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Linear and nonlinear propagation of ion-acoustic waves are theoretically investi-
gated in a multicomponent plasma consisting of electrons, positive ions and nega-
tive ions bounded in a cylindrical waveguide. The stability of the ion-acoustic wave
is discussed taking into account the role of finite geometry and the concentration
of negative ions of the plasma. The effect of nonlinearity on the ion-acoustic wave
is investigated through the derivation of the effective potential (Sagdeev potential)
and the results are discussed graphically with the variation of ion-streaming and
the geometry of the bounded plasma.
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1. Introduction

Linear and nonlinear propagation of waves in multicomponent plasma consisting
of electrons, positive ions and negative ions have been studied theoretically and
experimentally by many authors as they are very important in different contexts
of laboratory experiments and space plasmas. Smith [1] showed that the negative
ions affect the grouptravel time of whistlers at the mid-latitude and at the equator
and cyclotron damping of whistlers at the mid-latitude of the ionosphere. D’Angelo
et al. [2] showed that ion waves have two kinds of modes of propagation in plasma
having negative ions, one of these is ‘a slow-ion-mode’ and other mode is ‘a fast-
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ion-mode’. One should mention here that ‘fast-ion-mode’ has been observed by
Wong et al. [3] and ‘slow-ion-mode’ by Sato and Ameniya [4]. Propagation of
electrostatic wave, particularly of ion-acoustic waves (IAW) through ionospheric
plasma consisting of negative ions in addition to electrons and positive ions, has
been found to be more interesting, specially for the formation of solitary waves and
double-layers in the plasma. A detailed study of ion-acoustic solitary wave (IASW)
in the presence of negative ions has been done by Das [5] and the remarkable
conclusion is that negative ions may take an effective role in order to prevent the
breaking of solitary waves into many more solitons. The credit for the pioneering
work in this regard also goes to Das and Tagare [6]. They showed that even a
small quantity of negative ions may be important for the formation of IASW.
Subsequently, a large number of researchers investigated the effects of negative
ions on solitary waves and obtained interesting results from which it has been
found that both compressive and rarefactive soliton may exist in a negative-ion
plasma. At a particular density of negative ions, the nonlinear coefficient vanishes
and this density is known as critical density. The behaviour of solitons at critical
density is described by the modified Korteweg-de Vries (K-dV) equation which
takes into account the cubic nonlinearity [7]. Nakamura et al. [8] showed that
when the concentration of negative ions is larger than a critical value, a small
compressive pulse evolved into subsonic wave trains and a large pulse develops into
a solitary wave. They also measured the threshold amplitude and the velocity of
the solitary waves and compared with the predictions using the pseudopotential
method. Verheest [9], Singh and Das [10] and other authors have also studied the
propagation of solitary waves at critical density of negative-ions in multicomponent
plasma. In an inhomogeneous negative-ion plasma, considering the plasma density
and ion drift to be spatially varying, Chauhan and Dahia [11] derived the modified
K-dV equation and showed that the amplitude of compressive and rarefactive mK-
dV solitons depends on the relation between the zero-order velocity and density.

Recently, Chattopadhyaya et al. [12] found that the streaming ions have signif-
icant contribution to the excitation of IASW and double-layers in a negative-ion
plasma. When the drift velocity of ions is small, the amplitude of the solitary waves
becomes large. If the drifting velocity of ions is very close to the phase velocity of
the wave, the amplitude of the solitary wave becomes very small and solitons may
not exist in the plasma. They also showed that with the increase of negative-ion
concentration, the amplitude of the solitary waves increases and the potential dif-
ference of the double layers decreases. Regarding instability of ion-acoustic wave,
the work of Paul et al. [13] has some new findings. They showed that the concentra-
tion of negative ions and stream velocity have major role on the instability of IAW.
From the dispersion relation, they showed that IAW has six modes of propagation
and some modes are unstable. To study the instability of IAW, they considered
(H+,O−) ions, (H+,O−

