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The transverse electromagnetic waves and the longitudinal electron-acoustic waves
are coupled to each other by the gradients of density or temperature in a plasma.
There are also other coupling factors, such as the static magnetic field or nonlin-
earities existing in the medium. Due to coupling of waves, excitation of one leads
to the generation of the other. This results in mutual transfer of power. In the
present paper, the expression for the energy flux of acoustic wave due to conver-
sion of electromagnetic wave passing through an inhomogeneous plasma has been
obtained using the W. K. B. method. It is suggested that expansion of ionized shell
of hot stars and mass loss would be possibly due to the energy conversion process.

PACS numbers: 52.35.-g, 52.40.Db UDC 537.531

Keywords: electromagnetic wave, electron acoustic wave, inhomogeneous plasma

1. Introduction

The phenomenon of coupling between longitudinal and transverse waves in a
plasma medium gives some important as well as interesting results in the context of
astrophysical phenomena [1]. The parameters like magnetic field, rotation, inhomo-
geneity, etc., are the sources of creating the coupling phenomena. It is found that
the nature of coupling of waves in an inhomogeneous plasma is of some interest.
In astrophysical bodies, generation of radio waves may be possible due to cou-

FIZIKA A 14 (2005) 4, 265–276 265



paul et al.: conversion of electromagnetic wave into electron-acoustic . . .

pling between longitudinal and transverse waves in the presence of inhomogeneous
density and magnetic field [2]. Considering the effect of the gradients of electron
concentration and temperature, Tidman [3] obtained the expressions for scattered
transverse waves. Later, Chakraborty [4 – 6] studied the coupling phenomena in a
warm nonuniform plasma and derived the expression for the radiating electromag-
netic energy due to energy conversion of acoustic waves. He suggested that some
astrophysical phenomena, e.g. radio noise in the ionosphere, may be one of the con-
sequences of the energy conversion process. Paul [7] derived the energy flux of the
electron acoustic wave due to the conversion of electromagnetic wave in a hot and
inhomogeneous plasma under far-field approximation, suggesting mass loss from hot
astrophysical bodies when strong electromagnetic wave emitted from the interior of
the stellar bodies is converted into electron-acoustic wave. It is to be mentioned that
the role of inhomogeneous density in the phenomenon of coupling between acoustic
and transverse wave is important if the inhomogeneity is a slowly-varying function
of space, and the characteristic length of variation is greater than the wavelength
of the transmitted wave. Under these circumstances, it is appropriate to follow
the WKB method [8].Using the WKB method, Khan and Paul [9] investigated the
conversion of dispersive longitudinal oscillations into reflected and transmitted elec-
tromagnetic fields when equilibrium density changes continuously and slowly with
space. They numerically estimated the energy of the electromagnetic wave radiated
in ionospheric F-region due to the conversion of energy of electron-acoustic wave.

In the present paper, conversion of energy from electromagnetic wave into
electron-acoustic wave in a slowly varying plasma has been investigated using the
WKB method. The coupling equations of the transverse and longitudinal waves are
solved using the WKB method, and the expression for the energy flux carried away
by the particles due to conversion of electromagnetic wave are derived. It is seen
that the energy fluxes of the particles become significant in a plasma having large
density gradient and for the waves of low frequency.

2. Basic equations

We consider a stationary, unmagnetized plasma where the velocity of the par-
ticles is nonrelativistic and forces due to collision, gravitational effect, etc., are
negligibly small in comparison with other forces in the medium. The plasma has
inhomogeneous density, i.e. |∇N0| /=0. With the above assumptions, the linearized
plasma equations are

ρ0
∂u

(1)

∂t
= −∇P (1) − e

m
ρ0E

(1) , (1)

∂ρ(1)

∂t
+ ∇ · (ρ0u

(1)) = 0 , (2)

∇ × E
(1) = −1

c

∂H
(1)

∂t
, (3)
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∇ × H
(1) = −1

c

∂E
(1)

∂t
− 4πeρ0u

(1)

mc
, (4)

∇ · E(1) = −4πeN (1) , (5)

∇ · H(1) = 0 , (6)

where

P (1) = mVsN
(1), ρ0 = mN0, ρ(1) = mN (1) . (7)

Vs = thermal speed = (χT/m)1/2, χ = Boltzmann constant, T is the temperature,
m and N are the mass and number density of electrons, the variables with super-
script (1) correspond to the first-order of approximation, while ρ0, P0 and N0 are
the equilibrium values of mass density, pressure and number density, respectively.

