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Thermodynamic properties of the Lennard-Jones (LJ) fluid are investigated by
studying a system of particles interacting with a potential of hard-core plus attrac-
tive Yukawa tail (HCY). Due to the similarity of the LJ and the HCY potentials in
their overall form, it is worthwhile seeking to approximate the LJ potential in much
the same way that the hard-sphere reference potential has been used. The study
consists in describing the thermodynamics of the LJ fluid in terms of the equiva-
lent HCY system, whose properties are known accurately, by means of mapping the
thermodynamic quantities for the HCY potential parameters. The method is feasi-
ble owing to a convenient analytical expression for the Helmholtz free energy in the
mean-spherical approximation expanded in powers of the inverse temperature. Two
different procedures are used to determine the parameters of the HCY potential as
a function of the thermodynamic states: one is based on the simultaneous fits of
pressure and internal energy of the LJ system, and the other uses the concept of
collision frequency. The reasonable homogeneity of the results in both procedures
of mapping makes the HCY potential a very good reference system whose theoret-
ical expressions can be used confidently to predict the thermodynamic properties
of systems with more realistic potentials.

PACS numbers: 61.20.Gy, 65.90.+i, UDC 536.632, 538.953
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Yukawa potential

1. Introduction
In the theory of simple fluids, one of the major achievements has been the

recognition of the quite distinct roles played by the repulsive and attractive parts of
the interatomic potential in determining the microscopic properties of simple fluids
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[1, 2]. In recent years, much attention has also been paid in developing analytically
solvable models suitable to represent the thermodynamic and structural properties
of real fluids. The hard-sphere (HS) model is the natural reference system for
describing the general features of liquids, namely the local atomic order according
to the excluded volume effects and the freezing process of the fluid into an ordered
solid structure. In contrast, the HS model is not able to predict the condensation of
a gas into a liquid, which is only made possible by the existence of dispersion forces
giving rise to an attractive long-range part in the potential. Van der Waals provided
the first analytical excursion, from idealized model, in attempting to account for
the finite size of the ionic core and for an inverse sixth-power attractive potential
at long range.

Another system that was found very useful to stabilize the local fluid structure
is the hard-core potential with an attractive Yukawa tail (HCY). It is the advantage
to tune to hypothetical and real fluids of widely different properties [3] by varying
its hard-sphere diameter o and its inverse screening length A. For example, it is
known that the charged hard-core fluid modelling systems, like colloidal suspensions
and protein solutions, can be investigated with an inverse screening length A ~ 8,
while the Lennard-Jones potential parametrized for rare gases can be simulated
with an inverse screening length A ~ 2.

An additional reason that makes the HCY system appealing is that semianalyt-
ical and analytical solutions are available. The original solution given by Waisman
[4] within the mean-spherical approximation (MSA) involved a set of six algebraic
equations with six parameters, but progressively valuable simplifications have been
found [5—7] giving a reduced number of unknown parameters and simpler analyti-
cal expressions for the thermodynamic properties and the pair-correlation function.
For the purpose of this work, the expressions for these properties will be used in
expanded forms in powers of the inverse temperature, as derived by Henderson et
al. [8, 9].

Such an equation of state for the HCY system, which is founded on the pertur-
bation theory and expressed in terms of the relevant features of the potential, is
a very handy tool for investigating the thermodynamics of liquids governed by an
effective hard-sphere interaction plus an attractive tail. Specifically, this analytical
equation of state is useful to explore how the properties of the HCY system differ
from those of other systems. Then, the investigation consists in determining the
HCY system equivalent to the original system, i. e. the values of the hard-sphere
diameter ¢ and the inverse screening length A for all thermodynamic states, in
such a way that the thermodynamic properties of the HCY and original systems
are identical. The idea of equivalence between two systems has already been used
by several authors with diverse procedures of mapping [11—14]. In particular, ways
of handling this concept have been considered in mapping the repulsive part of
the LJ potential into an effective hard-sphere interaction [15] or in mapping the
full LJ potential into the square-well potential [16]. The approximation of the LJ
potential by a two-Yukawa potential has also been done along the liquid-vapour
coexistence curve [17], but nothing seems to have been done to map the LJ system
into the HCY one over a wide domain of the phase diagram. The method is feasible
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because the opportunity can be taken of both the similarity of the repulsive parts
and the resemblance of the long-range parts of the HCY and LJ systems. It is well
known that the structure factor of fluids can be fairly well predicted with the HCY
model — if not with the HS model, while deficiencies that affect the pair-correlation
function in the region of the first peak cannot be ignored in comparing the HCY
and LJ systems. Alternatively, the HCY system could be used indirectly to approx-
imate any available interatomic potential for a real fluid without reference to the
LJ potential.

