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We study the interaction between a four-level atom (ladder type) in a momentum
eigenstate with a single mode cavity field in the presence of non-linearities of both
the field and the intensity-dependent coupling. The constants of motion and the
wave function for the atomic system have been obtained. Special attention is given
to discuss some statistical aspects of the considered atomic system such as mo-
mentum increment, momentum diffusion and high-order squeezing. The influence
of the Kerr-like medium and the intensity dependent coupling on the momentum
increment and the high-order squeezing are investigated numerically. It is found
that addition of these parameters has an important effect on both the momentum
increment and the squeezing phenomenon.
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1. Introduction

The Hamiltonian of the Jaynes–Cummings model (JCM) [1] is the often pre-
ferred framework for describing the interaction of an atom with the electromagnetic
field. In this model, the cavity field retains only one degree of freedom and the
atom is a two-level system. In the rotating wave approximation (RWA), it allows
exact solutions. This model can also be studied experimentally [2]. The two-photon
process and its multiphoton counterparts are important because they can be used
to study statistical properties of the optical field and may produce several non-
classical effects [3]. On the other hand, there is a growing interest in nonlinear
quantum dynamics [4]. It has been limited to the two-level atom [5] and extended
to investigate the interaction of the three-level atom with the excited field with
two-photon resonance transition [6]. Over the years, the JCM has been extended to
include the atomic external effects due to quantization of atomic motion, where the
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centre-of-mass motion of an atom is cooled to extremely low temperature, so that
vibrational motion is quantized [7 – 10]. By cosidering ultracoled atoms, Scully et
al. [11] discovered that the quantum treatment of the centre-of-mass motion of an
atom leads to a completely new kind of induced emission in the cavity. Recently,
the motion has been treated quantum mechanically [12] for a single mode and for
a two-mode interacting with a three-level atom.

The photon statistics of light emitted from a system comprising a single four-
level atom strongly coupled to a single mode cavity field is studied [13]. The effect
of the detuning on the collapse and revival phenomena is investigated for a four-
level atom (ladder type) interacting with a single-mode cavity field, when the atom
is initially prepared in coherent superposition of its upper and ground state [14].
The four-level system can be used to reproduce the dynamics of the simpler two-
level atom, including the linewidth narrowing associated with reduced quadrature
fluctuations [15 – 18]. Also, the interaction between a four-level atom and a three-
mode field has been studied [19]. In this paper, we aim to study the problem of
a moving four-level atom interacting with a single mode including all acceptable
kinds of nonlinearities of both the field and the intensity-dependent coupling.

The observation of the phenomena of collapses and revivals shifted studies of
this model from mere academic ones into the experimental realm, like the test-
ing some other nonclassical effects that the model is capable of producing and the
squeezing effects. The squeezed states of quantum systems have been an active
area of interest for more than a decade [20]. By squeezing one usually means that
the mean-square deviation of a certain quadrature of the field is smaller than its
corresponding value when the field in the coherent state. The JCM has been in-
vestigated and it was found to produce squeezing effects in the one-photon and
multi-photon interactions [21 – 26]. It has recently been generalized by Hong and
Mandel [22], who introduced the concept of higher-order squeezing. Many systems,
such as those producing resonance fluorescence, degenerate parametric down con-
version, harmonic generation and the multiphoton JCM, have been analyzed for
higher-order squeezing [22 – 28].

The plan of this paper is as follows. In Sec. 2, we introduce the problem and
obtain the wave function of the system by using Schröodinger equation, when the
input is a coherent field and the atom is initially in its upper state. In Sec. 3, we dis-
cuss some statistical aspects of the considered atomic system, such as momentum
increment, momentum diffusion and high-order squeezing. In Sec. 4, we investigate
numerically the influence of the Kerr-like medium and the intensity-dependent cou-
pling on both the momentum increment and the high-order squeezing. The paper
concludes with a discussion in Sec. 5.