Assuming the time variation of the perturbed quantities as exp(−iωt), ω being
the wave frequency, the linear coupling equations of transverse field variables and
longitudinal pressure perturbation may be derived as

(∇2 + k2
t )H(1) − [∇µ × (∇ × H

(1))]

µ
=

4πei

ωmcµ
[∇µ × ∇P (1)] , (8)

(∇2 + k2
l )P (1) − [∇µ · ∇P (1)]

µ
= i

ωmc

4πeµ
[∇µ · (∇ × H

(1))] , (9)

where

µ = 1 −
ω2

p

ω2
, k2

t =
(ω2 − ω2

p)

c2
, k2

l =
(ω2 − ω2

p)

V 2
s

, ω2
p =

4πN0e
2

m
. (10)

ωp is the plasma frequency, and kl and kt are the wave vectors along the longitudinal
and transverse direction, respectively.

3. W.K.B. solution of the coupling equation

Suppose a strong electromagnetic wave is incident on zx-plane and it is the
only source creating a pressure perturbation in the medium. If this wave propa-
gates along the z-direction with an x-dependence of the field variables according
to exp(ik0x), k0 = constant, then the coupling Eqs. (9) and (10) become (the
superscript (1) is omitted hereafter)

d2
H(z)

dz2
+ k ′

t
2
H(z) = 0 , (11)

and
d2P (z)

dz2
+ k ′

l
2
P (z) =

iωcm

4πeµ
[∇µ · (∇ × H)] , (12)
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where, k ′

t
2

= kt
2 − k0

2, k ′

l
2

= kl
2 − k0

2, and

H = H(z) exp(ik0x), P = P (z) exp(ik0x) . (13)

Let us assume, the equilibrium number density of electrons in the plasma is a slowly
varying function of space. So, kl (or k ′

l) and kt (or k ′

t) will be functions of space.
Under this situation, it is appropriate to use the W. K. B method for solving the
coupled equations. Therefore, Eq. (11) gives

H(z) =
A1√
k ′

t

exp

(

i

∫

k ′

tdz − iωt

)

+
A2√
k ′

t

exp

(

−i

∫

k ′

tdz − iωt

)

, (14)

where A1 and A2 are constants.

For a forward-going wave, take

H =
A1√
k ′

t

exp

(

i k0x + i

∫

k ′

tdz − iωt

)

. (15)

Expression (15) is our incident electromagnetic wave which is propagating in
the forward Oz-direction. Using (15) in (12), the pressure P can be evaluated from
Eq. (12). To obtain the general solution for P , the right-hand side of (12) is taken
equal to zero and a complementary function is obtained as

P (z) =
B1√
k ′

l

exp

(

i

∫

k ′

ldz − iωt

)

+
B2√
k ′

l

exp

(

−i

∫

k ′

ldz − iωt

)

, (16)

where B1 and B2 may be functions of space.

Now, using the method of variation of parameters [10, 11], the pressure P ob-
tained from equation (12) is given by

P (z) = −
i k0cmω2

pA1y

4πeωL
√

k ′

l





z
∫

0

exp(i
∫

K1dz)

K3
dz



 exp(i

∫

k ′

ldz − iωt)

+
i k0cmω2

pA1y

4πeωL
√

k ′

l





z
∫

0

exp(i
∫

K2dz)

K3
dz



 exp(−i

∫

k ′

ldz − iωt) , (17)

where

K1 = k ′

t − k ′

l, K2 = k ′

t + k ′

l, K3 = µ
√

k ′

tk
′

l) , ∇µ = −
∣

∣

∣

∣

∣

ω2
p

ω2L

∣

∣

∣

∣

∣

êz .
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êz is the unit vector along OZ-direction, L is the characteristic length of variation
of electron density in Z-direction (L ≫ λ), and

∣

∣

∣

∣

1

k ′3
l

d2k ′

l

dz2
− 3

4k ′4
l

(
dk ′

l

dz
)

∣

∣

∣

∣

≪ 1 .

