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The electron-phonon coupling in conducting materials may prcduce at low temperature
either a charge density wave (CDW) or standard superconductivity (SC).The aim of this talk is to
shed a new light on the competition between CDW and SC through an approach based on
previous works on incommensurate and chaotic structurcs in PEIERLS models which are
currently under development. For this purpose, we focus on the HOLSTEIN Hamiltonian written
as:

(r) H =-t I ri.*orj,oo ,Iu, ui .* Xt"fi .4*)
<i j>,o t fl

This model consists into a band of clectrons with on-site coupling with dispersionlcss
optical phonons. The energy unit is chosen such that thc cxchangc constant bctwcen neighboring

sitcs <ij> on a d-dimensional squarc latticc bc - i .fnc band width is thus 2d. o is the clcctron

notcd T or J. c.f and ci,o are thc crcation and annihilation Fermions opcrators of an

clcctron at sitc i wirh spin o rcspccLively. The clcctron dcnsity operator is

(2'a) ni =ni,T+ni,J = c lTci,t + ci,$ci,$

"t. .- .{.
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The unit for the atomic position opcrator un is such that the elastic constant be 1. pn is the
conjugate operator to un dcfined such that [un, pnl = i. Creation and annihilation boson operator

{ ana an are defined as

r-
e-b) un = I t{*un) and (2-b) pn= iC.l-."1= -rft

'Vy

Thus, the phonon term in rhe.Hamiltonian (l) uecornes2l d*W"r= y tuih** ).The physical

units are chosen in order that this model depends on two dimensionless panmeters which are k
the "classical" electron-phonon coupling obtained within the assumption that the atoms arc

classical particles and 1 the quantum parameter which is the phonon energy in energy band units.

THE ADIABATIC LIMIT. BIPOLARONIC STATES
The adiabatic approximation (p0 : slow atoms-fast elecuons), is equivalent to he mean

field Hamillonian Hlunr which decouples electrons and phonons.

(3) FINsr = - + I oil ,j,o .5I, ni <ui> +

<i j>,o I

.;?."i>ui +lI(,; .+oiI \ p'
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Its parameters are selfconsistently determined as the mean values <ni> =<YlnilY> and

<ri>=<YluilY5. The fluctuation terms (ni - <ri >)(ui - <ui >) are neglected. Since it comes out

<li> = - l.n1t, Hamiltonian (l) is recovered for pg and <u1> = ui .

For model (1) with arbitrary dimension d and F0, a recently proven theorem[3] confirms

the existence of the "transition by breaking of analyticity" found in early one dimensional
numerical simulations. This result is an explicit consequence of ttp discreteness of ttxj lauice and
cannot be found within standard continuum, approximations.

We briefly explain here its physical meaning. In the limit k = oo, rhe electronic kinetic

energy can be dropped and the ground-state of Hamiltonian (l) is trivially degererate-The latrice
sites i are eitlrcr doubly occupied by a pair of electmns with opposite spins or not occupied at all.

Thus, the groundstates can be describcd by an arbitrary pseudospin configuration {oi} wherc o;
<ni>

= i = 0 or l. When oi = l, there is a lattice distortion at site i and we say that this site is

occupied by a bipolaron. For periodic (or quasiperiodic) configuration {oi}, the grcund-state is

either commensurue (or incommensurate) CDW.
For finite k, the ground-state degeneracy is raised. Our Oporem assefis that for k large

enough, these bipolaronic siates survive despite the kinetic energy of the electrons is no more

zero. More precisely, for any arbitrary bipolamnic distribution {oi}, there exisB an eigenstate

lY> of the adiabatic Holstein model, with the density of electron pairs {pl(k)} defined as

I
pi =i <n1>, which continuously depends on k and with{p(oo)}={oi}. Most these bipolaronic

states arc chaotic but they may also form commensurate and incommensurate superlanices (which
are CDWs). The ground-state is a particular bipolaronic superlattice (which is generally unlcnown
in models in 2 and more dimensions!). The electronic eigenstates may be extended or localized
but in any case, the bipolaronic states are proven to be insulating wiih a finite gap at the Fermi
energy and a finite gap in their phonon spectrum (no gaples phasons!):

The bipolaronic strtrctures are always insuhting and pinned m ilu tattice.

The analytic rigorous bound k > 2\f5d for the existence of bipolaronic states in d
dimensions, is in fact found to be much smaller by numerisal analysis. When k decrcases. there
is cascades of bifurcations at which chaotic bipolaronic states becomes unstable. Thus,
decreasing k, they gradually disappear and beyond the transition by "bneaking of analyticity"
(TBA) which is reached at some critical value kc((), there is no more chaotic states. kg(()

depends on the electron concentration ( per site (for example in ld and for ( = Sz 
, htf>

1"58). The density of electron pain {r1$)i (or the atomic distortion {b1} wittt bi = - k riG) ) of

the "single" bipolarons belonging to a given bipolaronic configuration {oi}can be defined as

{4} pift) = E 0n ri+n (k)

n

For t6=oo, {b1} is peaked on a single site at the origin. For finite k, the next talk, shows

examples of well localized bipolarons {blft) } calculated in one dimensional models. At the TBA,

the size of these bipolarcns diverges and below kc($, the ground-state becomes "undefectible".

Bipolarons do not exist as localized objects in real space.

When k > kc(() and at temperature low enough, the energy of model (l) essentially

depends on the bipolaronic configurations. Is thermodynamical and transpoxt properties should
be well described on the basis of a pseudospin Hamiltonian Qauice gas model).

