+	1.3214	11	+	1.4061
6	-	1.2378	9	+	1.3235	3	-	1.4073
9	+	1.2384	5	+	1.3250	8	+	1.4073
0	-	1.2396	2	-	1.3268	8	-	1.4080
6	+	1.2398	5	+	1.3287	5	-	1.4089
6	+	1.2398	4	-	1.3288	9	+	1.4110
7	+	1.2430	3	+	1.3298	6	+	1.4130
4	-	1.2500	11	+	1.3319	4	-	1.4131
10	+	1.2502	10	-	1.3346	7	-	1.4132
5	+	1.2503	1	-	1.3368	6	+	1.4135
3	-	1.2503	12	-	1.3399	3	+	1.4157
5	+	1.2572	6	+	1.3406	2	+	1.4161
6	-	1.2600	4	+	1.3431	6	-	1.4165
4	-	1.2602	6	-	1.3441	4	+	1.4183
11	+	1.2614	2	-	1.3449	10	-	1.4184
8	+	1.2645	8	+	1.3460	1	+	1.4187
6	+	1.2647	3	-	1.3460	2	+	1.4188
1	-	1.2652	3	-	1.3482	3	-	1.4221
0	-	1.2653	3	+	1.3500	7	+	1.4225
7	+	1.2686	7	+	1.3516	2	-	1.4241
2	-	1.2696	5	+	1.3518	6	+	1.4257
5	-	1.2696	2	+	1.3527	4	-	1.4275
8	+	1.2735	2	-	1.3573	0	-	1.4280
5	+	1.2738	4	-	1.3583	4	-	1.4280
3	-	1.2764	5	-	1.3593	3	-	1.4290
6	+	1.2771	9	+	1.3604	1	-	1.4292
7	+	1.2812	4	+	1.3607	5	+	1.4302
1	-	1.2815	4	-	1.3617	10	+	1.4316
2	-	1.2815	3	-	1.3630	4	+	1.4324
7	+	1.2837	4	+	1.3631	12	-	1.4326
7	-	1.2856	13	-	1.3646	5	+	1.4343
7	-	1.2861	3	+	1.3654	1	-	1.4350
9	+	1.2866	8	-	1.3674	7	-	1.4353
3	-	1.2889	9	-	1.3684	2	+	1.4354
9	-	1.2892	6	+	1.3694	8	+	1.4376
5	-	1.2905	5	+	1.3694	7	+	1.4385
0	-	1.2919	10	+	1.3751	3	+	1.4396
11	+	1.2922	4	+	1.3758	1	+	1.4417
4	-	1.2930	5	+	1.3766	5	-	1.4472
8	-	1.2945	5	-	1.3784	4	+	1.4486
3	+	1.2965	2	+	1.3785	8	+	1.4486
8	+	1.2977	6	-	1.3798	1	-	1.4491
6	+	1.2992	8	+	1.3803	2	-	1.4508
8	+	1.3026	2	-	1.3837	5	+	1.4510
4	+	1.3039	7	-	1.3845	3	-	1.4532
2	+	1.3040	9	+	1.3847	7	+	1.4533
4	-	1.3040	3	+	1.3862	0	+	1.4541
1	-	1.3051	1	-	1.3903	3	-	1.4556
4	+	1.3069	2	-	1.3905	10	+	1.4584
3	+	1.3076	6	-	1.3939	8	+	1.4588
5	+	1.3108	5	+	1.3955	4	-	1.4607
2	-	1.3112	5	+	1.3980	6	-	1.4609
12	+	1.3116	6	+	1.3983	8	-	1.4619
3	-	1.3134	5	-	1.3983	5	+	1.4636
6	+	1.3141	4	+	1.3992	7	+	1.4639
7	+	1.3152	9	+	1.3997	12	+	1.4655
0	-	1.3167	1	-	1.4033	8	-	1.4688

TABLE 3. (continuation).

FIZIKA B **5** (1996) 4, 229–253

S	P	ENERGY									
6	+	1.4692	3	+	1.4788	7	-	1.4871	3	+	1.4945
2	-	1.4692	1	+	1.4791	7	+	1.4880	2	-	1.4949
2	-	1.4742	4	-	1.4798	10	+	1.4899	3	-	1.4951
12	+	1.4747	6	+	1.4808	3	-	1.4914	13	+	1.4972
5	-	1.4747	9	+	1.4830	11	+	1.4919	7	-	1.4975
8	+	1.4760	2	+	1.4833	0	-	1.4920	3	+	1.4979
0	+	1.4772	4	+	1.4840	2	-	1.4926	3	-	1.4980
4	+	1.4773	10	+	1.4846	9	-	1.4927	9	+	1.4983
7	+	1.4775	11	+	1.4867	10	-	1.4927	5	-	1.4987
5	+	1.4782	4	-	1.4871	3	-	1.4932	6	+	1.4988

TABLE 3. (continuation).

