102

QUANTUM FLUCTUATIONS EFFECTS ON THE 1-D PETERLS INSTABILITY

C. BOURBONNAIS and L. G. CARON,

Centre de Recherche en Physique du Solide, Faculté des sciences, Université
de Sherbrooke, Québec, Canada J1K-2Rl1.

*Also at Laboratoire de Physique des Solides, Université de Paris-Sud, Bat.
510, C.N.R.S., Orsay 91405, France.

ABSTRACT

The influence of quantum latticé fluctuations on the one-dimensional
molecular crystal Peierls instability is analyzed through the renormalization
group and the functional integral techniques. The analysis is made for
spinless electrons in the half-filled band case including the effect of
electron-electron interaction. The comparaison with Monte Carlo

simulations is also briefly discussed.

INTRODUCTION

Recently different approaches have been used to study the continuous
suppression of the zero temperature 1-D Peierls order parameter in presence of
quantum lattice fluctuations [1,2]. The‘functional integral approach coupled
to the renormalization group technique is particularly interesting for this
problem since it allows a continuous control of the validity of the Peierls
order paramater (in the Landau sense) as a function of the phonon frequency.
Here we will briefly illustrate it for the 1-D Molecular Crystal (MC) model in
the spinless half-filled band case where for non-interacting electrons

numerical simulations are avaiable [2].

RENORMALIZATION GROUP RESULTS
As shown in ref.[la], the functional integral 'representation of the
partition function Z=Tr exp(-pH) for the interacting MC model can be written

as

2= [nw'ans exp(SIy v, ¢1) = Jow'ww exp(S° 1914”1y, y1+s [y, w1+, [y, v, 91)
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where the various parts of the euclidean action S functional of Grassmann (y)

and c-number phonon (¢) fields are given by:

Slel= | 071 pla,0) 5 sl TG0 )1 (kw )y (k)
(0 ) " " (p 'k, )’ " N noe
* *
Sl =g T2l Yy (k vq0 v p (0 -qu0 -0 )P (ko (K0
I 2 (p, K, n m - -p n m o p n P

);

n’

S, 0081 = WIL T[4, (k0 p_(k-2k ~q,0 -0 )$(2k +q,0 ) + c.c]
AT n n m m
wp(k,wn)wp(k-q, wn—wm)c&(q,wm)]. (1)

where D°(wm)=-M.1(w:+wf)-1 and G:(k.wn)=[l.wn-vF(pk-kF)]_Iare the bare phonon
and electron propagators with w and w as their respective Matsubara
frequencies. w= VK/M is the molecular phonon frequency, K is the elastic
constant and M the ionic mass. The electronic spectrum has been linearized
around the Fermi level where p=t stands for right (+) and left (-) moving
electrons, vF=2t(kF) is the Fermi velocity (momentum) and EF=VFkF (Eo= 4t) is
the Fermi energy (band width).. For the interacting parts SI and SA’ g, and A
correspond to the forward scattering and to the electron-phonon coupling
constants respectively. Note that the coupling to phonons near 21<F and q %= 0O
is considered. We apply a Kadanoff-Wilson type of transformation for 2 [lal
where we integrate the fermion (y) degrees of freedom inside an outer energy
shell of thickness Eote)dll/Z at the p=f band edges and for all w, by keeping
the ¢'s fixed with E°(£)=E°e'e as the scaled band width. Considering SI and S

A
as perturbations, this can be formally written as:

. ° " 0. % — * _ * % _ x
Z = JDw DVJD¢ es [¢]JDJ Dw ES W’. W](esllw :V/-VJ »'I’t¢] + SA[W -‘/J:\t’ :V/:W)

E (&) os
o

= {Dw*0w0¢ eXp{S[lll*.lll,M) + 3S[¢] + ssw:',up] + BSA[W‘.L’I»N}- (2)
E (&)

Successive integrations of fermion degrees will then lead to the

-renormalization of each term of the full action. Furthermore the partial

trace operation will generate for 8S[¢] an infinite series of new phonons
terms to all order in perturbation theory. Focusing on the phonon part of the

action we get at the step ¢ and up to fourth order in ¢'s:

Stel = =M} [+u?(1+22% "2l 8,0, TI D] [#(q,0.) |* -T/L ) {Bé[{q,w),el x
q,w " . (q,w} '
X ¢(qx+2kF’wm1)¢ (q2+2kr,wm2)¢(q3+2kr,wm3)¢ (q4+2kF’wm4) * B;{{q.w},el ®

* *
x ¢(q1+2kr""m1)¢ (q2+2kr,wm2)¢(q3,wm3)¢ (q4,wm4)} oo (3)
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Subble insertion which has the power law singularity x(&)= -(2nt)-1(eﬂ-1] at
v = W, =0, with the exponent 7y = g2/21tt in first: order of the RG. The
quartic terms in (3) correspond to the mode mode coupling of the ¢'s through
fourth order fermion loops (84 and B;). Quantum lattice degrees of freedom
are present through the Matsubara frequencies of the phonon field. The phonon
softening at wm=0 leading to the Peierls instability will then be affected by
these quantum effects. In a one-loop scheme where for these quartic terms, an
integration over two external phonon lines at wm==0 is performed and the

softening condition for the Pelerls instability reads at £=£n(EF/TMF) [1a]:
1 - A%@nyt) T(E/T )Y -1] + A0 ) = 0
F "MF ' o

leading to the power law decay

= _ =0 2 -1,-191/77

Te= Top 7[1+AQL 0 ) [142%(2nKey) 7 177] (4)
Therefore the renormalized mean field (urF) Peierls temperature T is
depressed compared to the adiabatic result T;F= Esz/y/“”—\z]l/'x when
wo=0(A=O) and where X2=A2/2nK3rt. At finite w, quantum anharmonic terms

contribute to A(A,wo) which is found to be:

_ 470 2 3 -1 7 -1 2+y
A e) = CA'T) (32Kt ){3/2(1+7) [E /T -1] + @) [(E/T, D71 ] }

—o =0 L 2
x[BHFwO/Z cqth(BHFwo/Z) -1]. (C=7¢(3)/2n") (5)

Here the fourth order fermion loops and theirs vertex parts are evaluated at
E:F=€n(EF/T§F). In the non interacting 1limit ¥ - 0, the wr temperature
profile with w reduces to [1la]:

T, =T, exp{—C(A/\/Kt)zT;F/Bt [(E/T; )*-1]18] v /2 coth(B;Fw°/2)-1]} (8)
which now decreases exponentially. Here T;F= EFexp(-ZHKt/Az). In 1-D systems
there 1is no long range order at finite temperature but an and THF still
remain as characteristic energies for the true Peierls gap A at T=0K which in
turn, is proportional to the ground state 2k _ dimerization 8. It follows that
the ratio (gtwo)/(gtO) is equal to (T:(F/(T:;. The above results could then be
compared [la]l to the Monte Carlo simulations of Hirsh and Fradkin [2]
performed in non-interacting case. It was found that the depression of the
dimerization with w is very fast in agreement with the exponentiaI' decrease
of (5). Numerical simulations however, indicate that there is a large but

finite phonon frequency above which there is no dimerized ground state. Here
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in the non-adiabatic 1limit, the ZkF electron-hole bubble in presence of
absorption and emission of virtual phonons [eq.(5)] can no longer be evaluated
by taking the adiabatic 1imit for the fourth order fermion loops 84 and B;.
Actually, whenever the well known non adiabatic condition 2nT;F» w [3] is
satisfied one should recover the complete interference between the Peierls and
the Cooper channels of correlations [4] which in the present case is known [5]

to destroy completely the Peierls gap.

CONCLUSION

In conclusion, we have applied a Kadanoff-Wilson type of renormalization
group approach to a functional-integral formulation of the 1-D Molecular
Crystal model. For the spinless half-filled band case with and without
electron-electron interaction, a one-loop scheme approximation for the quantum
part of the mode-mode phonon coupling term allows to follow continuously the
suppression of the Peierls order paramater with the phonon frequency up to the
non-adiabatic domain. In the non-interacting case, the ground state
dimerization is found to be exponentially suppressed, a result iwhich is
compatible with the Monte Carlo simulations. The inclusion of
electron-electron interaction 1is straightforward and the decay of the
dimerization with frequency is found to be power law like with a non-universal
exponent. Generalizations of the approach to electrons with spins and for

non-half-filled band case are also straightforward.
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