But when density gradient lies perpendicular to the direction of wave propaga-
tion, and is given by ∇µ = −|ω2

p/(ω2L′)|êx, êx being the unit vector along the
OX-direction, where L′ is the characteristic length of variation of electron density
in X-direction, then the value of P (z) becomes

P (z) =
mcω2

pA1y

8πeωL′
√

k ′

l





z
∫

0







ik ′

t − 1
2k ′

t

dk ′

t
t

dz

K3
exp

(

i

∫

K1dz

)







dz



 exp(ik ′

lt − iωt)

−
mcω2

pA1y

8πeωL′
√

k ′

l





z
∫

0







ik ′

t − 1
2k ′

t

dk ′

t
t

dz

K3
exp

(

i

∫

K2dz

)







dz



 exp(−ik ′

lt − iωt) .

(18)

The integrals
z
∫

0

exp(i
∫

K1dz)

K3

dz and
z
∫

0

exp(i
∫

K2dz)

K3

dz of equation (18) and the

integrals
z

∫

0

ik ′

t − 1
2k ′

t

dk ′

t
t

dz

K3
exp

(

i

∫

K1dz

)

dz

and
z

∫

0

ik ′

t − 1
2k ′

t

dk ′

t
t

dz

K3
exp

(

i

∫

K2dz

)

dz

and Eq. (23) can be evaluated by expanding exp(i
z
∫

0

Kndz) as [3]

exp



i

z
∫

0

Kndz



 = exp

[

i

{

Kn(0) + K ′

n(0)
z2

2
+ · · ·

}]

, (19)

where n = 1, 2; z ≪ L, and K ′

n is the derivative of Kn with respect to z.

In the right-hand side of the expression (19), second, third and other terms are
very small in comparison to the first term. Therefore, we obtain

z
∫

0

exp
(

i
∫

K1dz
)

K3
dz
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=
1

iK1K3

(

1 − i

K1K3

dK3

dz

)

{exp(iK1z) − 1}
z

∫

0

exp
(

i
∫

K2dz
)

K3
dz

=
1

iK2K3

(

1− i

K2K3

dK3

dz

)

{exp(iK2z)−1}
z

∫

0

1

K3

(

ik ′

t−
1

2k ′

t

dk ′t

dz

)

exp

(

i

∫

K1dz

)

dz

=

[

k ′

t

K1K3
+

i

K1K3

{(

1

2k ′

t

− 1

K1

)

dk ′

t

dz
− k ′

t

K1K3

dK3

dz

}]

{exp(iK1) − 1}

×
z

∫

0

{

1

K3

(

ik ′

t −
1

2k ′

t

dk ′t

dz

)

exp

(

i

∫

K2dz

)}

dz

=

[

k ′

t

K2K3
+

i

K2K3

{(

1

2k ′

t

− 1

K2

)

dk ′

t

dz
− k ′

t

K2K3

dK3

dz

}]

{exp(iK2z) − 1} ,

where the terms containing d2K3/dz2, (dK3/dz)2 etc. have been neglected.

