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The exact series solutions of finite parabolic potential disc-like quantum dot are
given in the absence and presence of uniform applied electric field. We define some
normalized parameters. From the complex eigenenergy E = E0 − iΓ/2, due to the
electric field, we calculate the resonance width Γ of a bounded state. The ground
and the first excited state of the electron and the hole are obtained with and without
the electric field. The corresponding envelope functions are presented as a function
of the disc dimensionality, radius R and half-width L.
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1. Introduction

Semiconductor quantum dots have attracted a lot of attention in recent years
[1 – 5]. Due to their atomic-like spectra, they are interesting for future applications
as well as for basic research activities. In quantum dots, the ultimate quantum con-
finement effects restrict the motion of optically excited electrons and holes in three
spatial directions. As a consequence, the free particle energy levels are quantized.
For the last ten years, it has been possible to process a new parabolic quantum dot
disc.

GaAs and its lattice-matched heterojunction have received considerable atten-
tion in view of the efficient emission of coherent light. GaAs technology is quite
mature and a large number of optoelectronic and electronic devices have been made
using this material.

Up to now, theoretical studies that have been devoted to the parabolic poten-
tial in quantum dot disc are very rare. Most of these studies consider the spherical
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quantum dot [6 – 8]. Even the previous treatments of the quantum dot disc consid-
ered the infinite [9,10] and constant value [11] of the confinement potential inside
the dot .

In the present paper, we find solutions of the Schrödinger equation for the elec-
tron and the hole, confined in a parabolic disc-like quantum dot, manufactured of
GaAs semiconductor material. First, we determine the electron and the hole ground
state without the electric field and we compare our results with those existing in
the literature [11]. Then, we investigate the influence of a uniform electric field on
the ground and the first excited states, and on the redistribution of the electron and
the hole wavefunctions. The paper is organized as follows: in Section 2, we describe
the essential features of the theory and some details of our series calculations, the
results are given in Section 3 and in Section 4 we give our conclusion.

2. Theory

Consider an electron with charge −|e| and effective mass m∗
e in a parabolic

potential disc-like quantum dot of radius R, half-width L, and depth V0 in the
presence of a uniform electric field F along z-direction as shown in Fig. 1. The
time-independent Schrödinger equation for such a system is given by

−
h̄2

2m∗
i

∇2
iψ(ri) + V0

(
ri
R

)2

ψ(ri) = E‖ψ(ri) ,
∣∣ri

∣∣ ≤ R , (1)

and in the z-direction, we have

−
h̄2

2m∗
i

d2ψ(zi)

dz2
i

+

[
V0

(
zi

L

)2

+
∣∣e

∣∣Fzi

]
ψ(zi) = E⊥ψ(zi) ,

∣∣zi

∣∣ ≤ L . (2)

Schrödinger equations outside the dot in the in-plane and z-direction are given by

−
h̄2

2m∗
i

∇2
iψ(ri) + V0ψ(ri) = E‖ψ(ri) ,

∣∣ri
∣∣ > R , (3)

Fig. 1. The various coordinates in the quantum disc. The r’s denote the in-plane
coordinates and the z’s denote the positions along the disc axis.
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−
h̄2

2m∗
i

d2ψ(zi)

dz2
i

+
[
V0 + |e|Fzi

]
ψ(zi) = E⊥ψ(zi) ,

∣∣zi

∣∣ > L . (4)

If we name V1(r) = V0(r/R)2 and V2(z) = V0(z/L)2, the actual 3-D finite
confinement potential is not straightforwardly the sum of V1 + V2. Using the per-
turbation approach suggested by Le Goff [13], we write the 3D finite parabolic
confinement potential as V = V1(r) + V2(z) + δV (r, z), which is treated as a per-
turbation potential. Here

δV =





V1 + V2, if r < R and |z| < L

−V0, otherwise
.

In the cylindrical coordinates, we used ∇2 = ∂2/∂r2i + (1/ri)∂/∂ri, where i stands
for electron or hole. Defining r = ri/R and Z = zi/L, we can write the previous

four equations in terms of r, Z, and the following normalized parameters, Ṽ 2 =

2m∗R2V0/h̄
2, Ũ2 = 2m∗R2E‖/h̄2, as the follows:

The in-plane solution.

