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The ground-state energies of an electron and of a hole in a finite-potential quantum
dot disc of GaAs are calculated. Solving the Schrödinger equation for the two parti-
cles separately, we calculated the first two excited states for each one. To study the
effect of the disc dimensionality on the eigen-energies, we considered different discs
with different values of radius (R) and width (L). Discussing the potential effect,
we examined the eigen-value behaviour at different values of the barrier heights.
The corresponding wave functions are obtained.
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1. Introduction

Recent progress in crystal growth and process techniques has made it possible
to realize zero-dimensional systems such as clusters and nano-crystallites. In these
structures, ultimate quantum confinement effects restrict the motion in three spatial
directionsof the optically excited electrons and holes. As a consequence, free-particle
energy levels are quantized and Columbic correlation effects [1] are enhanced. For
the last ten years, it has been possible to process a new class of spherical quantum
dots (QDs) called quantum dot discs - quantum well or inhomogeneous quantum
dots (IQDs) composed of two semiconductor materials. One of them, that with
the smaller bulk band gap, is embedded between a core and outer shell of the
material with the larger band gap. These structures can exhibit some remarkable
and interesting phenomena associated with the redistribution of the electron and
hole wave functions, such as an increase in the band-edge absorption when the shell
material has a small band gap and a rapid change in the luminescence efficiency.
The original characteristics of these structures are that their physical properties
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can be controlled and adjusted by changing the core diameter, the thickness of the
well and the size of the outermost shell.

Self-assembled quantum dots have much to offer in theoretical studies of these
structures. First, they are small with a lateral extent of ∼ 20 nm [2], which cannot
be realized lithographically. This small lateral size leads to large quantization ener-
gies, typically tens of meV. The Coulomb interaction energy between two particles
confined in such a dot can be smaller than the quantization energy, which means
that a quantum mechanical description of the Coulomb effects is important. Sec-
ond, the dots are highly homogeneous, so that simultaneous charging of as many
as 106 dots has been achieved [3,4]. This is ideal for optical experiments.

Recently, there has been a lot of work on obtaining analytic or semi-analytic
results for various QD shapes. The latter is often done using an infinite barrier;
this approximation is valid for electron states in large-radii QDs. One goal of the
recent work is to obtain a better physical picture of the QD disc and explore the
effect of both the disc dimensionality and finite-barrier potential on electron and
hole energy levels, consequently, the optical properties of the QDs (to be discussed
in our future paper). As a recent example of the latter methodology, Cantele et
al. [5] discovered topological surface states in spheroidal QDs, while some of other
shapes considered so far are spheres [6], cones [7] and rectangles [8].

In the present work, we study the excited states of an electron and of a hole in a
quantum dot disc, using the effective-mass approximation with a finite confinement-
potential model. Varying the radius (R) and width (L) of the quantum dot disc, the
quantum disc arrangement allows one to systematically explore the various limiting
situations of the quantum dot (R < aB and L < aB, where aB is the 3-D electron
Bohr radius). Consequently, the corresponding wave functions are calculated.

2. Theoretical model

In the effective-mass approximation, we write Schrödinger equation for single
particle in 2D as

(

−
h̄2

2m∗
∇2 + V1(r)

)

f(r) = E1f(r). (1)

By 2D we mean the in-plane coordinates, i.e x and y. The z direction is considered
separately as Schrödinger equation in 1D

(

−
h̄2

2m∗

∂2

∂z2
+ V2(z)

)

g(z) = E2g(z). (2)

Before we proceed, we should mention that the electron and the hole confined states
in QD were solved recently by Willatzen et al. [9]. He used parabolic cylinder coor-
dinates and solved Schrödinger equation for QD in such coordination system, but
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for the infinite barrier. Considering the confinement potentials V1 and V2 (defined
by Eq. (5)), the solutions of Eqs. (1) and (2) are of the form [10]

F (r) =

{

J0(θr) for r ≤ R

BK0(βr) for r > R
, (3)

and

g(z) =

{

cos(Mz) for |z| ≤ L/2[4]

A exp(−q|z|) for |z| > L/2.
. (4)

Fig. 1. The various coordinates in the quantum disc. The r’s denote the in-plane
coordinates, and the z’s denote the positions along the disc axis.

Figure 1 describes the quantum dot disc and its dimensions R and L. Considering
the cylindrical coordinates in which ∇2 is given by

∇2 =
∂2

∂r2
+

1

r

∂

∂r
.

Therefore, Eq. (1) becomes

(

∂2

∂r2
+

1

r

∂

∂r
+ D

)

f(r) = 0,

where, D = θ2 (if r ≤ R) and D = β2 (if r > R), where β is a complex
quantity, and it is the argument of second-order modified Bessel function K0,
(β2 = (2m∗/h̄2)(V0−E1)). Here, we define J0 as the zero order Bessel function with
the argument θ2 = (2m∗E1/h̄2). A and B are constants and will be determined
from the continuity of the first derivatives of the wave functions at the boundaries,
M2 = (2m∗E2/h̄2), and q2 = (2m∗/h̄2)(V0 − E2).