2. The model and the wave function

In this paper, we consider a four-level atom in the ladder (Ξ) configuration,
interacting with a single-mode cavity field. The four levels are respectively denoted
by |j〉 (j = 1, 2, 3, 4) with energies ωj and the field is of frequency Ω, and with an-
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nihilation (creation) operator â (â†). The total Hamiltonian (Ĥ) for the considered

system in the RWA via m-photon is the sum of the atom-field Hamiltonian (ĤAF)

and the interaction Hamiltonian (ĤIN)

Ĥ = ĤAF + ĤIN , (1)

where

ĤAF =
~̂P

2

2M
+

4
∑

j=1

ωj σ̂jj + Ωâ†â (2)

and

ĤIN = g(n̂) +

3
∑

l=1

λl

[

R̂σ̂l,l+1 + R̂†σ̂l+1,l

]

, (3)

where ~̂P is the centre-of-mass momentum operator, σ̂ij are the lowering and raising

operators between levels i and j defined by σ̂ij = |i〉〈j|, R̂ = âmf(n̂)eim~k·~r, f(n̂)

is an arbitrary intensity dependent atom-field coupling [29]; ~k and ~r are the prop-
agation and position vectors, respectively, g(n̂) is the one-mode field nonlinearity,
λ1, λ2 and λ3 are the m-photon coupling constants corresponding to the atomic
transitions |1〉 → |2〉, |2〉 → |3〉 and |3〉 → |4〉, respectively (see Fig. 1).

Fig. 1. Schematic repre-

sentation for a four-level

atom interacting with a

single mode.

Notice that, when the centre of mass is not taken into account, then g(n) = 0,
m = 1, f(n) = const and λ2 = λ3 = 0, and we have the standard Jaynes–Cummings
model. But if the centre of mass is taken into account, the two-level system [7] is
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obtained. Also, if one take λ3 = 0, the three-level atom in the cascade type [30,31]
is obtained.

The field operators R̂, R̂† and the photon number operator n̂ = â†â satisfy the
following commutation relations

[

R̂, n̂
]

= mR̂,
[

R̂†, n̂
]

= −mR̂† (4)

and the atomic operators σ̂ij satisfy the relation

[

σ̂ij , σ̂kl

]

= σ̂ilδjk − σ̂kjδil . (5)

According to the Heisenberg equation and the previous relations, we have the
following conservations of the atomic probability, excitation number and of atomic
momentum of one mode

4
∑

j=1

σ̂jj = Î , â†â + m
(

2σ̂11 + σ̂22 − σ̂44

)

= N̂1, and ~̂P + ~kâ†â = ~̂N0 . (6)

Finding the wave function |Ψ(t)〉 at any time t for the considered atomic system
is now straightforward. Let us write down the time dependent Schrödinger equation

i
d

dt
|Ψ(t)〉 = Ĥ|Ψ(t)〉 ,

and assume the wave function at time t > 0 in the closed form

|Ψ(t)〉=
∑

n

qn

[ 4
∑

j=1

Aj(n+(j−1)m, t)e−iγjt|~P0−(j−1)m~k, n+(j−1)m, j〉
]

, (7)

where the coefficients Aj are the probability amplitudes, |~P0〉 is the initial mo-
mentum eigenstate, |j〉 denotes the jth level atom, n is the photon of the field
and

γj =

(

~P0 − (j − 1)m~k
)2

2M
+ ωj + Ω

(

n + (j − 1)m
)

. (8)

By using the Schrödinger equation and the following properties

e±im~k·~r|~P0〉 = |~P0 ∓ m~k〉 , ~̂P0|~P0〉 = ~P0|~P0〉 ,

âmf(n̂)|n〉 =

√

n!

(n − m)!
f(n)|n − m〉 ,

f(n̂)â†m|n〉 =

√

(n + m)!

n!
f(n + m)|n + m〉 ,

σab|b〉 = |a〉 , (9)
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we obtain the following system of differential equations:

iȦ1(n, t) = V1A1(n, t) + W1A2(n + m, t)e−i∆1t,

iȦ2(n + m, t) = V2A2(n + m, t) + W1A1(n, t)ei∆1t + W2A3(n + 2m, t)e−i∆2t,

iȦ3(n + 2m, t) = V3A3(n + 2m, t) + W2A2(n + m, t)ei∆2t

+W3A4(n + 3m, t)e−i∆3t,

iȦ4(n + 3m, t) = V4A4(n + 3m, t) + W3A3(n + 2m, t)ei∆3t, (10)

where

Vj = g
(

n + (j − 1)m
)

, Wl = λl

√

(n + lm)!