:
I
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QUANTUM LATTICE FLUCTUATIONS CLOSE TO THE ADIABATIC REGTME
The eigenstates of the mean field Hamiltonian (3) have the form

(5) lY> = exp
t'

il t l,t<ui>)) lvacuum>

v occ,o

where <ui> is the average distortion anC cfot{<ui>}), the Fermion operators of the

occupied states which diagonalize 8re electronic part in (3). The overlaps <y2ly1> and <y2l H
lY1> between two adiabatic eigensates lY1> and lY2> can be calculated exactly and explicitly
with the initial Hamilonian. Then, it is found analytically (and confirmed numerically) that for
small y and k far above h(0, these overlaps are small which confirms that the adiabatic (or mean
field) approximation is valid forbQ(Q.

When, k aproaches h(0 from above, lhe overlaps between certain states become close to
unity which gIAygS that the mean'field eigenstates Gannot remain good approximations. The
calculation of these overlaps can be used for calculating ttre tunneiting energy of a
discommensuration. It is found that when its pinning energy banier goes to zero, ttre tunnelling
energy gain of an advanced as well as a retarded discommensuration becomes larger than the
positive potential energ:f of this discommensuration. Since the total discommensuration energy
becomes negative, the commensurate CDW structure becomes unstable under quantum lattiie
fluctuations even very close o the adiabatic limit for small but non zero y(see the next talk ref4)

. When approaching the TBA, the size of a bipolaron diverges. Beyond a certain critical size,
it cannot remain localized in the local potential created by the lattice and the neighboring
bipolarcns and delocalizes thrcugh the lattice.The CDW order in real space Oisappears.l.l rougi
intelpretation of this transition is a Bose condensation of bipolarons). New studies int
dimensional systems which are currently develop$d, show that lhe "anti adiabatic" tcrms of the
Hamiltonian necessarily becomes essential for determining the new structurc (the bipolaron
becomes antiadiabatic when it tunnels"). They confirm that any CDW becomes unstableigainst
superconductivity when the phason gap is oo small, independantly of the dimensionality of tfre
model.

Whatever will be the conclusion of these new calculations, it i3 proven unambiguously that
the standard adiabatic approximation cannot describe properly CD*s when their pnason gap
become too small (in the unprobable event, it could survive to quantum lattice flucutdons).

THE ANTI.ADIABATIC LIMIT
Although this limit is not very physical, it is instnrctive to discuss briefly ttre antiadiabatic

limit obtained fory= oo. Then, the atoms follows adiabatically the electrons (fast atoms-slow
electrons). The Lang-Finov unitary transformation of Hamiltonian (t):

A
(6-a) ff=exp(iS1-p)Hexp(iS1p) wirh isrr - 

6t 
Oc,];,,ol1af-a,)

yields:

a
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When kz<<y, lhe elertrons and phonon decouple since tt j = t. In that limit, the eleclronic

part of this model is a negative U Hubbard model with the electron-electron attraction
k2
T

ni,tni,J. It is well admitted that the ground-state of this model is superconducting (see Nozi0res

and Schmitt-Rink quoted in ref.3). Since U only depends on k and is indeperdant of the quantum

parameter of the lattice y, this superconduoirrity has !o be insensitive to any isotopic effects.

A NEW BASIS FOR THE INTERPRETATION OF CDIVs
The global agrcement between the most oommon theories describing CDWs and the

experiments on real compounds is prcsently very poor even on the qualitative point of view. In
addition, there is a large number of experimental observations (reported for example in this
conference) which have eitherno qualitative explanations, orexplanations whictr are inconsistent
with otherobservations. The impurities ard defects (which certainly exis$ whictr arc $pposed to
play the crucial rcle for the pinning interpretation of CDW, have still never bcen identified! We
suggest that a new CDWs theory,can be built on the basis of the following rcmarks:

All CDWs strould be bipolaronic structures inuinsically pinned to the lattice. The physical
cases with non linear conductivity, are very close to superconducting states (where the
bipolaronic structure becomes "superfluid"). (Otherwise, lhese systems would be insulating at all
temperatures) and the bipolarons are rather extended (few unit cells) . Thereforc, these
bipolaronic s-tructures ar9 guite plastic and easy !o flow. The small but non zero phason gap is
renormalized by thermal fluctuations but soften incompletely at Tgprgrr. It is hbwever quite
sufficient to pin the CDW under anv @glicablc macrescopic electric field. (For bxample, close !o

TCOW, neutron measurcments show in Blue Bronz.e a phason gap = 0.5 l0{ eV incompatible
by several order of magnitudes with the depinning field observed by transport measurements!).
The CDW uansition corresponds to the disordering of the incommensurate bipolaronic structurc.
Bipolaronic fluctuations survives in some critical region above TCDW.(Because of the existence
of a central peak, non linearity in the conductivity may penist above T6p1ry).

Above and trelow Tgp1ry, the bipolarons have a diffusive behavior by thermal hopping
which vanishes at 0K and yields linear conductivity. For larger electric field, there is an extra
CDW motion due to the generation and to the motion of neutral "phase walls".(To be neutral,
these phase walls have to be parallel to the highest conductivity axis as the domain walls of a
fenoelectrics.). 2r-relaxation in the phase walls configurations generate the cunent noise. The
culrent noise is essentially and necesarily the consequence of the cunent gndients which always
exist in any sample l-at the contacts, 2-at the surface of the sample, 3- by special current
geometry ...4) and also because of "large scale defects" such as dislocations and grain
boundaries. All these non linear effects are strongly temperanrre dependant because the phase
wall motions and relaxations originate from the micmscopic bipolaronic diffusion(the effect of
few microscopic impurities on ttrid'diffusion, is neglegible). Non linear conductivity in CDW is
analogous to the depolarizing current of a fenoelectric in an electric field but in a stationary
regime.

For more details see the following references and the references quoted ilrcrein.
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