2 ) ions, (H+, SF−

5 ) ions, (He+,Cl−) ions and (Ar+,O−) ions.
In a plasma having (He+,Cl−) ions, the first and second modes of IAW will be
highly unstable if the concentration of negative ions is large. Moreover, for heavy
negative ions, the instability of IAW is lower than that of lighter negative ions.
On the other hand, for the third and fourth modes of IAW, the instability de-
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creases with the increase of negative-ion concentration. In a plasma consisting of
(Ar+,O−) ions, there exists a limiting value of the relativistic velocity (u0/c /=0.6)
for an unstable wave. However, the works of the earlier authors mentioned above
were done in an infinite or unbounded plasma. But, the finite geometry of the
bounded plasma is important for the stability of the wave and also for the excita-
tion of solitary waves and double-layers in negative-ions plasma. Little work has
been done by the researches on the propagation of waves in a bounded plasma
system, though it is important and relevant to experimental set up, as shown by
Ghosh and Das [14]. Mondal et al. [15] studied the propagation of ion-acoustic wave
in a bounded plasma system having electrons and positive-ions only. They showed
that the trapping of particles is favoured when the effect of boundary is taken into
account keeping other parameters within certain range of values. Recently, Bhat-
tacharya et al. [16] theoretically investigated the instability of ion-acoustic wave in
relativistic plasma consisting of positive ions, negative ions and two temperature
electrons and compared the results of unbounded and bounded plasma systems. It
is seen that the phase velocity of the wave in unbounded plasma is greater than
that of bounded plasma. Moreover, the phase velocity falls off with the increase
of negative-ion concentration in the same fashion for bounded plasma. But for the
unbounded plasma, the phase velocity decreases with the increase of negative ions
up to some smaller value and then remains unchanged.

As the findings of the propagation of IAW in plasma in the presence of negative
ions have been found to be more interesting in bounded plasma than in unbounded
plasma, we are interested in the present paper to study both the linear and nonlinear
propagation of waves in a plasma bounded in finite geometry, considering the effect
of electron inertia. In the first part, study the instability of IAW in the bounded
negative-ion plasma through the derivation of the first-order dispersion relation.
In the second part, nonlinear propagation is studied using the pseudopotential
method. The profiles of effective potential have been depicted to see the effect of
concentration of negative ions and stream velocity and also the geometry of the
plasma.

2. Formulation

We consider the plasma to be collisionless, unmagnetised, non-relativistic and
confined to a perfectly conducting cylinder of radius R. The plasma consists of
electrons, positive ions and negative ions. It is assumed that the ions have streaming
velocities along the axis of the cylinder taken to be the x-axis. The effect of electron-
inertia has also been taken into consideration. The set of dimensionless equations
governing the dynamics of such a plasma system are:

For positive ions and negative ions

∂ns

∂t
+

∂

∂x

(

nsus

)

= 0, (1)

∂us

∂t
+ us

∂us

∂x
= −ψs

Qs

∂φ

∂x
, (2)
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where the subscript s is given by s = i for positive ions, s = j for negative ions;
ψi = 1, ψj = −1; Qi = 1 and Qj = Q.

For electrons
∂ne

∂t
+

∂

∂x

(

neue

)

= 0, (3)

q

(

∂ue

∂t
+ ue

∂ue

∂x

)

+
1

ne

∂ne

∂x
=

∂φ

∂x
. (4)

We use the Poisson’s equation

∇2
⊥
φ+

∂2φ

∂x2
= ne −

∑

ψsns,

where

∇2
⊥

=
∂2

∂y2
+

∂2

∂z2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
(5)

is the tranverse Laplacian, Q = mj/mi and q = me/mi. In the above equations, me,
mi and mj denote the masses of electrons, positive ions and negative ions, respec-
tively. ne, ni, nj and ue, ui, uj are the densities and velocities of the corresponding

species. In the above equations, the velocities are normalised by
√

kBTe/mi, the
densities by n0, the equilibrium electron density and all lengths by the Debye length
√

kBTe/(4πn0e2), whereas the potential φ by kBTe/e, kB being the Boltzmann con-

stant and time by ω−1
pi , i.e., mi/(4πn0e

2).