Ψ′′(r) +
1

r
Ψ′(r) + (Ũ2 − Ṽ 2r2)Ψ(r) = 0 , |r| ≤ 1 , (5)

Ψ′′(r) +
1

r
Ψ′(r) + (Ũ2 − Ṽ 2)Ψ(r) = 0 , |r| > 1 . (6)

We use the substitution ξ = Ṽ r2, and assume that ψ(ξ) = exp{−ξ/2}φ(ξ). Apply-
ing this substitution into Eq. (5), we obtain the following differential equation

ξ
d2φ

dξ2
+

(
1 − ξ

)dφ

dξ
−

1

2

(
1 −

Ũ2

2Ṽ

)
φ = 0 . (7)

Equation (7) has a solution in the form of the confluent hypergeometric function [14]

M(α, β, ξ), with α = (1/2)[1− Ũ2/(2Ṽ )] and β = 1. The solution of Eq. (6) outside

the dot is the modified second order Bessel function, K0(qr), where q2 = Ṽ 2 − Ũ2.
Thus we may write the solution inside and outside the quantum disc as

ψ(r) =





c1 exp
{
−
Ṽ r2

2

}
M(α, β, Ṽ r2), |r| ≤ 1 ,

c2K0(qr), |r| > 1 ,
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where φ(ξ) is the hypergeometric function M(α, β, ξ2). Applying the boundary
condition for the continuity of ψ and its first derivative, we get the following tran-
scendental equation

2φ′(Ṽ ) −

(
1 +

qK ′
0

Ṽ K0(q)

)
φ(Ṽ ) = 0 , (8)

where K ′
0 is the negative of the second-order Bessel function with an argument 1.

The roots of the in-plane eigenenergies are E‖.

The z-direction solution. For z-direction equation, when the electric field is
equal to zero, we apply the same method as with the r-direction equation and we
get the following differential equation

ξ
d2φ

dξ2
+

(
1

2
− ξ

)
dφ

dξ
−

1

4

(
1 −

W̃ 2

Ñ

)
φ = 0 . (9)

Here the arguments of the hypergeometric function M(α′, β′, ξ) are ξ = ÑZ2,

β′ = 1/2 and α′ = (1/4)(1 − W̃ 2/Ñ), and we can write the solution of Eq. (9) as

ψ(Z) =





c′ exp
{
−
ÑZ2

2

}
M(α′, β′, ÑZ2) , |Z| ≤ 1 ,

c′′ exp{−k|Z|} , |Z| > 1 ,

where W̃ 2 = 2m∗L2E⊥/h̄2, Ñ2 = 2m∗L2V0/h̄
2 and k2 = Ñ2 − W̃ 2. Considering

the boundary conditions, we get the following transcendental equation

2φ′(Ñ) −

(
1 −

k

Ñ

)
φ(Ñ) = 0 . (10)

Solving Eq. (10) numerically, we obtained the particle eigenenergies in the z-
direction without the electric field. In the case when F /=0, we make series expansion
of the envelope wavefunction in Eqs. (2) and (4). Before we proceed, we rewrite
Eqs. (2) and (4) as

ψ′′(Z) +
[
γ2 − Ñ2(Z + Z0)

2
]
ψ(Z) = 0 , |Z| ≤ 1 , (11)

ψ′′(Z) +
(
W̃ 2 − F̃Z − Ñ2

)
ψ(Z) = 0 , |Z| > 1 , (12)

where

γ2 = W̃ 2 +
F̃ 2

4Ñ2
, Z0 =

F̃

2Ñ2
, F̃ =

2m∗|e|FL3

h̄2
.
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Let ψ(Z) be of the form ψ(Z) =
∑∞

n=0 anx
n, where x = Z + Z0.

Substituting into Eq. (11), we get

∞∑

n=0

[
(n+ 2)(n+ 1)an+2 + γ2an − Ñ2an−2

]
xn = 0 ,

and we can write an+2 as

an+2 =
Ñ2an−2 − γ2an

(n+ 2)(n+ 1)
.

The general solution of Eq. (11) can be written in terms of ψeven and ψodd as

ψ(Z) = Aψeven +Bψodd .

For the even coefficients, we put a0 = 1 and a1 = 0, then a2 = −γ2a0/2 and

a4 = (Ñ2a0 − γ2a2)/12.

For the odd coefficients, we have a1 = 1 and a3 = −γ2a1/6. Thus, the envelope
wavefunction in the z-direction, at the left, inside and the right of the parabolic
potential disc-like quantum dot is represented by

ψ(Z) =





C
[
Bi(η) + iAi(η)

]
, Z < −1 ,

Aψeven(Z) +Bψodd(Z) , |Z| ≤ 1 ,

DAi(η) , Z > 1 ,

where η = F̃ 1/3[(Z+Z0)+k
2/F̃ ], and Ai and Bi are the independent Airy and Bairy

functions, respectively. Applying the boundary conditions, we get the following
secular equation

∣∣∣∣∣∣∣∣∣∣∣

Bi(η̄) + iAi(η̄) −ψeven(Z0 − 1) −ψodd(Z0 − 1) 0

F̃
1

3

L

[
Bi′(η̄) + iAi′(η̄)

]
−ψ′

even(Z0 − 1) −ψ′
odd(Z0 − 1) 0

0 ψeven(1 + Z0) ψodd(1 + Z0) −Ai(η+)

0 ψ′
even(1 + Z0) ψ′

odd(1 + Z0) −
F̃

1

3

L
Ai′(η+)

∣∣∣∣∣∣∣∣∣∣∣

= 0.

