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Optical Excitations From a Flux Phase
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We calculate the optical conductivity o (w) of a model “flux phase,” i.e., a condensed many-
fermion state on a two-dimensional lattice characterized by nonvanishing orbital currents
of the underlying fermions. In addition to a Drude-like term, it is found that there is a
temperature (T) independent broad band absorption corresponding to vertical interband
excitations near a point Fermi surface. Scattering of the quasi-particle excitations by
acoustic phonons leads to a resistivity that is proportional to T, even as T-0.

A number of recent theoretical studies have been suggesting that a novel form
of quantum dynamics can occur in the ground state of a strongly correlated
fermion system on a two dimensional (2D) lattice. The discussions of references 1-7
have examined the possibility of the stabilization of a “flux phase,” namely, a
condensed many body state characterized by nonvanishing orbital currents of the
underlying fermions. These phases are condensed “spin liquid” states, which
nonetheless exhibit ordering of a superlattice of orbital currents around the
elementary plaquettes of the underlying Bravais lattice. A number of workers have
suggested Lll’)xat states of this form provide an appropriate description of the
dynamics of a resonating-valence-bond (RVB) state near the half filled band, and, in
a recent communication,” one of us noted that a simple construction for a class of
Gutzwiller projected singlet spin liquid states naturally leads to states of this form
for general band filling in the 2D problem.

A unique feature common to all (or nearly all) of the treatments of these
orbitally ordered flux phases is the appearance of singular points in k-space for the
quasiparticle dispersion relations. The Fermi surface for the effective fermions of
the theories of references 1.7 are shrunk to a pair of fermi points, and locally
exhibit the dispersion relation of a massless Dirac cone. The resuiting
quasiparticle dispersion relation and spectral density exhibit the form expected for
a prototypical two dimensional semimetal, with a spectral density vanishing
linearly in E near the effective Fermi energy. In the theory of reference 7, applied
off of the half filled band, the single particle excitations around this cone are
charged excitations and can be excited optically. In this paper we pursue this idea
and investigate the temperature and frequency dependence of the resulting optical
excitation ?ectmm for such a system. The excitation spectrum that we obtain is
unusual and quite interesting, consisting of a low frequency intraband part, and a
higher frequency interband contribution. The first of these may be regarded as a
strongly temperature dependent free particle absorption, roughly analogous to the
Drude absorption expected for a simple metal, and results from the thermally
excited free carrier density around the effective Fermi energy. The second piece is
a relatively structureless, temperature independent broad band excitation
spectrum resulting from vertical interband excitations near the point Fermi
surfaces. We also find that scattering of the quasi-particle excitations by acoustic
phonons leads to a resisitivity that is proportional to temperature (T), even as T-0.

We carry out calculations on the simplest flux phase model exhibiting the point
fermi surfaces. In this model the ordering of the orbital currents around the
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elementary plaquettes of a square lattice assumes the form of a V2 x V2
superlattice. In this case, the fermions move in an effective vector potential A
which generates one-half of a flux quantum (¢) of circulation in each plaquette,
there being one fermion per two lattice points. We will assume that in the absence
of A the spinless fermion kinetic energy is specified by a nearest-neighbor tight
binding Hamiltonian with hopping integral t. In the presence of A, the hopping
integral is modified according to

rJ
l, .=tacp((2ﬂ'i/¢ | dt.A)
WJ o ¢

where j and 7 are neighboring lattice points. For the present problem the effect of
A can be conveniently treated by alternating the sign of t along rows of atoms, say
those along the x-axis. In this arrangement the phase of the sign alternation of
successive rows has to be staggered by one bond distance, a. The Hamiltonian
describing our problem is therefore

_ + 1
H=-t3 af b _ +b b ) M

J+e Jj-t Jj+o Jj=-90
J

where a* , a, and b*,, b, are fermion operators which create or destroy fermions at
“a” and “b” sites, respectively. An a-site has a reversed sign of t to its left, while a b-
site has a reversed sign of t to its right. The summation in (1) is over the (N/2) a-
sites, labelled by j , where N (N-c) denotes the total number of lattice sites. The
quantities 7=ax and o=ay denote the nearest neighbor separations along the x and
y axes, respectively.

We should point out that the stable flux phases off the half filled band for
doping concentration, c, will generally lead to a n x m flux superlattice where mn=q
and where (1 - ¢) / 2=p/q, p and q being integers.” We expect that the features
associated with the Dirac cone in these generalized flux phases will be closely
analogous to the analytically simpler V2 x V2 situation considered here.

The Hamiltonian (1) is readily diagonalized to give the fermion spectrum

e, )= £ 2¢(sin?(k a) + cos’(k @)1 = £ E, (2)
where the wavevectors k lie in the first Brillouin zone of the doubled unit cell. This
spectrum has been obtained by Baskaran, Tosatti and Yu3 in a related boson
problem where only states at the bottom of the lower band are of interest. In the
present fermion problem, however, the lower, negative energy, sub-band is
completely filled at T=0, while the upper, positive energy, sub-band is completely
empty. In terms of the creation and annihilation operators, a*,, o, and g*,, B,, for

the positive and negative energy states, respectively, the diagonalized Hamiltonian
is

H:%Ek(a:uk-ﬁ‘: B, ) : 3
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The remarkable property of this fermion system is that its Fermi surface consists of
two points, namely, (0, (w/2a)) and (0,-(x/2a)), where the first component refers to
k,. Let us denote these points by k, where s=+1 refers to the sign of k. In their
region, the band energies are, from Eq. (2), €, , = = fiv | k - k_| , whefe v is the
characteristic velocity v=(2ta/h). Thus, in the region of the “Fermi energy,” the
fermions exhibit the dispersion relation of a massless Dirac cone and a density of
states p (E)-= (a?/ w h? v® ) | E | vanishing linearly in E. In Fig. 1, we show the total
density of states function p(E) calculated over the entire band width W=4v2 ¢ .
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Fig. 1. Density of states of the flux phase. The chemical potential lies at the center of the band.