3. Instability of ion-acoustic wave

For the linear analysis, we consider the variables in Eqs. (1)–(5) are perturbed
as deviations of the quantities

ns = nso + ns1, ne = 1 + ne1,

us = us0 + us1, ue = ue1, φ = φ1. (6)

We use Eqs. (6) in Eqs. (1) – (5) and assume the spatial and temporal dependence
of the perturbed part to be of the form f(r) exp{i(kx− ωt)}, where k is the wave
number and ω is the frequency of the wave. Following Sayal and Sharma [17], we
impose the condition that the electric potential on the surface of the cylinder is
zero, i.e., φ(r) = 0 for r = R, and obtain

p2
0n = (kR)2

(

∑ ns0

Qs(ω − kus0)2
+

ne0

(ω2q − k2)2
− 1

)

, (7)

where p0n are the roots of J0(x) = 0 (J0(x) is Bessel function). On simplification,
relation (7) gets transformed into

a6k
6 + a5k

5 + a4k
4 + a3k

3 + a2k
2 + a1k + a0 = 0, (8)
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where

a0 = qQp2
0nω

4,

a1 = −2qQu2
0p

2
0nω

3,

a2 = qQp2
0nω

2u2
0 − ω2p2

0nQ−R2
(

qQω4 + ni0ω
2qQ+ nj0qω

2 +Qω2
)

,

a3 = 2Qp2
0nωu0 +R2

(

2u0ωQ+ 2qQu0ω
3
)

,

a4 = −u2
0p

2
0nQ+R2

(

ni0Q+ nj0 + ω2Q− qQu2
0ω

2 −Qu2
0

)

,

a5 = −2Qu0ωR
2,

a6 = QR2u2
0,

ni0 = 1 + nj0 (charge neutrality condition) and ui0 = uj0 = u0. Eq. (8) has been
solved numerically and the solutions represent six modes of propagation of the IAW
in the bounded plasma. Every root of Eq. (8) corresponds to a particular mode of
propagation. On solving Eq. (8) for different sets of plasma parameters, it has been
found that the first root is always real and the fifth and sixth roots are complex, one
being conjugate to another. From the real parts of fifth and sixth roots, the phase
velocities of IAW have been calculated. The imaginary parts of these complex roots
have been used to find the decay rate (kim). One should mention that the positive
and negative values of kim represent the decay and the growth rate of the wave,
respectively. In this regard, it is important to note that Eq. (8) is reduced to the
fourth order of k, when the negative ions are not present in the plasma. Moreover,
Eq. (8) will be reduced to the equation of Mondal et al. [15], when the presence of
negative ions and streaming electrons are neglected. Figs. 1a – 1c show the variation
of the phase velocity (vph) with negative-ion concentration (nj0) of the plasma hav-
ing (Cl−,H+) and (O−,Ar+) ions, for various values of the radius of cylinder (R) as
well as the mass ratio of negative ions and positive ions (Q) and the streaming ve-
locity (u0). From Fig. 1a, it is observed that for the forward-going wave, the phase
velocity increases with the increase of the concentration of negative ions. Moreover,
for a large value of the radius of the cylinder, the phase velocity is large. The rate
of increase of the phase velocity for small radius of the cylinder is higher than that
for the large radius. The phase velocities of the reflected mode of the wave are
shown in Figs. 1b and 1c. It is seen that the phase velocity in (Cl−,H+) plasma is
lower than that in (O−,Ar+) plasma. Due to the increase of stream velocity, the
phase velocity also decreases for the reflected wave. Figure 1d shows the effect of
electron inertia on the variation of phase velocity with nj0. It is observed that for
the values of q(1/10, 1/36, 1/1836) phase velocity increases linearly with nj0 almost
at the same rate with the only exception in the region 0.27 < nj0 < 0.35 when
q = 1/1836. In this region, a hump appears indicating sudden change in the rate
of increase of the phase velocity. In Fig. 1e, the combined effects of R, u0 and q on
the variation of vph with nj0 are displayed. A close study of the plot reveals some
interesting features. Firstly, the IAWs propagate with greater phase velocity when
the wave guide is of smaller radius, the ions have smaller streaming velocities and
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Fig. 1 (figures at left). (a) Variation of vph with nj0 for various values of R where
other parameters are Q = 0.4, u0 = 0.2, p0n = 5.5, ω = 0.1, q = 1/1836 (Mode 5).
(b) Dependence of vph (for the reflected mode) on nj0 for different values of Q where
other parameters are R = 1, u0 = 0.2, p0n = 5.5, ω = 0.1, q = 1/1836 (Mode 1). (c)
Variation of vph (for the reflected mode) with nj0 for different values of u0 where
other parameters are Q = 35.5, R = 1, p0n = 5.5, ω = 0.1, q = 1/1836 (Mode
1). (d) Variation of vph with nj0 for different values of q and other parameters
u0 = 0.2, ω = 0.1, R = 1, Q = 0.4, p0n = 5.5 (Mode 4). (e) Plot of variation of vph