(n + (l − 1)m)!
f(n + lm), (11)

and the detuning parameters are

∆1 = ω2 − ω1 + mΩ − m~k · ~P0

M
+

m2k2

2M
,

∆2 = ω3 − ω2 + mΩ − m~k · ~P0

M
+

3m2k2

2M
,

∆3 = ω4 − ω3 + mΩ − m~k · ~P0

M
+

5m2k2

2M
. (12)

The previous detuning parameters are with recoil energy proportional to k2/(2M)

of the atom and the Doppler shift is proportional to ~k · ~P0/M .

To solve the system (10), we assume that A4(n+3m, t) = exp{iµt}. Substituting
into Eq. (10), we find that µ satisfies the following fourth-order equation

µ4 + x1µ
3 + x2µ

2 + x3µ + x4 = 0 , (13)

where

x1 = −∆1 − ∆2 − ∆3 + V1 + ζ1 ,

x2 = −ζ1(∆1 + ∆2 + ∆3) + ζ2 + V1ζ1 − W 2
1 ,

x3 = −ζ2(∆1 + ∆2 + ∆3) + ζ3 + V1ζ2 − η1W
2
1 ,

x4 = −ζ3(∆1 + ∆2 + ∆3) + V1ζ3 − η2W
2
1 , (14)

with

ζ1 = −2∆3 − ∆2 + V2 + V3 + V4 ,
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ζ2 = η1(−∆3 − ∆2 + V2) + η2 + W 2
2 ,

ζ3 = η2(−∆3 − ∆2 + V2) + V4W
2
2 ,

η1 = V3 + V4 − ∆3 ,

η2 = −V4∆3 + V3V4 − W 2
3 . (15)

Now, to obtain the solution of the Schrödiger equation corresponding to the Hamil-
tonian (1), we can write A4(n + 3m, t) =

∑4
j=1 Cj exp{iµjt}, and insert it into

Eq. (13). When the atom is initially in the excited state, i.e. A1(n, 0) = 1 and
A2(n + m, 0) = A3(n + 2m, 0) = A4(n + 3m, 0) = 0, we obtain the following
solutions of the coupled system

A1(n, t) = −
4

∑

j=1

1

W1W2W3

(

µ3
j + ζ1µ

2
j + ζ2µj + ζ3

)

Cje
i(µj−∆1−∆2−∆3)t,

A2(n + m, t) =

4
∑

j=1

1

W2W3

(

µ2
j + η1µj + η2

)

Cje
i(µj−∆2−∆3)t,

A3(n + 2m, t) = −
4

∑

j=1

1

W2W3

(

µj + V4

)

Cje
i(µj−∆3)t,

A4(n + 3m, t) =

4
∑

j=1

Cje
iµjt, (16)

where

Cj = −W1W2W3

µjkµjpµjq
, k /= p /= q /= j and µjk = µj − µk . (17)

Having obtained the wave function |Ψ(t)〉, we are in a position to discuss any prop-
erty related to the atom and the field. In what follows, we discuss some statistical
aspects such as the momentum increment, the momentum diffusion and the high-
order squeezing when the field is assumed to be initially in a coherent state.

3. Statistical aspects

Once the wave function has been calculated, the expectation value of any
dynamical operator Ô can be easily obtained through the formula 〈Ô〉 =

〈Ψ(t)|Ô|Ψ(t)〉. Then for the generators σ̂jj we obtain

〈σ̂jj〉 =
∑

n

Pn|Ai|2, (18)
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where Pn = |qn|2 stands for the initial photon distribution for a single mode in the
coherent state, thus Pn = exp{−n̄}n̄n/n!, and n̄ is the initial mean photon number
of the coherent field.

The expectation values of the atomic momentum increment 〈∆~P 〉 = 〈~P 〉 − ~P0

and the momentum diffusion 〈(∆~P )2〉 = 〈~P 2〉− 〈~P 〉2 can be calculated in the same
manner,

〈∆~P 〉 = −m~k
(

〈σ̂22〉 + 2〈σ̂33〉 + 3〈σ̂44〉
)

, (19)

〈(∆~P )2〉 = m2k2
[

〈σ̂22〉 + 4〈σ̂33〉 + 9〈σ̂44〉 −
(

〈σ̂22〉 + 2〈σ̂33〉 + 3〈σ̂44〉
)2]

.