The calculation of energy spectrum of ¹⁹⁸Au was also performed using the Gaussian polynomial (GPM) method from Ref. 18 with Seegers single-particle energies. The GPM gives an exact energy spectrum of the Hamiltonian consisting of a single-particle part and a pairing force that acts only within the levels. The effective strength of this diagonal pairing force is fitted to the experimental level density of the $J^{\pi}=1^+,2^+$ levels, obtained from the neutron resonance data [19,20], as shown in Fig. 2. Using this value of the effective pairing strength G, we have calculated the corresponding level density (Figs.1a and b).

Fig. 1a. Cummulative number of states $J^{\pi} = 1^{-}, 2^{-}, 3^{-}$ in ¹⁹⁸Au up to 5 MeV, calculated in IBFFM (solid line) and GPM (dotted line) in comparison to the present experimental data (closed circles).

Fig. 1b. Level density of combined levels $J^{\pi}=1^{-},2^{-},3^{-}$ in ¹⁹⁸Au up to 5 MeV, calculated in IBFFM (closed circles) and GPM (×'s) in comparison to the present experimental data (closed diamonds).

As seen from Fig.1b, up to ≈ 1.2 MeV, the IBFFM and GPM results are rather close to each other. The experimental value have a similar trend, lying slightly below the IBFFM results. This is in accordance with the expectation that the IBFFM levels capture most of the states in the low-energy region. However, with increasing energy, an increasing fraction of states is expected to lie outside the frame of the IBFFM model space. In particular, one could expect additional states arising from an extension to the IBM2 approach [8], with neutron and proton bosons with different values for the single boson energies, before invoking extension of the boson space, octupole and other degrees of freedom. Thus, the present IBFFM spectrum represent only a subset of the total energy spectrum of ¹⁹⁸Au. The actual level density of a nucleus increases with the excitation energy, but the IBFFM level density, similarly as in the case of shell-model level densities [20,21], is based on a finite spectroscopic space. Hence, the IBFFM level densities should coincide with the actual level densities only up to some critical excitation energy, and above this energy the model space should rapidly fall below the actual space. In the present case, we find the critical excitation energy 1.2 MeV. In fact, the whole IBFFM spectrum could be approximately fitted by the Gaussian, as demostrated for the ¹³²Pr IBFFM calculation in Ref. 22.

Fig. 2. Level density of the combined levels $J^{\pi} = 1^+, 2^+$ calculated in GPM by fitting to the experimental neutron resonance data (closed circle).

Above the energy $\bar{E} \approx 1.2$ MeV, the actual level density is described by the GPM calculation in Fig. 1b. Above the low–energy section, the GPM level density approximately corresponds to the Bethe formula.

FIZIKA B 5 (1996) 4, 229–253

Fig. 3. Calculated spin distribution for ¹⁹⁸Au. The calculated values denoted by $y_H = \ln[N(J)_{E,E+\Delta E}/(J+\frac{1}{2})]$ are presented for the energy intervals (a) 1.4 - 1.6 MeV and (b) 5.0 - 5.2 MeV. The IBFFM results are presented by closed circles (diagram a) and GPM results by (×'s) (diagrams a nad b). $N(J)_{E,E+\Delta E}$ denotes the number of levels of spin J obtained by IBFFM or GPM calculations in the corresponding energy interval. Dashed lines present the fits of the spin–dependent Bethe formula to the states of spin 0-10. The fitted value of the spin cut-off parameter σ is 4.7 for IBFFM results in diagram a, 2.26 for GPM results in diagram a and 5.224 for GPM results in diagram b.

We have also investigated the IBFFM and GPM spin distributions. In Fig. 3 we present the spin distributions corresponding to the IBFFM and GPM cal-

culations for two energy intervals: 1.4–1.6 MeV and 5.0–5.2 MeV. The plots of $\ln[N(J)_{E,E+\Delta E}/(J+\frac{1}{2})]$ versus $(J+\frac{1}{2})^2$ are displayed and the spin–dependent Bethe formula is presented by a straight line in this diagram. As seen from Fig. 3, the IBFFM and GPM calculations for ¹⁹⁸Au are in approximate accordance with prediction of the Bethe formula.

4. Conclusions

Compared to previous data on ¹⁹⁸Au, the level scheme is now well established and very precise up to 1560 keV. Information on 132 levels, mostly with spin and parity assignments, was obtained. As a consequence of the ARC measurements, the level scheme is supposed to be complete for levels with spin and parity 0^- , 1^- , 2^- and 3^- up to 700 keV. Levels with positive parity are much less frequent and start at 312 keV. Since ARC intensities are smaller for positive parities in our case, the completeness is less guaranteed for 0^+-3^+ levels. Due to such a large number of levels with detailed spectroscopic information, ¹⁹⁸Au is now among the best experimentally studied nuclei. It is, therefore, an ideal example to test models for transitional heavy odd-odd nuclei.

Here we have performed the total level density calculations up tp 4.5 MeV by using the restricted IBFFM configuration space and generating function method. Up to the energy of 1.2 MeV, the two calculated level densities and experimental level density in the spin/parity window $J^{\pi}=1^{-},2^{-},3^{-}$ are in an approximate agreement. Above this energy the actual level density is expected to be described by the GPM result, while the IBFFM result falls rapidly below due to effect of truncation of the configuration space. It is also found that the spin distributions in both model calculations are in an approximate accordance with the spin–dependent Bethe formula, and the value of the spin cut–off parameter σ in GPM increases with increasing energy.

