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Sample-related X-ray diffraction profiles are often fitted with a pseudo-Voigt func-
tion, which is a linear combination of a Cauchy and a Gaussian function, particu-
larly for the cases of size-strain analysis. This work reveals that Cauchy content,
η, must be greater than 0.328 in case of pseudo-Voigt profile, otherwise one can
not expect any meaningful accuracy in terms of data on crystallite size extracted
from such profiles. η values published by several authors, who have made use of
pseudo-Voigt function as profile fitting function, were thoroughly studied and it
was found that their reported η values agree with the present theory.
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1. Introduction

Several microstructural parameters contribute to X-ray diffraction peak broad-
ening. Diffraction peaks, when corrected for all non-Bragg components, i.e. back-
ground, instrumental contribution etc., bear informations about crystallite size,
mean-square strain and other microstructural parameters. This corrected profile
is usually termed as purely sample-related profile and is believed to be mainly a
convolution of strain-related and size-related profiles. On the basis of certain exper-
imental and theoretical evidence, Warren [1] pointed out that for Gaussian strain
distribution, the Warren-Averbach (WA) analysis is exact. In other words, Gaussian
function can model strain distribution reasonably well for WA analysis. However,
a Gaussian alone cannot properly model size-related broadening because its first
derivative approaches zero for small coherent domain size and hence area-weighted
crystallite size calculated using Warren-Averbach’s [2] formalism approaches infin-
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ity. This directly contradicts the very basis of Warren’s theory that it holds good for
small coherent domain size. It should be mentioned in this context that meaningful
volume-weighted (< D >v) crystallite size can be extracted from a Gaussian size-
related profile [3]. For similar reasons, Pearson type VII can not model size-related
broadening [4], while a Cauchy function, which is also a bell shaped function, yields
non-zero first derivative and, therefore, can model size broadening reasonably well.

The Voigt function [5–6], which is a convolution of a Gaussian and a Cauchy
function, has been found to be more useful in describing purely sample-related
profiles. Recently, Balzar and Ledbetter [7] have made use of a two Voigt function
model to describe sample-related profile. According to them, a combination of
both Cauchy and Gaussian function contributes to both size- and strain-broadening
separately. Therefore, both size-related and distortion-related broadening are better
represented by one Voigt function each. The sample-related profile is a convolution
of these two Voigt functions which in turn is another Voigt function.

Pseudo-Voigt function, which is an approximate form of Voigt function, can take
different shapes according to the values of parameter η. When η = 1, it becomes
a Cauchy function. On the contrary, when η = 0, it becomes a Gaussian function.
It is widely believed that η can take any value between 0 to 1. Present work shows
that for the most frequently used form of pseudo-Voigt function, Eq. (1) (written
below), η must be greater than 0.328 (in the case of size-strain analysis), otherwise
no meaningful result in terms of crystallite size can be obtained.

2. Theory

The analytical form of pseudo-Voigt function used by most of the crystallogra-
phers is written as

Ip(x) = Ip{ηC(x) + (1− η)G(x)} , (1)

where C(x) = (1 + x2)−1 and G(x) = exp[−(ln 2)x2], with x = (2θ − 2θ0)/w, w
is the full-width at half-maximum (FWHM), η the Cauchy content and 2θ0 the
position of the peak maximum.

The Fourier transform of the above mentioned form of the pseudo-Voigt func-
tion, Eq. (1), is given by

F (L) = (1− η)
√
π

ln 2
exp

(
−π

2w2L2

ln 2

)
+ ηπ exp(−2πwL) . (2)
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d2 F (L)
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According to De Keijser, Mittemeijer and Rozendaal [8],
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where < e2 > is the mean-square strain, K′ = 4πl2/a3, l is the order of reflection,
a3 the minimum distance of correlation perpendicular to the reflecting plane and
F s(L) the size-related Fourier coefficient.