Therefore, the pressure P is given by

P =−
k0cmω2

pA1y

4πeωLK1K3
√

k ′

l

(

1− i

K1K3

dK3

dz

)

{exp(iK1z)−1} exp

(

ik0x+i

∫

k ′

ldz−iωt

)

+
k0cmω2

pA1y

4πeωLK2K3
√

k ′

l

(

1− i

K2K3

dK3

dz

)

{exp(iK2z)−1} exp

(

ik0x−i

∫

k ′

ldz−iωt

)

(20)
where ∇µ is assumed to be present in the direction of OZ, and

P =
cmω2

pA1y

8πeωL′K1K3
√

k ′

l

[

k ′

t + i

{(

1

2k ′

t

− 1

K1

)

dk ′

t

dz
− k ′

t

K1K3

dK3

dz

}]

×{exp(iK1z) − 1} exp

(

ik0x + i

∫

k ′

ldz − iωt

)

−
cmω2

pA1y

4πeωL′K2K3
√

k ′

l

[

k ′

t + i

{(

1

2k ′

t

− 1

K1

)

dk ′

t

dz
− k ′

t

K2K3

dK3

dz

}]

×{exp(iK2z) − 1} exp

(

ik0x − i

∫

k ′

ldz − iωt

)

, (21)

where ∇µ lies along the Ox-axis.
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So, considering the variation of equilibrium electron number density parallel to
the Z-axis, real values of transmitted and reflected part of the perturbed pressures
read

Re(P )t =−
k0cmω2

pA1y

4πeωL K1K3
√

k ′

l

[

cos φ2−cos φ1−
1

K1K3

dK3

dz
(sin φ2−sin φ1)

]

, (22)

and

Re(P )r =
k0cmω2

pA1y

4πeωLK2K3
√

k ′

l

[

cos φ4 − cos φ3 −
1

K2K3

dK3

dz
(sin φ4 − sin φ3)

]

. (23)

Similarly, when the variation of electron density is along OX-axis, real values of
transmitted an reflected part of the perturbed pressure are

Re(P )t =
cmω2

pA1y

8πeωL′K1K3
√

k ′

l

[

k ′

t(cos φ2 − cos φ1)

−
{(

1

2k ′

t

− 1

K1

)

dk ′

t

dz
− k ′

t

K1K3

dK3

dz

}

(sin φ2 − sin φ1)

]

(24)

and

Re(P )r = −
cmω2

pA1y

8πeωL′K2K3
√

k ′

l

[

k ′

t(cos φ4 − cos φ3)

−
{(

1

2k ′

t

− 1

K2

)

dk ′

t

dz
− k ′

t

K2K3

dK3

dz

}

(sin φ4 − sin φ3)

]

(25) ,

where

φ1 = k0 +

∫

k ′

ldz − ωt ,

φ2 = k0 + K1 +

∫

k ′

ldz − ωt ,

φ3 = k0 −
∫

k ′

ldz − ωt ,

φ4 = k0 + K2 −
∫

k ′

ldz − ωt ,
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4. Energy flux carried away by the particles

The energy carried away by the particles in the direction of wave propagation
is given by

S′

z = (Re uz) (Re P ) . (26)

Now, from the basic equations (1) - (7), one obtains,

u = − iω

mN0(ω2 − ω2
p)

∇ P . (27)

So, using the expression (20) in (27), real values of the transmitted and reflected
part of the longitudinal velocity of plasma particles are

Re (uz)
t =

ω2
p k0 cA1y

4πeN0 LK1 K3(ω2 − ω2
p)

√
k ′

l

[

k
′

t cos φ2 − k
′

l cos φ1

+

(

1

2k ′

l

dk ′

l

dz
− k ′

l

K1K3

dK3

dz

)

sin φ2 +

(

1

2k ′

l

dk ′

l

dz
+

1

K3

(

1 − k ′

l

K1

)

dK3

dz

)

sinφ1

]

(28)
and

Re (uz)
r = −

ω2
p k0 cA1y

4πeN0 LK2 K3(ω2 − ω2
p)

√
k ′

l

[

k
′

t cos φ4 − k
′

l cos φ3

+

(

1

2k ′

l

dk ′

l

dz
− k ′

l

K2K3

)

dk ′

l

dz
sin φ4 +

(

1

2k ′

l

dk ′

l

dz
+

1

K3

(

1 − k ′

l

K2

)

dK3

dz

)

sin φ3

]

,

(29)
where ∇µ has been assumed to be present along the OZ-axis.