The confinement potentials in QDs can possess various shapes depending on
their origin and on the QDs structures [11]. The confining potential in self-
assembled QDs, where stems from the band offsets and can be modified by both the
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alloying [12] and the strain effects [13]. Therefore, we used the rectangular potential
well

V =

{

0 if r < R and |z| < L/2

V0 otherwise
. (5)

As proposed in Ref. [10], for the full 3D motion the product of the two functions
given by Eqs. (3) and (4) is no longer a solution of the 3D effective-mass Schrödinger
equation since the actual 3D finite confinement potential is not the sum of V1 and
V2, but

V = V1(r) + V2(z) + δV (r, z),

where, δV equals zero inside the well, and has the value −V0 outside. It follows
that the ground-state energy of a confined particle in QD disc with finite potential
can be

E = E1 + E2 − 〈δV 〉 .

Applying the boundary conditions, we obtain the following transcendental equation

J0(θR)K ′

0
(βR) − J ′

0
(θR)K0(βR) = 0, (6)

where J ′

0
(θr) = −θJ1(θr), but for K ′

0
(βr) we use the derivation of the series for-

mula for K0(βr). The numerical solutions of Eq. (6) were evaluated using our own
computer programs in the Matlab language, to obtain the electron or the hole
eigen-energy (E1) in the plane direction. The corresponding transcendental equa-
tion along the disc axis (z) is given by

M sin(ML) − q cos(ML) = 0. (7)

The first solutions of Eqs. (6) and (7) represent the ground-state energies of the
particle in the in-plane (E1) and along the disc axis (z) directions (E2), respectively.
The higher solutions correspond to the excited energies.

3. Results and discussion

The calculations in this work consider a self-assembled artificial atom confined
in a cylindrical disc manufactured of the semiconductor material GaAs. In further
calculations, we apply the material parameters of GaAs embedded in Al0.4Ga0.6As.
That implies that V0 = 0.324 eV in the case of an electron with effective mass
m∗

e = 0.0665, and hole-confinment potential equal to 0.1746 eV with the effective
hole mass of m∗

h = 0.34. The dielectric constant is ε = 13.18.

The numerical solution of the transcendental equation (6) is shown in Fig. 2.
In the figure, we plot the ground-state energy of the electron as a function of the QD
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Fig. 2. (a) The electron ground-state energy (eV) vs. disc radius R for three values
of disc width, L/2 = 40, 60 and 100 Å. (b) The hole ground-state energy for the
same three values of L/2.

radius (R) in Å. These values are calculated at three different values of the disc
width L/2 = 40, 60 and 100 Å. As we see in Fig. 2(a), the ground-state energy of
the confined particle in QD has large values at small radius and width. That is to
say, in the range R and L < effective Bohr radius (aB = 125.4 Å), a large value of
the ground-state energy is obtained.

The eigen-values of Eq. (7) give the carrier’s ground-state energy along the z-
direction. The results are displayed in Fig. 3. We further applied different value of
the potential V0. Fig. 3(a) represents the electron ground-state energy at V0 = 0.324
and 0.3566 eV. We notice that the electrons become more confined when the Al
concentration is increased in the QDs. Similarly, it is also the case for the hole (see
Fig. 3b).

The variations of the ground-state energy as a function of the disc width (L)
are depicted in Figs. 4a and b for both particles. Here we can say the same as
for Fig. 2, the particle ground-state energies in QD disc increase at small values
of both the radius R and the width L. Before we proceed, we notice from Figs. 2
and 4 that doubling the value of R causes an approximate decrease by 96 meV
in the ground-state energy of the electron, while doubling the value of L results
in a decrease by 35 meV, i.e., the electron ground-state energy does not depend
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Fig. 3. (a) The electron ground-state energy as a function of radius R, for two
values of the confinement potential V = 0.3242 and 0.3566 eV, where L/2 = 60 Å.
(b) The same for the hole but at V = 0.1746 and 0.192 eV, and also L/2 = 60 Å.

strongly on the value of L. Here, we would like to add that the ground-state energy
of the electron remains fairly constant for different values of R > 80 Å, and for
R > 60 Åin case of the hole (Fig. 2). Similarly, in Fig. 4, the ground-state energy
of both almost remains constant for values of L > 100 Å. Fig. 5a displays the
energies of the ground-state and the first two excited states of the electron. The
three curves were calculated for L/2 = 90 Å and V0 = 0.324 eV. Figure 5b shows
the hole ground and excited states for V0 = 0.1746 eV and the same value of L.
The qualitative behaviour of the excited-state energy levels is similar to that of
the ground-state energy. We notice from Fig. 5a that for the QD disc with a small
radius R < 50 Å, some excited states cease to be bound. Figure 5b shows that the
hole excited states cease to be bound for R < 30 Å.