Now, in Eq. (4), d2 F s(L)/dL2 is area-weighted crystallite-size distribution func-
tion and K′ < e2 > is K′ times mean-square strain. These two quantities cannot
be negative and crystallite size must be greater than zero. Therefore, the sum of
these two quantities must also be greater than zero, i.e.,

d2 F (L)

dL2

∣∣∣∣
L→0

> 0 . (5)

So,

− 1

(ln 2)3/2
+

η

(ln 2)3/2
+ 2η

√
π > 0 (6)

and

η >
1

1 + 2
√
π (ln 2)3/2

= 0.328 . (7)

3. Corroboration of the present theory by experimental

results

The fact that η can never be less than 0.328 is also evident from the work
of several crystallographers like Benedetti, Fagherazzi, Enzo and Battagliarin [9],
Sanchez-Bajo and Cumbrera [10] and Le Bail and Jounaneuax [11]. All of them
made use of same form of pseudo-Voigt function, i.e. Eq. (1).

None of the above mentioned authors have reported a single η value smaller than
0.328 (for the sample related profile) as evident from Tables 1, 2 and 3. Moreover,
in the size-strain analysis of ultrafine cubic zirconia for 222 reflection, Benedetti,
Fagherazzi, Enzo and Battagliarin [8] have reported (1 − η) as 0.31 or η = 0.69.

TABLE 1. Values of η published by Benedetti et al. [9] for milled fluorites.

Sample fluorite Hkl η reported

Untreated 220 0.90

440 0.99

0.5 hour 220 0.97

milled 440 0.99

1.5 hour 220 0.99

milled 440 0.99

3 hour 220 0.99

milled 440 0.99
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TABLE 2. Data from Sanchez-Bajo and Cumbrera paper [10], powder diffraction
in cubic yttria-stabilized zirconia.

Reflections 2θ η

111 30.132 0.65

002 34.843 0.66

022 50.166 0.63

113 59.610 0.66

222 62.566 0.82

004 73.685 0.50

133 81.608 0.53

024 84.147 0.48

TABLE 3. Powder diffraction data on triclinic lead chromate PbCrO4 from Le Bail
and Jounaneuax’s paper [11].

hkl 13̄1 2̄21 132̄
FWHM 0.076 0.093 0.048

η 0.818 0.743 0.328

hkl 012 2̄12 132̄
FWHM 0.122 0.043 0.047

η 0.578 0.704 0.745

hkl 112 211

FWHM 0.082 0.054

η 0.951 0.818

This also complies with the present theory.

η values for the diffraction profiles of tetragonal zirconia reported in Ref. [8] are
also well above 0.328.

4. Concluding remark

For the present form of pseudo-Voigt function, the threshold limit of η is 0.328.
If some other form of pseudo-Voigt function is used, say

Ip(x) = Ip[(1− η)G(x) + ηC(x)] , (8)

with C(x) = (1 + x2)−1 and G(x) = exp(−x2), where again x = (2θ − 2θ0)/w,
w = 1

2
FWHM and η is the Cauchy content, then it is found that η must be greater

than 0.34. So there remains a threshold limit for η.
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Therefore, it is evident that for size-strain analysis η can not take all possible
values from 0 to 1. There is always a threshold limit of η beyond which no mean-
ingful crystallite-size data can be extracted. This threshold limit depends upon the
form of the pseudo-Voigt function chosen.

Acknowledgements

Author expresses his indebtedness to the authorities of IACS for all sorts of help
and cooperation extended by them. Author is thankful to Prof. G. B. Mitra for his
critical comments. Amit Chakraborty also deserves mentioned for his help.

References

[1] B. E. Warren, Progr. in Metal Phys. Vol. VIII (1959) p. 147;

[2] B. E. Warren, X-ray diffraction, Addison-Wesley, Reading (1969) p. 264-275;
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PRIMJENA PSEUDO-VOIGTOVIH PROFILA U ANALIZAMA ŠIRENJA
DIFRAKCIJSKIH LINIJA

Rendgenski difrakcijski profili uzoraka često se prilagod–uju pseudo-Voigtovom
funkcijom koja je linearna kombinacija Cauchyeve i Gaussove funkcije, posebno u
analizama veličina kristalita i naprezanja. Ovaj rad pokazuje da sadržaj Cauchyeve
funkcije mora biti veći od 0.328 za pseudo-Voigtove profile, jer inače se ne može
očekivati razumna točnost iz profila izvedenih podataka za veličinu kristalita. Vri-
jednosti koje su objavili autori o primjenama pseudo-Voigtove funkcije za pri-
lagodbe difrakcijskih profila smo podrobno analizirali i njihovi se podaci slažu s
ovom teorijom.
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