Asuming ∇µ to be along the OX-axis, we get from the expression (30) and
(40) the real values of (uz)

t and (uz)
r which are given by

Re(uz)
t = −

ω2
p cA1y

8πeN0 L′ K1 K3(ω2 − ω2
p)

√
k ′

l

[

k
′

t (k
′

t cos φ2 − k
′

l cos φ1)

−
((

1

2k ′

l

− 1

K1

)

dk ′

t

dz
− k ′

t

K1K3

dK3

dz

)

(k ′

t sin φ2 − k ′

l sin φ1)

−
{

k ′

t

d

dz

(

1

K1K3
√

k ′

l

)

+
1

K1K3
√

k ′

l

dk ′

t

dz

}

(sin φ2 − sin φ1)

]

(30)

and

Re(uz)r = −
ω2

p cA1y

8πeN0 L′ K2 K3(ω2 − ω2
p)

√
k ′

l

[

k
′

t (k
′

t cos φ2 − k ′

l cos φ1)
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−
((

1

2k ′

l

− 1

K2

)

dk ′

t

dz
− k ′

t

K2K3

dK3

dz

)

(k ′

t sin φ4 − k ′

l sinφ3)

−
{

k ′

t

d

dz

(

1

K2K3
√

k ′

l

)

+
1

K2K3
√

k ′

l

dk ′

l

dz

}

(sin φ4 − sinφ3)

]

. (31)

Therefore, using the values of Re(P ) and Re(uz), and then averaging over a
time period 2π/ω, the expression for energy carried away by the particles along the
OZ- and OX-directions are obtained as

Case-I: The variation of electron density is along the direction of wave
propagation(OZ–direction)

Using the above expressions, the transmitted part of the Z-component of par-
ticle energy flux is obtained as

|〈(S′

z)
t
I〉| =

ω2ω2
pc2k2

0(k
′

t + k ′

l)A
2
1y

4πL2k ′

tk
′

l
2(k ′

t − k ′

l)
2(ω2 − ω2

p)2
{1 − cos(k ′

t − k ′

l)z} . (32)

The reflected part of energy flux carried away by the particles is given by

|〈(S′

z)
r
I〉| =

ω2ω2
pc2k2

0(k
′

t − k ′

l)A
2
1y

4πL2k ′

tk
′

l
2(k ′

t + k ′

l)
2(ω2 − ω2

p)2
{1 − cos(k ′

t + k ′

l)z} . (33)

Case-II: The variation of density lies perpendicular to the direction
of wave propagation

The transmitted and reflected part of the particle energy flux are given by

|〈(S′

z)
t
II〉| =

ω2ω2
pc2kt(k

′

t + k ′

l)A
2
1y

32πL′2k ′

l
2(k ′

t − k ′

l)
2(ω2 − ω2

p)2
{1 − cos(k ′

t − k ′

l)z} (34)

and

|〈(S′

z)
r
II〉| =

ω2ω2
pc2kt(k

′

t − k ′

l)A
2
1y

32πL′2k ′

l
2(k ′

t + k ′

l)
2(ω2 − ω2

p)2
{1 − cos(k ′

t + k ′

l)z} . (35)

Expressions (32) – (35) show that the energy flux of the particles (〈S′〉) depends on
∇N0, ω, z, etc. It may be observed here that 〈S′〉 becomes significant in a plasma
having large density gradient, but it is insignificant for a very high frequency wave.
For a wave having frequency very close to the plasma frequency, i.e., ω ≈ ωp,
the particle energy flux would be significantly larger. The role of the distance (z)
covered by the wave on 〈S′〉 gives some interesting results for the energy fluxes.
For z = 0 to z = 2π/K1 (or 2π/K2), the average value of the transmitted and
reflected energy flux of the particles will be varying in nature. It is seen that
when z = 0, 2π/K1, 4π/K1, · · · etc., the transmitted particle energy fluxes 〈(S′)t

I〉
and 〈(S′)t

II〉 are minimum. But, when z = π/K1, 3π/K1, 5π/K1, · · · etc., both
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〈(S′)t
I〉 〈(S′)t

II〉 become maximum.The reflected parts of the energy flux 〈(S′)r
I〉

and 〈(S′)r
II〉 would be minimum and maximum when z = 0, 2π/K2, 4π/K2, · · · etc.

and z = π/K2, 3π/K2, 5π/K2, · · · etc. respectively.

