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The electron-phonon coupling in conducting materials may produce at low temperature
either a charge density wave (CDW) or standard superconductivity (SC).The aim of this talk is to
shed a new light on the competition between CDW and SC through an approach based on
previous works on incommensurate and chaotic structures in PEIERLS models which are
currently under development. For this purpose, we focus on the HOLSTEIN Hamiltonian written

as:
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This model consists into a band of clectrons with on-site coupling with dispersionless
optical phonons. The encrgy unit is chosen such that the exchange constant between neighboring

sites <i,j> on a d-dimensional square lattice be - % .The band width is thus 2d. ¢ is the clectron
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spin 15 noted T or . Cig and ¢, g are the creation and annihilation Fermions operators of an
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clectron at site i with spin ¢ respectively. The electron density operator is
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The unit for the atomic position operator uy, is such that the elastic constant be 1. p, is the
conjugate operator to u, defined such that [up, py] = i. Creation and annihilation boson operator

+
a and a are defined as
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Thus, the phonon term in the Hamiltonian (1) become32 (u + 3P, ) = (a;an+-;— ).The physical

units are chosen in order that this model depends on two dlmensmnless parameters which are k
the "classical" electron-phonon coupling obtained within the assumption that the atoms are

classical particles and y the quantum parameter which is the phonon energy in energy band units.

THE ADIABATIC LIMIT. BIPOLARONIC STATES

The adiabatic approximation (y=0 : slow atoms-fast electrons), is equivalent to the mean
ficld Hamiltonian HMF which dccouples electrons and phonons.
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Its parameters are selfconsistently determined as the mean values <n;> =<¥In;I'¥"> and
<up>=<Plu;l'¥>. The fluctuation terms (n; - <n; >)(u; - <u;j >) are neglected. Since it comes out

<> =- 17(<ni>, Hamiltonian (1) is recovered for y=0 and <uj>=uj.

For model (1) with arbitrary dimension d and y=0, a recently proven theorem[3] confirms
the existence of the "transition by breaking of analyticity" found in early one dimensional
numerical simulations. This result is an explicit consequence of the discreteness of the lattice and
cannot be found within standard continuum approximations.

We briefly explain here its physical meaning. In the limit k = ©9, the electronic kinetic
energy can be dropped and the ground-state of Hamiltonian (1) is trivially degenerate.The lattice
sites i are either doubly occupicd by a pair of electrons with opposite spins or not occupied at all.
Thus, the groundstates can be described by an arbitrary pseudospin configuration {o;} where 6;

<n{>
= —-—21— =0 or 1. When oj = 1, there is a lattice distortion at site i and we say that this site is
occupied by a bipolaron. For periodic (or quasiperiodic) configuration {cj}, the ground-state is
either commensurate (or incommensurate) CDW.

For finite k, the ground-state degeneracy is raised. Our theorem asserts that for k large
enough, these bipolaronic states survive despite the kinetic energy of the electrons is no more

zero. More precisely, for any arbitrary bipolaronic distribution {o;}, there exists an eigenstate

I¥> of the adiabatic Holstein model, with the density of electron pairs {pj(k)} defined as

Pi =% <nj>, which continuously depends on k and with{p;(®®)}={c;}. Most these bipolaronic
states are chaotic but they may also form commensurate and incommensurate superlattices (which
are CDWs). The ground-state is a particular bipolaronic superlattice (which is generally unknown
in models in 2 and more dimensions!). The electronic eigenstates may be extended or localized
but in any case, the bipolaronic states are proven to be insulating with a finite gap at the Fermi
energy and a finite gap in their phonon spectrum (no gapless phasons!):

The bipolaronic structures are always insulating and pinned to the lattice.

The analytic rigorous bound k > 2v5d for the existence of bipolaronic states in d
dimensions, is in fact found to be much smaller by numerical analysis. When k decreases, there
is cascades of bifurcations at which chaotic bipolaronic states becomes unstable. Thus,
decreasing k, they gradually disappear and beyond the transition by "breaking of analyticity"
(TBA) which is reached at some critical value k¢ ({), there is no more chaotic states. kc(g)

depends on the electron concentration { per site (for example in 1d and for { = lzlié k(D=

1.58). The density of electron pairs {rj(k)} (or the atomic distortion {b;} with b; = - k (k) ) of
the "single" bipolarons belonging to a given bipolaronic configuration {c;j}can be defined as

@ pi) = z On Ti+n &
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For k=9, {b;} is peaked on a single site at the origin. For finite k, the next talk, shows
examples of well localized bipolarons {b;(k)} calculated in one dimensional models. At the TBA,
the size of these bipolarons diverges and below k¢(), the ground-state becomes "undefectible”.
Bipolarons“do not exist as localized objects in real space.