Acknowledgement

We wish to thank J. Jolie for discussions, P. Maier-Komor and K. Nacke for target preparation, Th. Faestermann for Q3D maintenance, F. Fridgen for computational help, and the *Bundesministerium für Forschung und Technologie*, Bonn, and the *Beschleunigerlaboratorium der Universität und Technischen Universität* München for support.

References

- U. Mayerhofer, T. von Egidy, J. Klora, H. Lindner, H.G. Börner, S. Judge, B. Krusche, S. Robinson, K. Schreckenbach, A.M. Sukhovoj, V.A. Khitrov, S.T. Boneva, V. Paar, S. Brant and R. Pezer; Fizika B 5 (1996) 167;
- 2) U. Mayerhofer, Ph.D. thesis, Technische Universität München (1990);

FIZIKA B 5 (1996) 4, 229–253

- P. Petkov, W. Andrejtscheff, S.J. Robinson, U. Mayerhofer, T. von Egidy, S. Brant, V. Paar and V. Lopac, Nucl. Phys. A 554 (1993) 189;
- 4) U. Mayerhofer, T. von Egidy, P. Durner, G. Hlawatsch, J. Klora, H. Lindner, S. Brant, H. Seyfarth, V. Paar, V. Lopac, J. Kopecky, D.D. Warner, R.E. Chrien and S. Pospisil, Nucl. Phys. A **492** (1989) 1;
- V. Paar, in Capture Gamma-Ray Spetroscopy and Related Topics-1984, ed. S. Raman, American Inst. of Phys. (New York) Conf. Proc. No. 125 (1985) 70;
- 6) S. Brant, V. Paar and D. Vretenar, Z. Phys. A **319** (1984) 351; V. Paar, D. K. Sunko and D. Vretenar, Z. Phys. A **327** (1987) 291;
- 7) A. Arima and F. Iachello, Phys. Rev. Lett. 35 (1975) 157;
- 8) F. Iachello and A. Arima, *The Interacting Boson Model* (Cambridge University Press, Cambridge, 1987);
- 9) D. K. Sunko, Phys. Rev. C 35 (1987) 1936;
- 10) D. K. Sunko, Phys. Lett. B 201 (1988) 7;
- V. Paar, D. K. Sunko, S. Brant, M. G. Mustafa and R. G. Lanier, Z. Phys. A 345 (1993) 343;
- 12) Zhou Chunmei, Nuclear Data Sheets 74 (1995) 259;
- 13) J. A. Mirza, K. E. G. Löbner, D. Breitig, H. A. Baader, H. R. Koch and O. W. B. Schult, Z. Physik A 272 (1975) 175;
- 14) F. Braumandl, T. von Egidy, D. D. Warner, Z. Physik A 292 (1979) 397;
- 15) T. von Egidy, E. Bieber and Th. W. Elze, Z. Phys. 195 (1966) 489;
- 16) S. T. Boneva, E. V. Vasileva, A. V. Voinov, A. M. Sukhovoj, V. A. Khitrov and Yu. V. Kholnov, Izv. Ross. Akad. Nauk, ser. fiz. 59 (1995) 12;
- 17) J. A. Cizewski, R. F. Casten, G. J. Smith, M. L. Stelts, W. R. Kane, H. G. Boerner and W. F. Davidson, Phys. Rev. Lett. 40 (1978) 167;
- 18) V. Paar, D. K. Sunko, S. Brant, M. G. Mustafa and R. G. Lanier, Z. Phys. A 345 (1993) 343;
- 19) T. von Egidy, H. H. Schmidt and A. N. Behkami, Nucl. Phys. A 454 (1986) 109; 481 (1988) 189;
- 20) F. S. Chang, J. B. French and T. H. Thio, Ann. Phys. 66 (1971) 137;
- J. B. French and F. S. Chang, *Statistical Properties of Nuclei*, Ed. J. B. Garg (Plenum, New York, 1972), p. 405;
- 22) V. Paar, S. Brant and D. Paar, Z. Phys. (1996) in print.

PROUČAVANJE JEZGRE ¹⁹⁸Au POMOĆU NEUTRONSKOG UHVATA I (d,p) REAKCIJOM

II. KONSTRUKCIJA SHEME NIVOA I IZRAČUNAVANJE GUSTOĆE NIVOA

Sastavljena je shema raspada ¹⁹⁸Au. Do energije uzbude od 1560 keV, uključeno je 111 stanja određenih (d,p) reakcijom i 125 stanja (n, γ) reakcijom. Za mnoga stanja određeni su momenti impulsa i parnost. Primjenom modela uzajamno djelujućih bozon-fermion-fermiona i metode Gaussovih polinoma, izračunate su gustoće stanja i uspoređene s izmjerenim vrijednostima.