(for the reflected mode ) with nj0 for different values of the parameters R, u0 and
q when other parameters are ω = 0.1, Q = 0.4, p0n = 5.5 (Mode 1). (f) Variation
of vph with ω for various values of R in the case of Ref. [15] (dotted line) (nj0 = 0)
and present results (solid line) (nj0 = 0.15, Q = 35.5) where other parameters are
u0 = 0, p0n = 5.5, q = 1/1836.

Fig. 2. (a) Change of kim the instability factor with nj0 for different values of Q
where other parameters are u0 = 0.2, R = 1, p0n = 5.5, ω = 0.1, q = 1/1836 (Mode
5). (b) Dependence of kim on nj0 with R as parameter where other parameters are
Q = 0.4, u0 = 0.2, p0n = 5.5, ω = 0.1, q = 1/1836 (Mode 5). (c) Variation of kim

with nj0 for different streaming velocities u0 where other parameters are Q = 35.5,
R = 1, p0n = 5.5, ω = 0.1, q = 1/1836 (Mode 5). (d) Plot of variation of kim on
nj0 for different values of the parameters R, u0 and q when other parameters are
ω = 0.1, Q = 0.4, p0n = 5.5 (Mode 5).
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the electron inertia is smaller simultaneously. Secondly, the phase velocity of the
IAW come close as the values of the parameters mentioned above become large.
Thirdly, the phase velocity decreases with nj0 for any set of parameter values.
The rate of decrease of the phase velocity with the increase of in nj0 is found
to be slower for smaller parameter values, whereas the phase velocity falls off at
faster rate for larger parameter values. The dependence of the phase velocity on
the frequency of the wave is observed in Fig. 1f from which it is seen that phase
velocity increases in the presence of negative ions. Furthermore, the phase velocities
in the absence of negative ions are greater than in (Cl−, H+) plasma. Again, we
see that the phase velocity decreases with the increase in the wave frequency (ω).
When the radius of the cylinder is large, the velocity decreases rapidly. Figs. 2a –
2c show the dependence of the decay rate (kim) on the negative ion concentration
for different values of Q, R and streaming velocity (u0). In Fig. 2a, we observed
that the decay rate increases almost linearly with negative ion concentration and
the rate of increase is greater for the plasma having smaller value of Q. Figure 2b
shows that the decay rate increases with nj0 nearly at the same rate for smaller
and larger values of the radius. When the stream velocity is low, the growth rate
is high which is shown in Fig. 2c. It is observed from Fig. 2d that the instability
of the IAWs increases linearly with nj0 for any set of the parameter values. For a
particular value of the negative ion concentration, the IAW become more unstable
if the values of radius of the wave guide, ion streaming velocities and the electron
inertia are smaller simultaneously.

4. The effective potential

In order to derive the expression for the effective potential, we use the perturba-
tion expansions as adopted in the linear part, but we do not linearise the basic equa-
tions. Consequently, we obtain a set of nonlinear equations. At this stage, we as-
sume that the radial behaviour of the perturbations is described by the lowest-order
Bessel function. Thus, following Mondal et al. [15], we take the perturbed quanti-
ties to be of the form J0(k⊥r)f(x, t), where f(x, t) = Ns(x, t), Ne(x, t), Us(x, t), . . .
and k⊥ = P0n/R. Integrating the former nonlinear equations over r from 0 to R,
after multiplying with rJ0(k⊥r), we have

∂Ns

∂t
+ ns0

∂Us

∂x
+ us0

∂Ns

∂x
+ αNs

∂Us

∂x
+ αUs

∂Ns

∂x
= 0, (9)

∂Ne

∂t
+
∂Ue

∂x
+ αNe

∂Ue

∂x
+ αUe

∂Ne

∂x
= 0, (10)