From Figs. 5 we notice the presence of bumps in the excited-state energy plot.
We may refer these bumps to the following two reasons: First, due to the quantum-
size effect because they appear at very small values of R (at R < 50 Å). In such
geometrical constraints, carriers (electron or hole) feel the presence of the particle
boundaries and respond to change their energy. Secondly, the e-h recombination
energy is not released as a photon but is transferred to a third particle (an electron
or a hole) that is re-excited to a higher energy state. Lastly, we display the ground-
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Fig. 4. (a) The electron ground-state energy as a function of the disc width L/2 for
three values of radius R = 40, 60 and 100 Å. (b) The hole ground-state energy for
the same three values of R.

Fig. 5. (a) The electron ground and the first two excited states as a function of R
for L/2 = 90 Åand V = 0.3242 eV. (b) The hole ground and the first two excited
states for the same values of L/2 and V = 0.1746 eV.
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state and the first-excited-state of the electron wave function amplitudes squared,
(|f(r)g(z)|2), in Fig. 6 as functions of R and z.

Fig. 6. (a, top) The electron ground-state wave function amplitude squared as a
function of R and z. (b) The same as in (a) but of the electron first excited state.

3.1. Comparing our results with recent data

We carried out our calculation for the similar QD as in Ref. [14] where Ciurla et
al. proposed a modeling of the confinement potentials in QDs as a power exponential
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potential, given by V = V0 exp{−(r/R)p − (|z|/L)p}. When the parameter ”p”
tends to infinity, the confinement potential in Ciurla’s model is V = V0 outside
the well (at the boundaries) as in our model. We obtained a reasonable result, in
agreement with the results of Ciurla et al. The deviation between our results and
Ciurla’s model does not exceed 3% for the ground states, and we also obtained
reasonable agreement for the excited states. We refer that deviation to his limit
of the parameter p at p = 100. For higher values of p (i.e., more than 100), the
deviation would be smaller.

4. Conclusion

The ground and excited states for an electron confined in QD disc made of
GaAs and embedded in Al0.4Ga0.6As material, with finite potential, have been
calculated numerically. Similar calculations were carried for the hole. The ground
and the excited-state energies depend on the dimensions of the quantum dot and the
confinement potential. We find a strong dependence on the quantum dot disc width
(L), but weaker dependence on the radius (R). Both the ground and excited states
show qualitatively the same behaviour. The eigen-states of the two particles are
determined as a function of the disc radius and width. A good agreement between
our results and that of Ref. [14] model has been obtained.

References

[1] A. D. Yoffe, Adv. Phys. 42 (1993) 173.

[2] D. Leonard, K. Pond and P. M. Petroff, Phys. Rev. B 50 (1994) 11687.

[3] H. Drexler, D. Leonard, W. Hansen, J. P. Kotthaus and P. M. Petroff, Phys. Rev. Lett.
73 (1994) 2252.

[4] Medeiros-Ribeiro, F. G. Pikus, P. M. Petroff and A. L. Efros, Phys. Rev. B 55 (1997)
15688.

[5] G. Cantele, D. Ninno and G. Ladonisi, J. Phys.: Condens. Matter 12 (2000) 9019.

[6] L. Efross and A. L. Efross, Sov. Phys. Semicond. 16 (1982) 772.

[7] J. Y. Marzin and G. Bastard, Solid State Commun. 92 (1994) 437.

[8] L. C. Lew Yan Voon and M. Willatzen, Semicond. Sci. Technol. 10 (1995) 416.

[9] M. Willatzen and L. C. Lew Yan Voon, Physica E 16 (2003) 286.

[10] Tong San Koh, Yuan Ping Feng, Xin Xu and Harlod N Spector, J. Phys.: Condens.
Matter 13 (2001) 1485.

[11] N. F. Johnson, J. Phys.: Condens. Matter 7 (1995) 965.

[12] P. D. Siverns et al., Phys. Rev. B 58 (1998) R 10127.

[13] M. Grundman, O. Siter and D. Bimberg, Phys. Rev. B 52 (1995) 11969.

[14] M. Ciurla, J. Adamowski, B. Szafran and S. Bednarek, Physica E 15 (2002) 261.

FIZIKA A 13 (2004) 1, 1–10 9



hekmat et al.: electron and hole confinement states in . . .

VEZANA STANJA ELEKTRONA I ŠUPLJINE U VALJKASTOJ KVANTNOJ
TOČKI

Izračunali smo energije osnovnih stanja elektrona i šupljine u konačnom potencijalu
valjkaste kvantne točke u GaAs. Rješavanjem Schrödingerove jednadžbe posebno
za svaku od čestica, izračunali smo prvo i dva vǐsa stanja za svaku česticu. Radi
proučavanja učinka veličine valjka na svojstvene energije, razmatrali smo valjke
različitih polumjera i duljine. Razmatrali smo utjecaj potencijala ispitivanjem ovis-
nosti svojstvenih vrijednosti za tri vrijednosti visine barijere. Izveli smo odgo-
varajuće valne funkcije.
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