Also, the expectation value in the general form for the field operation â†râs is in
the form

〈â†râs〉 =
∑

n

q∗n+rqn+s

[ 4
∑

j=1

A∗
j (n + (j − 1)m + r)Aj(n + (j − 1)m + s)

×
√

(n + r + m(j − 1))!(n + s + m(j − 1))!

(n + m(j − 1))!

]

. (20)

Employing the previous calculations, we shall be able to investigate the high-order
squeezing phenomenon. We discuss this phenomenon in terms of the field quadra-
ture operators X and Y , which are defined as

X =
1

2
(â + â†) and Y =

1

2i
(â − â†) . (21)

These operators satisfy the commutation relation

[

X,Y
]

=
i

2
. (22)

The commutation relation implies the uncertainly relation

(∆X)2(∆Y )2 ≥ 1

4
|〈[X,Y ]〉|2, (23)

or (∆X)2(∆Y )2 ≥
(

1

4

)2

. (24)

The field is said to be squeezed to second order (or normal squeezed) [21] if

(∆X)2 <
1

4
or (∆Y )2 <

1

4
. (25)

As discussed in Refs. [22,23], the higher-order moments of the field can exhibit
a nonclassical behaviour called higher-order squeezing, that is, when the Nth order
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moment of the quadrature operator (∆X)N is smaller than its value in a completely
coherent state of the field. That is when

(∆X)N < (N − 1)!!

(

1

4

)N/2

. (26)

The above condition is uniquely non-classical for the even moment. We consider
here the fourth-order variance (N = 4) which can be written as

(∆X)4 = 〈X4〉 − 4〈X3〉〈X〉 + 6〈X2〉〈X〉2 − 3〈X〉4, (27)

where

〈X2〉 =
1

4

(

〈â2〉 + 〈â†2〉 + 2〈a†â〉 + 1
)

,

〈X3〉 =
1

8

[

〈â3〉 + 〈â†3〉 + 3(〈â†â2〉 + 〈â†2â〉) + 3(〈â†〉 + 〈â〉)
]

,

〈X4〉 =
1

16

[

〈â4〉 + 〈â†4〉 + 4(〈â†â3〉 + 〈â†3â〉) + 6(〈â2〉 + 〈â†2〉)

+6〈(a†â)2〉 + 6〈a†â〉 + 3
]

. (28)

Clearly, from the condition (26), the fourth-order squeezing occurs when
(∆X)4 < 3/16, and by using Eq. (20) and specifying the exponents r, s, we get the
expressions in Eq. (28).

4. Results and conclusions

In this section, we investigate the temporal behaviour for both the momen-

tum increment ~k · 〈∆~P 〉 and the fourth-order variance (∆X)4 for the considered
model when the atom is initially prepared in the upper state |1〉 and the field is
in a coherent state. The evolution of the momentum increment and the high-order
squeezing are plotted against the scaled time λt for fixed initial mean photon num-
ber n̄ = 10, in the exact resonance case (∆l = 0). The interaction is considered to
be a three-photon process (m = 1) and the coupling constants λ1 = λ2 = λ3 = λ.
In what follows, we study the effect of the intensity-dependent coupling and the
Kerr medium [32 –34] (g(n̂) = χn̂(n̂ − 1); χ is related to the third-order nonlinear
susceptibility) on the evolution of the previous phenomenon. The Kerr medium can
be modeled as an anharmonic oscillator with frequency ω.

Figs. 2a, 2b and 2c show the influence of the Kerr medium on the time evolu-

tion of ~k · 〈∆~P 〉 in the absence of the intensity-dependent coupling (f(n̂) = const),
that by taking χ = 0.0, 0.3 and 0.6, respectively. On the other hand, the curves
d, e and f show the effect of the intensity-dependent coupling (f(n̂) =

√
n̂, n̂ and

1/
√

n̂) when χ = 0. We notice that the momentum increment shows the collapse and
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Fig. 2. The temporal behaviour of the momentum increment ~k · 〈∆~P 〉 versus the

scaled time λt when f(n̂) = const, χ = 0, 0.3 and 0.6 in Figs. a, b and c; χ = 0,

f(n̂) =
√

n̂, n̂ and 1/
√

n̂ in Figs. d, e and f.