∂Us

∂t
+ us0

∂Us

∂x
+ αUs

∂Us

∂x
= −ψs

Qs

∂φ

∂x
, (11)

q

(

∂Ue

∂t
+ αUe

∂Ue

∂x
+ αNe

∂Ue

∂t
+ βNeUe

∂Ue

∂x

)

+
∂Ne

∂x
=

(

1 + αNe

)∂φ

∂x
,(12)
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and
∂2φ

∂x2
− φ = Ne −

∑

ψsNs (13)

where

α =

R
∫

0

J3
0 rdr

[

R
∫

0

J2
0 rdr

]−1

, β =

R
∫

0

J4
0 rdr

[

R
∫

0

J2
0 rdr

]−1

.

In order to have the stationary solutions of Eqs. (9) – (13), we have to use the
transformation ξ = x −Mt where M is the velocity of the nonlinear structure in
units of speed of sound (Mach number). As a result, Eqs. (9)–(13) yield

Ns =
ns0/α

− 1 +
√

1 − 2αφ/(Qs(M − us0)2)
(14)

Ne =
Ue

M − αUe

(15)

and
(

β − α2
)q

3
U3

e +
αqM

2
U2

e +
(

1 − qM2q
)

Ue −
(M lnM

α
+Mφ

)

= 0. (16)

The real roots of (16) are given by

(

Ue

)

real
=
Z −A1

A0

, (17)

where, Z = X − Y/X, X3 = (−G +
√
G2 + 4Y 3)/2, G2 + 4Y 3 > 0, G =

A2
0δ − A0A1γ + 2A3

1, Y = A0γ/3 − A2
1, A0 = q(β − α2)/3, A1 = qMα/6,

γ = −1 − qM2 and δ = −M(φ + lnM/α). So, Poisson’s equation (13) takes the
form

∂2φ

∂ξ2
= φ+

Ue

M − αUe

−
∑ ψsns0/α

− 1 +
√

1 − αφ/(Qs(M − us0)2)
= −∂V

∂φ
, (18)

where V (φ) is the effective potential. Equation (18) is highly complicated and it is
difficult to get the explicit expression for V (φ). So, we have solved (18) numerically
and calculated the values of V for a model plasma for various values of Q, nj0, p0n

and M . The positive value of φ and negative value of V indicates that the nature
of the excited soliton is compressive. From Figs. 3a – 3d we see how the effective
potential V is influenced by various parameters of the plasma. Moreover, we find
that the profiles, as shown in Figs. 3a and b, are very close to each other, whereas
those shown in Figs. 3a and d are widely different. From Fig. 3a, it is seen that for
(O−, Ar+) plasma, V is more negative than for (SF−

5 ,H+) plasma, i.e. the trapping
of particles is more likely for Q = 0.4 (O−, Ar+) where nj0 = 0.1, u0 = 0.2, and
Mach number 1.5. It is seen that for (O−, Ar+) plasma, V (φ) is negative when
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φ runs from 0.23 to 0.55, which indicates that compressive solitary wave will be

Fig. 3. (a) Variation of the effective potential V (φ) with φ for different plasmas.
(b) Dependence of the effective potential V (φ) on φ for different negative-ion con-
centrations nj0. (c) Plot of the effective potential V (φ) against φ for p0n = 5.5,
11.8. (d) Dependence of the effective potential V (φ) on φ for the mach numbers
M = 1.1 and 1.5.

formed. But when φ < 0.23, V (φ) is positive, i.e. solitary wave will not exist in
this plasma. In (SF−

5 , H+) plasma, V (φ) is negative when φ = 0.23 to 0.53, i.e.
compressive solitary wave will be formed, but when φ < 0, V (φ) is negative and
no potential well is formed. In Fig. 3b, trapping of ions is more probable when
nj0 = 0.1 than when nj0 = 0.3, and in this case also compressive solitons are
excited. In Fig. 3c, the nature of change of V (φ) with p0n is found to be peculiar.
It is observed that for p0n = 11.8, φ is negative, i.e., rarefactive soliton exists, but
for p0n = 5.5, φ is positive, i.e. compressive soliton exists. Lastly, from Fig. 3d we
see that when M = 1.1, V (φ) is positive and this implies non-existence of soliton,
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whereas for M = 1.5, V (φ) turns out to be negative when φ = 0.23 to 0.55, and
this indicates excitation of compressive soliton. It is to be noted that Figs. 3a –
3d, represented by the energy integral equation (18), correspond to solitary waves
excited in the plasma under specific condition, not for all the values of the plasma
parameters.