(13)

By solving Eq. (13), we determine the eigenenergy of the particle in the presence
of the electric field in the z-direction. The total ground state energy of a particle
in the parabolic potential disc-like quantum dot can be approximated by

E = E‖ + E⊥ − 〈δV 〉.

Note that the normalized parameters defined above are used to express all our
solutions. Thus the obtained results are universal for both electrons and holes in
all cases.
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3. Results and discussion

We applied the above solutions to a finite parabolic potential disc-like quantum
dot in the GaAs semiconductor. We used the electron and the hole effective masses
m∗

e = 0.0665m0 and m∗
h = 0.34m0, respectively. The energy gap offset was taken

as 65% and 35%, with the energy gap Eg = 1.247x, which implies the confinement
potentials of the electron and the hole Ve = 0.65Eg, and Vh = 0.35Eg, respectively.
x represents the Al concentration in the barrier material AlxGa1−xAs.

Figure 2 displays the variation of the particle total ground energy for both the

electron and the hole, with the structure parameter Ṽ . The total carriers ground
energy is calculated at two different values of Al content, but for the same half-
width L = 7 nm. We see the higher potential confinement, the higher ground state
energy.

Fig. 2. The variation of the partical total energy with the structure parameter Ṽ
at two different values of Al concentration x: (a) represents the electron and (b)
represents the hole.

To examine the effect of the electric field on the ground state of a finite parabolic
potential disc-like quantum dot, we display in Fig. 3a the variation of both the
ground and the first excited states for the electron with the applied electric field.
The results for the hole are shown in of Fig. 3b. Both the excited and the ground
state energies are calculated for the same two previous values of x, where the disc
dimensions are R = 6 nm, and L = 7 nm. The energies of the levels decrease when
increasing the electric field, while their values increase with the structure parameter

Ṽ .
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Fig. 3. The total particle energy as a function of the applied normalized electric

field (F̃ ). The solid lines represent the ground state energy, and the dashed lines
represent the first excited state for the same values of x: (a) stands for the electron
and (b) stands for the hole. Here R = 6 nm and L = 7 nm.

Fig. 4. The change of the normalized width of the electron ground state (a) and

the first excited state (b), with the normalized electric field F̃ for R = 6 nm, L = 7
nm and two different values of x.
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The normalized resonance width Γ̃ = Γ/V0 as a function of the normalized

electric field F̃ is plotted in Fig. 4. Examining Fig. 4a (electron ground state) and
Fig. 4b (electron first excited state), we notice that the normalized resonance width

Γ̃ increases rapidly with the electric field, which means that the particle lifetime τ ,
which is defined as τ = h̄/Γ, decreases rapidly with the electric field. Also, as the

structure parameter Ṽ increases, the rate of Γ̃ decreases, while F̃ value becomes

smaller. We find that the Γ̃ values of the ground state are much smaller than those

of the first excited state, especially at small values of Ṽ . This is due to the fact
that the effect of the barrier for the ground state is much greater than for the first
excited state.

Fig. 5. Square of the wavefunction amplitude for the electron ground state as a
function of radius for R = 6 nm and half-width L = 7 nm: (a) without field and
(b) for F = 70 kV/cm. (c) Square of the wave function amplitude for the hole
ground state at F = 70 kV/cm.

In Fig. 5a we display the absolute value of the wavefunction of the electron
with the disc dimensions R and L, when the electric field F = 0. In Figs. 5b and
5c we show the absolute value of the wavefunction for the applied electric field
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F = 70 kV/cm. Here we notice the deflection of the wavefunction to the right in
the z-direction, which is the direction of the applied field.

4. Conclusion

In this paper, we have derived exact analytical solutions for the finite parabolic
potential disc-like quantum dot without electric field. When the applied electric field
is switched on, we derived the series solution inside and outside the quantum dot in
the z-direction. The first excited state of the electron and the hole is investigated.
The normalized resonance width of the ground state is smaller than of the first
excited state. The corresponding electron and hole distributed wavefunctions are
obtained. Since the finite parabolic quantum dot structure has wide applications,
the study given here should be valuable for the understanding and for the design
of structures involving quantum dots.
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EGZAKTNO RJEŠENJE ZA VALJKASTU KVANTNU TOČKU S KONAČNIM
PARABOLNIM POTENCIJALOM BEZ POLJA I S ELEKTRIČNIM POLJEM

Izveli smo egzaktna rješenja u vidu nizova za kvantnu točku s parabolnim po-
tencijalom, bez polja i s vanjskim električnim poljem. Definirali smo normirajuće
parametre. Pomoću kompleksne svojstvene energije E = E0 − iΓ/2, uzrokovane
električnim poljem, izračunali smo rezonantnu širinu Γ za vezana stanja. Osnovno
i prvo vǐse stanje elektrona i šupljine izveli smo bez polja i s električnim poljem.
Odgovarajuće anvelopne funkcije predstavljamo u ovisnosti o veličini kvantne točke,
polumjera R i poluširine L.
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