revival phenomena, where its behaviour is similar to the behaviour of the photon
number 〈â†â〉 with a negative sign (see the constants of motion). Also, it behaves
as a damped oscillator in the interval (0 < λt ≤ 5) and completely damped in
the interval (5 < λt ≤ 25), while it oscillates at (25 < λt < 100) (see Fig. 2a).
It is remarkable that the behaviour of the momentum increment in this case is
similar to the case of a two-level atom [7]. On the other hand, when the Kerr
medium takes place, taking different values of the Kerr medium parameter χ = 0.3
and χ = 0.6, one obtains the results shown in Figs. 2b and 2c. We see that the
collapse and revival phenomenon occurs periodically, and this periodicity increases
by increasing the Kerr-medium parameter.

Now, we turn our attention to investigate the effect of the intensity-dependent
coupling f(n̂) on the behaviour of the momentum increment in the absence of

the Kerr medium, and take f(n̂) =
√

n̂, n̂ and 1/
√

n̂ as shown in Figs. 2d, 2e
and 2f, respectively. We observe that the oscillations increase in the presence of the
intensity-dependent coupling, and a chaotic behaviour of the momentum increment
occurs (see Figs. 2d and 2e). The case in which f(n̂) = 1/

√
n̂ (Fig. 2f) is quite
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interesting, where in this case the momentun increment oscillates periodically as the
scaled time goes on. Formally, when we take f(n̂) = 1/

√
n̂, it leads to Wl = λl, with

χ = 0 and this implies that Ai(t) are independent of n. In this case, the momentum
increment depends on the function exp{iµt}, which reflects the occurence of the
periodic oscillations.
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Fig. 3. The same as in Fig. 2 but for the high-order squeezing (∆X)4.

In Fig. 3, we consider the time development of the fourth-order variance for the
considered model. Numerical results for different values of the Kerr parameter and
the intensity dependent coupling are the same as in Fig. 2. We observe that the
fourth-order squeezing occurs in a short time in the cases χ = 0.0 and f(n̂) = const,
as shown in Fig. 3a, while it occurs after a long time when the Kerr medium takes
place as shown in Figs. 3b and 3c. Also, the squeezing occurs periodically, and this
periodicity increases by increasing χ, while the amount of squeezing decreases with
time. Clearly, the presence of the intensiy-dependent coupling with χ = 0 leads to a
decrease of the amount of squeezing in the case f(n̂) =

√
n̂ (see Fig. 3d), and when

we put f(n̂) = n̂ and 1/
√

n̂, as shown in Figs. 3e and 3f, the squeezing disappears.
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5. Conclusion

We have studied a four-level atom with a momentum eigenstate interacting with
a one-mode cavity field. The nonlinearity Kerr medium and intensity-dependent
coupling are taken into account. The constants of motion and the wave function
are obtained. The momentum increment, the momentum diffusion and the fourth-
order variance are calculated for the system. We investigate numerically the mo-
mentum increment and the high-order squeezing when the atom is prepared in
the upper state. We notice that the Kerr-like medium and the intensity-dependent
coupling have effects on the momentum increment and on the high-order squeezing
phenomenon.
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MED– UDJELOVANJE ČETIRI-RAZINSKOG ATOMA U IMPULSNOM
SVOJSTVENOM STANJU S JEDNOMODNIM POLJEM

Proučavamo med–udjelovanje četiri-razinskog atoma (poput ljestvi) u impulsnom
svojstvenom stanju s jednomodnim poljem u rezonatoru, uz nelinearnosti polja i
vezanja ovisnog o intenzitetu. Izveli smo stalnice gibanja valne funkcije atomskog
sustava. Posebnu smo pažnju posvetili raspravi o statističkim odlikama razmatra-
nog atomskog sustava, kao što su povećanje i difuzija impulsa i zbijanje vǐseg reda.
Numerički smo istražili utjecaj Kerrovog sredstva i vezanja ovisnog o intenzitetu
na povećanje impulsa i zbijanje vǐseg reda. Našli smo da dodavanje tih parametara
ima snažan učinak na povećanje impulsa i pojavu zbijanja.
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