LOW T_c SUPERCONDUCTIVITY AND POSSIBLE CHARGE DENSITY WAVE INSTABILITY IN Li_{0.9}M0₆O₁₇

M. Boujida, C. Escribe-Filippini, J. Beille*, J. Marcus and C. Schlenker C.N.R.S.-LEPES -*Laboratoire L. Néel BP 166 - 38042 Grenoble Cedex, France Laboratoires associés à l'Université Joseph Fourier, Grenoble,

Abstract

Magnetoresistance and Hall effect studies, performed on Li_{0.9}Mo₆O₁₇ single crystals, are consistent with a decrease of carrier concentration and an increase of the mobility below $T_M \approx 25$ K. This supports a mechanism of CDW gap opening at T_M .

Introduction

The lithium purple bronze Li_{0.9}Mo₆O₁₇ is one of the metallic low dimensional molybdenum bronzes $A_x Mo_y O_z$ (A = Li, Na, K, Rb, Tl) which show electronic instabilities ^[1]. Other members of the family, such as K_{0.9}Mo₆O₁₇ show charge density wave (CDW) instabilities induced by the quasi-twodimensional crystal structure. Li_{0.9}Mo₆O₁₇ is the only member which shows a superconducting transition at Tc ≈ 2 K ^[2]. It also shows an anomalous increase of the electrical resistivity below T_M ≈ 25 K ^[3]. This increase has been attributed to two possible mechanisms, either a weak localization process, related to disorder induced by Li vacancies ^[4] or to a charge density wave instability ^[5]. Crystal structure studies show that Li_{0.9}Mo₆O₁₇ is a quasi one-dimensional conductor, with infinite zigzag chains of Mo⁵⁺⁻O₆ octahedra along the monoclinic b-axis ^[5]. This is corroborated by optical reflectivity studies ^[6]. Low temperature structural data, which could corroborate the existence of CDW satellites, are presently not available. One should note that band structure calculations predict a nesting of the Fermi surface consistent with a CDW instability.

We now report magnetoresistance and Hall effect studies at low temperatures $(>T_c)$, which support the existence of such an instability.

2 - Experiment

The single crystals of Li_{0.9}Mo₆O₁₇₈ are grown by the electrocrystallization technique, as described elsewhere ^[9]. They are in shape of platelets elongated along the monoclinic b-axis and parallel to the b-c plane. Fig. 1 shows magnetoresistance curves obtained below 40 K for current parallel to b and magnetic field perpendicular to the b-c plane, up to 6 Teslas. Magnetoresistance is found positive, and large below T_{M} ($\Delta p/p_0 \approx 25$ % at 4.2 K, for B \approx 6 Teslas). Fig. 2 shows the Hall constant as a

Figure 1 Magnetoresistance vs magnetic field. I // b, B⊥ b,c plane

Figure 2 Hall constant vs temperature. I // b, B⊥ b, c plane

Figure 3

(a) Carrier concentration vs temperature, as obtained from R_H with a one-band model
 (b) Mobility vs temperature, obtained from combined data of R_H and electrical conductivity.

function of temperature, measured in low fields (B < 0.5 Tesla). It shows a steep increase below ≈ 20 K. The carrier concentration evaluated in a simple one-band model, is shown as a function of temperature on Fig. 3a. Fig. 3b shows the thermal dependence of the mobility as obtained from the combined data of Hall effect and electrical conductivity. One then obtains below T_M a steep decrease of the carrier concentration together with an increase of the mobility.

3 - Discussion

The magnetoresistance and Hall effect data are inconsistent with a localization process taking place below 25 K. Such a process should lead to a negative magnetoresistance ^[12], while our samples show a positive one. Although a one-band model is questionable, Hall effect is rather consistent with a decrease of the carrier concentration below T_M , as expected if there is a CDW gap opening. The increase of mobility at low temperature is also inconsistent with a localization process. It rather suggests that the CDW instability induces on the Fermi surface small pockets with large mobility. One should note that magnetic susceptibility data did not support a CDW model, as no measurable anomaly was found at T_M ^[2]. However, the expected decrease of the susceptibility can well be masked by a Curie tail due to paramagnetic defects.

We have previously reported pressure studies up to 20 kbar which show a decrease of T_M associated to an increase of T_c under pressure ^[11]. These results are also consistent with the existence of a CDW gap, closing progressively under pressure. The superconducting instability therefore takes place on the Fermi surface left after CDW gap opening. Low temperature structural studies would now be necessary to corroborate the presence of a CDW instability below T_M in Li_{0.9} Mo₆O₁₇.

REFERENCES

- Low Dimensional Electronic Properties of Molybdenum Bronzes and Oxides, Ed. C. Schlenker, (Kluwer Publ. Comp.) 1989.
- M. Greenblatt, W.H. Mc Caroll, R. Neifeld, M. Croft and J.V. Waszczak, Solid State Comm. <u>51</u>, 671 (1984).
- 3 Y. Matsuda, M. Sato, M. Onoda and K. Nakao, J. Phys. C : Solid State Physics <u>19</u>, 6039 (1986).
- M. Sato, Y. Matsuda and H. Fukuyama, J. Phys. C : Solid State Phys. 20, L 137 (1987).

- 5 C. Schlenker, J. Dumas, C. Escribe-Filippini, H. Guyot and J. Marcus, Phil. Mag. B, <u>52</u>, 643 (1985).
- 6 M. Onoda, K. Toriumi, Y. Matsuda and M. Sato, J. Solid State Chem., <u>66</u> (163) (1987).
- 7 L. Degiorgi, P. Wachter, M. Grenblatt, W.H. McCaroll,
 K.V. Ramanujuchary, J. Marcus and C. Schlenker, Phys. Rev. B <u>38</u>, 5821 (1988).
- 8 M.H. Whanbo and E. Canadell, J. Amer. Chem. Soc. <u>110</u>, 358 (1988).
- 9 C. Schlenker, H. Schwenk, C. Escribe-Filippini and J. Marcus, Physica B 135, 511 (1985).
- M. Boujida, C. Escribe-Filippini, J. Marcus and C. Schlenker, Physica C, 153-155, 465 (1988).
- C. Escribe-Filippini, J. Beille, M. Boujida, J. Marcus and C. Schlenker, Int.
 Conf. HTSC-M2S, Stanford (July 1989), Physica C, to be published.
- 12 See for exemple H. Fukuyama and K. Yosida, J. Phys. Soc. Japan, <u>46</u>, 102 (1979).