The complex optical conductivity o(w) = o (w) + i 0,(w) is readily obtained from
the fsitegldard Kubo formula. With 1/d parallel iayers per unit length along the z-axis
we fin

4
o (@)= (T v?/Ad) Y cos® (kxa)[23in2(¢k)(—3nk/aEk)8(w) i

k
+00s*(®,)tanh(BE, /2) 0™ 8(2E, — m)}

5
o (@)= (?EIAd) Y oosz(kxa)[2sin2(¢k)(—ank/aEk)w'l 154

k
- cos? (D) (WE,) (4E% — 0%)~! tank BE /2)}
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In these expressions tan ®_ = sin(k a)/cos(k a) and n _=1/(exp(BE,)+1) is the Fermi-
Dirac function (We note that the numerical Value of the chemica potential is zero
and independent of temperature because of the symmetry of p(E) about E=0). The
first terms in o () and o,(w) are intraband contributions arising from fermion and
hole quasi-particles thermally excited in the region of the Fermi points. The second
terms in Egs. (4) and (5) correspond to real and virtual interband transitions across
the pseudo gap separating the negative energy fermions from the positive energy
fermions.. In our subsequent calculations we shall introduce the followin

replacements in the Drude-like contributions to o (w) and o (w); 6 (W) + 7/ (1 + w
1?), w!'+wr?/(1+ w?r?), where T denotes a phenomenological relaxation time
which in general may depend on the fermion energy E,. Such a replacement would
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arise, for example, in a simple Boltzmann transport equation treatment of the
thermally excited quasi-particles.

For fiw small by comparison to the band width W=4v2 t, Eq. (4) for 0,(w) may be
evaluated analytically to give

0,(0) = (2/RTd) (0, T) + (¢*/8dh) tanh (h/ 1k, T) (6)

where the function.f is

& (7)
flo,T)= - I (@EIEI/24)(3n/3E) v(E)/(1 + &> ¢ (E))

The Drude term in Eq. (6) is similar to that of a classical gas of charged particles.
The second, interband, term in Eq. (6) has a most interesting form: for Aw <<4k_T it
is proportional to (fiw/k,T), while for hw>~4k_T it is a constant, independent of Both
temperature and frequency. The frequency dependence predicted by Eq. (6) is
shown in Fig. 2, where we have calculated o (w) for the parameter choices
(e?/2dt)=2, (k,1/2t)=0.03, and an energy independent r of magnitude 7=(20A/2t).
Both the Drude and interband components are setparately indicated. The panel in
Fig. 2 compares the frequency dependences o o (w) calculated for the two
temperatures (k,T/2t) = 0.015 and (k,T/2t) = 0.03.
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Fig. 2. o (w) versus @. The Drude-like and interband components are indicated. The panel compares
the frequency dependences of 0,(w) for the two different temperatures indicated.

Finally, we derive a qualitative expression for the “Drude” relaxation time r for a
specific model scattering mechanism, namely, the scattering of the fermion quasi-
particles by a 2D acoustic phonon field. We assume that the site energies of the a
and b sites are modulated by the amounts
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=CcS epli * (@)
CAJ. C‘:_‘_wzp(zq.R})lqluq(dq +d_q)

where A is the dilation and C is a deformation coupling constant. In Eq. (8)
u =(A/2MNw )2 is the zero-point motion contributed by the phonon whose
frequency is'w _=sq, d* and d_ are phonon creation and destruction operators, s
the sound velocity, and M a mean ionic mass. Making use of the Fermi rule to
estimate a scattering time, we find an energy-dependent quasi-elastic relaxation
time

(17 )~ (T € a2k, Tp (E,)/ 2MAs) (9

Provided that v>>s, this result is valid for arbitrary low temperatures. The reason
for this is that the point Fermi surface limits the largest energy of a phonon
exchanged in the scattering to Aw_ = fis2k ~ 4k T(s/v) typically. In an ordinary
metal hw, ~ As2k,, where k_ is the Fermi wavevector. Eq. (9) shows that r o (1/k,T

E). Thus, in view of Egs. (6) and (7) this leads to a resistivity proportional to T, even
in the limit T-0.

The theoretical results obtained in this paper bear an interesting resemblance to
the observed® normal state optical conductivity of YBa,Cu,0,, and doped La,CuO, .
In particular, our theoretical computation of o, (w) presented in Fig. 2 is str1king1y
similar to the normal state optical conductivity deduced by Timusk et al.’ and by
Orenstein et al.'’ from Kramers-Kronig transformation of reflectivity measurements
on YBa,Cu,0,,. Their data for o ,(w) can be described by a low-frequency Drude
absorption that tracks the temperature dependence of the d.c. conductivity (0, a
T') and a relatively structureless, temperature independent broad “midinfrared”
band. This suggests the intriguing possibility that the normal state of the quasi-2D
electron system in the copper oxide superconductors exhibits the correlated
behavior of a flux phase. We are currently exploring these ideas.

We acknowledge useful discussions with J. Voit.
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