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The usual mean-field treatirient of ttre Peierls instability leading to Charge Density
Wave (CDW) formation relies on the adiabatic approximation. This amounts to neglect the
4netic energy of the ions and is strictly valid in the limit of zero phonon frequency.
Quantum fluctuations are known to destabilize the CDW ground staie for large enoufh
frequencies (see Refs 1-4 and contributions by S. Aubry , P. Qudmerais and C.
Bourbonnais, this issue). Up to now no satisfying treatment exists which spans the full
range ofelectron-phonon coupling and phonon frequency.

We'present here a variational calculation for the simplest one-dimensional electron-
phonon problem, the molecular crystal (or Holstein model)5. The method interpolates
between the adiabatic and the anti-adiabatic ( phonon frequency much larger tlian the
bandwidth) limits. In addition we show that the phonon frequencies are renormalized in
the intermediate coupling regime. The results are successfully compared to the Monte-
Carlo simulations of Hirsch and Fradkinl for the half-filled band case.

The basic Hamiltonian of the model is
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where ai+, ai and ci+, ci are creation and annihilation for, respectively, dispersionless
phonons and electrons of spin o. Omitting the spin degrec of freedom yields a particular
model of "spinless fermions". Defining k = 29 / (T 11CI0)U2 and y =a6no / T as the
parameters of the model, one can write a reduced tlamiltonian ff = H / 2T as

2

(2)

where n; = I"L.,o is the charge density at site i. k is related to the usual elecron-phonon

coupling constant I by k2 = 4 1,. The scaled coordinates and rnomenta are defined as
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In the adiabatic limit (T = 0) (2) yields the adiabatic Hamiltonian Ha6 (see Ref. 4 for more
details)
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where the ui 's represent the classical (periodic) Peierls deformation. The equilibrium
{gfogptigq uiad (k) is obtained after minimizing the electronic ground state enJrgy of (4)
(Ref. 4). We successively perform on (2) three canonical transformations Ur; Uz, Ug
yielding the Ftamilonian fr = U3U2U1HU1-IU11U3-1 and obtain an effective elecronic
Hamiltonian after averaging in the phonon vacuum l0 )orr. Ur, Uz, Ug are given by
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U1 displaces the lattice coordinates by u'i (adiabatic limit). U2 is a modified small
polaron transformation which solves exactly the problem for infinite y (anti-adiabatic
limi$, provided one takes 6 = 1. It correlates to an amount proportional to 6 the lattice
fluctuations to the charge fluctuations. rina{v u3 is a two-phonon "squeeze"
transformation, equivalelt to a pltonon- softening. Ii increases the fluctuations of the ui's
(due to thp. electro-n band motion) and decreases-the fluctuations of the pi's (see nef.6 fbr
more details). Taking fgt,fFq of simplicity the spinless case, the r6duldng effective
Hamiltonian is H"6= on(O lHlO)pr,
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*x-r-J(ij) j
In the first bracket the firgg tenns represents the increase of zero-point energy due to the
phonon transformatioq I{g, the seggnd prm !p polaronic Uin,ling enerly tiio ir ttti
average glecgon density). The second bracket is idenhcal to the adiabaEc Hafiiltinian (4;,
with the band parameter renormalized by a polaronic narrowing factor

--j

Itlgp pleqisel-y, E-o4-G) being the ground state energy of (4), the ground stare energy of
(6) is obtained as follows

(7)
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where[=k (1 - ill^6 isarenormalizedcouplingconstant. On the otherhandrhe ner

lattice deformation ui is given as a function of the equilibrium adiabadc deformation u;ad

(k) by u1 = ^,/ i t(l - p) u;ad 1 E ;.
The variational solution is obtained by minimizing (8) with respect to 6 and r. One

expects physically, and verify numerically, ttrat E < k and ui ( u;ad ( k ). The uiad 'r *.
found either analytically (in weak coupling k<<1) or numerically. In the half-filled band
case (n6 = l/2) one has ui = (1)i u6 and
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The figure shows the agreement with Monte-Carlo calculations (vertical bars) for the
particular value 1= 1.1. The dashed-dotted line is the mean-field value for u9 (arbitrary
units), the full line is our solution (see more details in Ref. 7).
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