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COMPETITION OF CHARGE DENSITY WAVE AND
SUPERCONDUCTING INSTABILITY IN A TWO BAND MODELL
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Central Rescarch Institute for Physics, P.0.Boz 49, H-1525 Budapest, Hungary

Abstract

A one dimensional-model of interacting electrons forming two bands with different
masses is considered. Both intraband and interband interactions are assumed. If the in-
terband charge transfer processes become dominant, the two Fermi velocities scale to a
common value yielding an effective one band model. Otherwise, depending on the ini-
tial paramecters, charge density wave or superconducting instability may appear, formed
dominantly from one of the bands or from both bands.

Introduction

The Hubbard model and its extensions including interactions between further neigh-
bours or allowing for two bands near the Fermi energy have been in the focus of interest
recently. The simplest two band model that appears in this context is the periodic Ander-
son model studied in detail to understand the behaviour of valence fluctuating or heavy
fermion systems [1]. The electronic states form a broad conduction band mixed to a
narrow band with heavier effective mass. Depending on the parameters of the model (po-
sition and width of the bands, hybridization matrix element and Coulomb energy) strong
valence fluctuation, heavy fermion behaviour, magnetic or superconducting ordering may
be obtained.

Most calculations have been done on two or three dimensional models. The one
dimensional case is easier to threat mathematically since in a renormalization group trans-
formation the number of couplings does not increase. It is therefore of interest to study
the properties of the two band model in one spatial dimension. Varma and Zawadowski [2]
calculated the first logarithmic corrections to the vertices and derived scaling equtions for
the couplings. Here we go beyond the leading logarithmic approximation and show that
in the next order a Fermi velocity renormalization appears, that in some cases eliminates
the difference between the two species of electrons. In most cases, however, the interband
charge transfer processes become irrelevant and the dominant instability is determined by
the Kondo type interband exchange or the intraband backscattering processes, leading to
a charge density wave or superconducting state.
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Model

Assuming that the Fermi energy crosses two bands at momenta +k4 and +kg, lin-
earizing the spectrum near the Fermi points and cutting off the states far from them, the
electron spectrum will consist of four distinct pieces characterized by the velocities v,
and *vp, respectively. The creation and annihilation operators for the A and B particles
are agyy o and agyy o, b;[. 4kp,o a0d byyy, respectively. In the diagrams solid lines
with label A or B stand for the particles near +k4 or +kp, respectively, while dashed lines
indicate particles near —k4 or —kp.

The non-interacting part of the Hamiltonian has four terms corresponding to the four
kinds of particles
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The summation over k is restricted to |k| < k¢ in all the four terms.

From the possible interaction processes we consider only those that lead to logarith-
mically singular contributions in the lowest order bubble diagrams already. When the
interactions are spin dependent 12 couplings should characterize the scattering processes
as shown in Fig.1.
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Fig.1. The couplings leading to singular corrections in the vertices. The lines are
labelled by a band indez (A or B) and the spin (1 and | ). Solid line denotes particles
near +k4 or +kp, dashed line indicates particles near —k,4 or —kp.

Varma and Zawadowski performed a renormalization group calculation on this model
by collecting the leading logarithmic singular contributions to the vertices. We have ex-
tended the calculation to the next order by calculating the next to leading logaritmic
corrections to the vertices and the self energy as well.
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Results

In deriving the second order scaling equations it turned out that this model satis-
fies scaling only if a simultaneous Fermi velocity renormalization is performed. For the
dimensionless quantity
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the scaling equation has the form

dy/d InS =2v(y - Vi app

Where § is the scale change, § denotes dimensionless couplings and §4 ;55 = ( f/jf,l,)} )+
~1(2)
(
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The fixed points of this equation are y = 1, i.e. vq4 = vp, or §4 455 = 0. In the first
case the distinction between the two bands disappears and an effective one band model
is recovered with the known results. We therefore concentrate on the second possibility,
when v4 and vp remain different and all the charge transfer couplings fzj‘(,:l); B> _(]i“(:l), p and
QLI; App vanish.
In this case the scaling equations give three invariants, namely
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Introducing the combination gl = gl 4 §1® for AAAA, BBBB and ABAB channels,

the scaling equations for the remaining 6 couplings simplify such that their fixed poits can
be determined. They are shown on Table 1.

Fiaan 5:31,(\1/\)/4 ivnps 3§ s v él"élia
¥, 0 arb. 0 arb. 0 arb.
Fy 0 arb. +1 -1 0 0
F; 41 -1 0 arbd. 0 0
Fy +1 -1 +1 -1 0 0
Fs 0 0 0 0 +1 -1
Fg 0 0 +u —u tw —w
F;  +u —u 0 0 +w —w

Fs +1/2 -1/2  #1/2  —1/2  +1/2 -1/2

Tuble 1: The fized points if v # 1. arb. means arbitrary, u = 2w — w? end w =

4/3 — 1/3(/17 + 333 + /17 = 3/33).

Only the first five fixed points are attractive as seen in Fig.2., where the scaling
trajectories are shown for the isotropic case gl = gL,

Fy is the weak coupling fixed point, available if the bare couplings are positive. For
negative, attractive bare couplings the model scales to one of the strong coupling fixed
points. The value given in Table 1. is certainly a wrong estimate of the strength of the
coupling. It only indicates that the couplings scales to the strong coupling limit, where
the higher order corrections will determine the fixed point value.
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Fig. 2. The scaling trajectories for the special case jaapp=0.

In the cases F; and F3 particles in one of the bands become dominant and will
determine the properties of the model. A charge density wave (CDW) or superconducting
state instability may occur, as in the one band model, the CDW or Cooper pair being
formed from one band only. For Fy, both bands form a CDW or Cooper pair, but there
is no coupling between the bands. The new feature appears in Fj, where the interband
exchange {(Kondo coupling) becomes dominant and the CDW or Cooper pair is formed
from particles of the two bands.

Summary

We have performed a second order scaling calculation for a one dimensional model
of interacting fermions forming two bands with different Fermi velocities. It was shown
that the interband charge transfer processes tend to eliminate the difference between the
velocities leading to an effective one band model. It was found, however, that quite often
the interband charge transfer couplings scales out of the problem, leaving the two Fermi
velocities different. In this case charge density wave or superconducting instability may
appear if the intraband backscattering or the interband exhange couplings are repulsive.

Depending on which one is stronger, the CDW or Cooper pair will be formed from one
band or from both.
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