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The usual mean-field treatment of the Peierls instability leading to Charge Density
Wave (CDW) formation relies on the adiabatic approximation. This amounts to neglect the
kinetic energy of the ions and is strictly valid in the limit of zero phonon frequency.
Quantum fluctuations are known to destabilize the CDW ground state for large enough
frequencies (see Refs 1-4 and contributions by S. Aubry , P. Quémerais and C.
Bourbonnais, this issue). Up to now no satisfying treatment exists which spans the full
range of electron-phonon coupling and phonon frequency.

We present here a variational calculation for the simplest one-dimensional electron-
phonon problem, the molecular crystal (or Holstein model)®. The method interpolates
between the adiabatic and the anti-adiabatic ( phonon frequency much larger than the
bandwidth) limits. In addition we show that the phonon frequencies are renormalized in
the intermediate coupling regime. The results are successfully compared to the Monte-
Carlo simulations of Hirsch and Fradkin! for the half-filled band case.

The basic Hamiltonian of the model is
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where aj*, aj and cj*, cj are creation and annihilation for, respectively, dispersionless
phonons and electrons of spin 6. Omitting the spin degree of freedom yields a particular
model of "spinless fermions”. Defining k = 2g / (T fiwp)}/2 and y =fiwg / T as the
parameters of the model, one can write a reduced Hamiltonian A= H/2T as
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where n; = ZC is Cio 18 the charge density at site i. k is related to the usual electron-phonon

coupling constant 1 by k2 =4 A. The scaled coordinates and momenta are defined as

ui=77(ai+a;) P pi=—= (@i ;) )
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In the adiabatic limit (y = 0) (2) yields the adiabatic Hamiltonian H,4 (see Ref. 4 for more
details)
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where the u; 's represent the classical (periodic) Peierls deformation. The equilibrium
deformation u;2d (k) is obtained after minimizing the electronic ground state energy of (4)
(Ref. 4). We successively perform on (2) three canonical transformations Uy, Ug, U3
yielding the Hamiltonian H = U3UpU1HU;-1U,-1U3! and obtain an effective electronic
Hamiltonian after averaging in the phonon vacuum lo Yph- U1, Uz, U3 are given by
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U displaces the lattice coordinates by u'j (adiabatic limit). Uy is a modified small
polaron transformation which solves exactly the problem for infinite 7 (anti-adiabatic

limit), provided one takes 8 = 1. It correlates to an amount proportional to & the lattice
fluctuations to the charge fluctuations. Finally Uz is a two-phonon "squeeze"
transformation, equivalent to a phonon softening. It increases the fluctuations of the uj's
(due to the electron band motion) and decreases the fluctuations of the p;'s (see Ref.6 for
more details). Taking for sake of simplicity the spinless case, the resulting effective

Hamiltonian is H = ph<0 ]ﬁi O>ph
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In the first bracket the first terms represents the increase of zero-point energy due to the
phonon transformation Us, the second term the polaronic binding energy (ngis the

average electron density). The second bracket is identical to the adiabatic Hamiltonian @),
with the band parameter renormalized by a polaronic narrowing factor
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More precisely, Eqq (k) being the ground state energy of (4), the ground state energy of
(6) is obtained as follows
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where k = k a-8)/ W/—P— is a renormalized coupling constant . On the other hand the net
lattice deformation u; is given as a function of the equilibrium adiabatic deformation u;ad
®) by ui=+/p /(1 -p)ud (k).

The variational solution is obtained by minimizing (8) with respect to 8 and r. One

expects physically, and verify numerically, that k < k and uj < u;ad ( k ). The u;2d 's are
found either analytically (in weak coupling k<<1) or numerically. In the half-filled band
case (ng = 1/2) one has uj = (-1)! ug and
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The figure shows the agreement with Monte-Carlo calculations (vertical bars) for the

particular value y = 1.1. The dashed-dotted line is the mean-field value for ug (arbitrary
units), the full line is our solution (see more details in Ref. 7).
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