When k > k¢(§) and at temperature low enough, the energy of model (1) essentially

depends on the bipolaronic configurations. Its thermodynamical and transport properties should
be well described on the basis of a pseudospin Hamiltonian (lattice gas model).
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QUANTUM LATTICE FLUCTUATIONS CLOSE TO THE ADIABATIC REGIME
The eigenstates of the mean field Hamiltonian (3) have the form

<u;>
) I¥>= exp E 7—_( a"i' -aj) H cv+°([<ui>}) Ivacuum>
ey i Y Vv occ,o

where <u;> is the average distortion and cv+ o({<ui>}), the Fermion operators of the
’

occupied states which diagonalize the electronic part in (3). The overlaps <¥,I¥1> and <¥5! H
I'¥'1> between two adiabatic eigenstates I'¥1> and I'¥o> can be calculated exactly and explicitly
with the initial Hamiltonian. Then, it is found analytically (and confirmed numerically) that for
small y and k far above k¢({), these overlaps are small which confirms that the adiabatic (or mean
field) approximation is valid for k>k¢(£).

When, k aproaches k¢(§) from above, the overlaps between certain states become close to
unity which proves that the mean-field eigenstates cannot remain good approximations. The
calculation of these overlaps can be used for calculating the tunnelling energy of a
discommensuration. It is found that when its pinning energy barrier goes to zero, the tunnelling
energy gain of an advanced as well as a retarded discommensuration becomes larger than the
positive potential energy of this discommensuration. Since the total discommensuration energy
becomes negative, the commensurate CDW structure becomes unstable under quantum lattice
fluctuations even very close to the adiabatic limit for small but non zero Y (see the next talk refd)

When approaching the TBA, the size of a bipolaron diverges. Beyond a certain critical size,
it cannot remain localized in the local potential created by the lattice and the ncighboring
bipolarons and delocalizes through the lattice. The CDW order in real space disappears. (A rough
integpretation of this transition is a Bose condensation of bipolarons). New studies in d
dimensional systems which are currently developpéd, show that the "anti adiabatic" terms of the
Hamiltonian necessarily becomes essential for determining the new structure (the bipolaron
becomes antiadiabatic when it tunnels"). They confirm that any CDW becomes unstable against
superconductivity when the phason gap is too small, independantly of the dimensionality of the
model.

Whatever will be the conclusion of these new calculations, it is proven unambiguously that

the standard adiabatic approximation cannot describe properly CDWs when their phason gap
become too small (in the unprobable event, it could survive to quantum lattice fluctuations).

THE ANTI-ADIABATIC LIMIT
Although this limit is not very physical, it is instructive to discuss briefly the antiadiabatic

limit obtained for y = ©9. Then, the atoms follows adiabatically the electrons (fast atoms-slow
electrons). The Lang-Firsov unitary transformation of Hamiltonian (1):

A . . o k
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When k2<<y, the clectrons and phonon decouple since 't\i j = 1. In that limit, the electronic
2
part of this model is a negative U Hubbard model with the electron-electron attraction - kT

noqn, | It is well admitted that the ground-state of this model is superconducting (see Noziéres '

and Schmitt-Rink quoted in ref.3). Since U only depends on k and is independant of the quantum
parameter of the lattice y , this superconductivity has to be insensitive to any isotopic effects.

A NEW BASIS FOR THE INTERPRETATION OF CDWs

The global agreement between the most common theories describing CDWs and the
experiments on real compounds is presently very poor even on the qualitative point of view. In
addition, there is a large number of experimental observations (reported for example in this
conference) which have either no qualitative explanations, or explanations which are inconsistent
with other observations. The impurities and defects (which certainly exist) which are supposed to
play the crucial rale for the pinning interpretation of CDW, have still never been identified! We
suggest that a new CDW's theory-can be built on the basis of the following remarks:

All CDWs should be bipolaronic structures intrinsically pinned to the lattice. The physical
cases with non linear conductivity, are very close to superconducting states (where the
bipolaronic structure becomes "superfluid"). (Otherwise, these systems would be insulating at all
temperatures) and the bipolarons are rather extended (few unit cells) . Therefore, these
bipolaronic structures are quite plastic and casy to flow. The small but non zero phason gap is
renormalized by thermal fluctuations but soften jncompletely at Tcpw. It is however quite
sufficient to pin the CDW under any applicable macroscopic ¢lectric field. (For example, close to
Tcpw, heutron measurements show in Blue Bronze a phason gap = 0.5 104 ev incompatible

by several order of magnitudes with the depinning field observed by transport measurements!).
The CDW transition corresponds to the disordering of the incommensurate bipolaronic structure.
Bipolaronic fluctuations survives in some critical region above Tcpw.-(Because of the existence
of a central peak, non lincarity in the conductivity may persist above Tepw).

Above and below Tepw, the bipolarons have a diffusive behavior by thermal hopping
which vanishes at OK and yields linear conductivity. For larger electric field, therc is an extra
CDW motion due to the generation and to the motion of neutral "phase walls".(To be neutral,
these phase walls have to be parallel to the highest conductivity axis as the domain walls of a
ferroelectrics.). 2n-relaxation in the phase walls configurations generate the current noise. The
current noise is essentially and necessarily the consequence of the current gradients which always
exist in any sample 1-at the contacts, 2-at the surface of the sample, 3- by special current
geometry ...4) and also because of "large scale defects” such as dislocations and grain
boundaries. All these non linear effects are strongly temperature dependant because the phase
wall motions and relaxations originate from the microscopic bipolaronic diffusion(the effect of
few microscopic impurities on this diffusion, is neglegible). Non linear conductivity in CDW is
analogous to the depolarizing current of a ferroelectric in an electric field but in a stationary
regime.

For more details see the following references and the references quoted therein.
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