5. Summary and concluding remarks

In this paper, coupling of electromagnetic wave and electron-acoustic wave in an
inhomogeneous plasma has been studied using W. K. B. method for which it is as-
sumed that equilibrium density changes slowly but continuously in such a way that
the characteristic length of variation is much greater than the wave length of the
transmitted wave. It has been shown that the incident electromagnetic wave would
be converted in to electron-acoustic wave due to the coupling of waves in inhomoge-
neous plasma. The particle energy flux depends on the density gradient, frequency
of incident wave and characteristic length of density variation. This energy flux
will be significant in a plasma having large density gradient and for low-frequency
waves and when the wave frequency approaches to plasma frequency. It is very im-
portant to mention that for the present study, both electromagnetic and electron
acoustic wave are assumed to be stable during propagation through the inhomoge-
neous plasma, i.e., instabilities of the waves in inhomogeneous plasma have been
neglected.

Our present analysis may be useful to understand some phenomena in the iono-
sphere, solar corona and hot stars. It is known that earth’s ionosphere is a non-
uniform plasma medium and the density is a slowly varying function of distance
from earth’s surface. Electromagnetic waves propagating through the ionosphere
would be converted into acoustic waves due to the coupling of waves and this may
be one of the sources of heating of the ionosphere.

Expansion of the ionized shell of hot stars may also be due to the conversion of
a transverse wave in to an acoustic wave. When electromagnetic waves, generated
in the interior of hot stars, come to the surface and enter its ionized shell, strong
acoustic waves would be generated due to the energy conversion process. As a result,
the ionized shells of hot stars may be expanded. If the velocity of expansion of the
plasma shell is larger than the escape velocity of the plasma particles, some amount
of mass would be ejected from the plasma shell to out of the stars. Considering the
values of the plasma parameters of the hot stars, the energy carried away by the
particles in the outward direction can be numerically estimated.

It is to be noted that the effects of magnetic field, temperature gradient, etc.,
have not been considered in the present study, though these are very important for
the study of the coupling of waves. During astrophysical disturbances (e.g., during
solar bursts, magnetic storms, etc.) strength of the magnetic field becomes very
high and the plasma particles move with very high velocity of relativistic order. To
have the actual picture of the coupling of waves in the inhomogeneous plasma of
the astrophysical objects it is necessary to consider the static magnetic field and
the relativistic effects for the analysis of the coupling of waves. In this regard, it
is important to note that if electrons have streaming motion in the presence of
the density gradient in the plasma, equilibrium density becomes time dependent,
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which may be observed from the continuity equation in unperturbed state. So,
we require to perform W. K. B. analysis in time, i.e., the time variation of the
perturbed quantities should be assumed as proportional to exp[−i

∫

ωdt] instead
of exp[−iωt], ω being the frequency of the wave.
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PRETVORBA ELEKTROMAGNETSKOG VALA U ELEKTRONSKO-ZVUČNI
VAL U NEHOMOGENOJ PLAZMI

Poprečni elektromagnetski valovi i uzdužni elektronsko-zvučni valovi vezani su
med–usobno gradijentima gustoće i temperature u plazmi. Djeluju i drugi vezni
čimbenici, kao statičko magnetsko polje ili nelinearnost plazme. Zbog povezivanja
valova, uzbuda jednih stvara druge. Stoga imamo uzajamni prijenos energije. U
ovom se radu, primjenom W. K. B. metode, izvodi izraz za tok energije zvučnog
vala zbog pretvorbe elektromagnetskog vala koji prolazi nehomogenom plazmom.
Izražava se mogućnost da su širenje ionizirane ljuske vrućih zvijezda i gubitak mase
posljedica procesa pretvorbe energije.
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