5. Concluding remarks

We have theoretically investigated the propagation of IAW in a multi-component
plasma consisting of electrons, positive ions and negative ions bounded in finite
geometry. Comparing our results with those of Mondal et al. [15], we here find that
the presence of negative ions will create some new features in the linear and non-
linear propagation of IAW. In the first-order approximation, it is observed that the
phase velocity of the wave increases with the concentration of negative ions and
the increase of the radius of the cylinder. When the mass ratio of the negative
ion to the positive ions is large, the phase velocity is lower. In the analysis of the
stability of the wave, it is found that the decay rate is higher for the (O−, Ar+)
plasma than for the (Cl−, H+) plasma and with the increase of the concentration
of negative ions the decay rate increases. In non-linear analysis, we find that the
trapping of charged particles is higher when the negative-ion concentration is lower.
The most interesting results are seen for the variation of the value of p0n. When
p0n = 11.8, the rarefactive soliton will occur. But the compressive soliton exists
when p0n = 5.5. So, with the variation of p0n, the excitation of solitons may be
controlled. Moreover, we find that for low value of Mach number (M = 1.1), the
soliton can’t be excited in bounded plasma. But when M = 1.5, the soliton of
compressive type may be excited.

Experimental results obtained by Lonngren [18] and others [19,20] in a negative-
ion plasma for linear and nonlinear propagation of waves may be compared if the
conditions imposed on our theoretical analysis are matched with the experimental
configuration. It is to be noted that we have theoretically discussed the possibility
of excitation of solitary waves. The potential structure of the solitary wave and its
amplitude and width have not yet been calculated. In some cases, we can compare
our results with those obtained by Mondal et al. [15]. If Fig. 1d of our paper
is compared with Fig. 1c of Mondal et al. [15], then some important differences
become evident. Firstly, the rate of decrease of the phase velocity with ω gets
slowed down in the presence of negative ions, irrespective of the radius of the wave
guide, compared with that in the absence of negative ions. Secondly, for particular
values of ω and R, the phase velocity is greater in the presence of negative ions.
Again, we can make a rough comparism between Fig. 7 of Mondal et al. [15] and
Fig. 3c of our work. There exists a potential well only for φ > 0 (as shown in
Fig. 7 of Mondal et al. [15]) which corresponds to the excitation of a compressive
soliton, whereas in our case, i. e. in the presence of negative ions in the plasma,
there exists an inverted profile for certain range of values of φ(0 ≤ φ ≤ 0.25) which
indicates nonexistence of soliton in the plasma, and for another range of values of
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φ(0.25 ≤ φ ≤ 0.6), there is the possibility of trapping of particles, implying the
existence of compressive soliton as found in Fig. 7 of Mondal et al. [15]. In both
cases rarefactive solitons are likely to occur in the plasma and trapping of particles
is less favoured for larger values of p0n, the root of J0(x) = 0. In other figures for
V (φ) we find the presence of inverted profile for certain range of values, signaling
to reflection of particles that shows nonexistence of soliton.
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LINEARNO I NELINEARNO ŠIRENJE IONSKO-ZVUČNIH VALOVA U
PLAZMI U POSUDI KOJA SADRŽI I NEGATIVNE IONE

Teorijski istražujemo linearno i nelinearno širenje ionsko-zvučnih valova u vǐsekom-
ponentnoj plazmi koja se sastoji od elektrona, te pozitivnih i negativnih iona i
nalazi se u valjkastom valovodu. Raspravljamo stabilnost ionsko-zvučnih valova
uzimajući u obzir utjecaj ograničenog prostora i koncentracije negativnih iona u
plazmi. Istražujemo učinke nelinearnosti na ionsko-zvučni val putem izvod–enja efek-
tivnog (Sagdeevog) potencijala a ishodi numeričkih računa predočuju se grafički za
različita strujanja iona i oblike valovoda.
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