The aim of this paper is to show that the HCY system is a reliable reference
system for describing the features of real fluids, at least so good as the square-
well system [16] in dealing with realistic LJ-type systems. The paper is organized
as follows. In Section 2, the hard core potential with attractive Yukawa tail is
briefly presented with the essential analytical expressions for the thermodynamic
properties. Section 3 is devoted to the procedures of mapping for which it is clearly
shown that the LJ potential is commonly used with constant parameters while the
HCY potential is used with state-dependent hard-sphere diameter o and inverse
screening length A. Section 4 presents a set of values of the parameters o and A
as functions of temperature and density, as well as results for the thermodynamic
properties obtained by the mapping procedures. Finally, some concluding remarks
hinged on the previous results are stated.

2. Hard-core attractive Yukawa fluid as reference system

Consider the three-dimensional fluid with the pair potential consisting of the
hard-sphere core and the attractive Yukawa tail

o0 r<ao
U r) = 1
nov{r) —(eo/r)exp[-Arjo—1)] >0, @

where o is the hard-sphere diameter, ¢ is the depth of the potential at the hard-core
distance and A is a positive parameter that measures the spatial decay rate. The
HCY has been studied in detail by many authors [5, 6, 8] after the solution of the
mean-spherical approximation was obtained by Waisman [4]. According to Ginoza
[7], the solution reduces to determining a fundamental parameter I' as the root of
the quartic equation

(1 + AD)(1 +4T)? + Bew = 0, (2)

where € and A\ are the two parameters of the HCY potential, w and 1 are
two supplementary parameters depending explicitly on A and packing fraction
n (= wpa3/6), p being as usual the number density, and 3 = (kgT)~ .

Expanding I" in powers of the inverse temperature, Henderson et al. [9] obtained
a polynomial expression for the free energy and, subsequently, Duh and Mier-Y-
Teran [21] remarked that the polynomial exhibits a binomial-like trend allowing to
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write the free energy A in the following form

BA  BAns o A dF(y)
N N —%(56)—@ F(a:)—F(y)—(a:—y)d—y,

(3)

where the first term of the right-hand side corresponds to the hard-sphere fluid prop-
erties known analytically. Ags used in this work comes from the Kolafa-Boublik
[18] equation of state (EOS), which gives results slightly better than the most pop-
ular Carnahan-Starling [19] EOS when compared to the Monte Carlo experiments
of Erpenbeck and Wood [20]. The hard-sphere free energy SAps/N is given by
B Ans (341 — 3302 + 4n?)
6(1-n)? '

: )
:lnA3p—1+§ln(1—n)+ (4)

where A is the thermal de Broglie wavelength. The terms in the brackets of Eq. (3)
involve the function F(X) of arbitrary variable X that reads

F(X):—iln(1—2X)—21n(1—X)—;X—ﬁ—kl, (5)

and
= L2, )
v = (5w @

The coefficients w, 1, ag, ¢o can be expressed in terms of the two parameters
of the HCY potential  and A through the intermediate parameters

w= 2. ®)
0
_ [1—exp(—))] [1=X\/2—(14+X/2) exp(—))]
U= N0 e s) 2 T e 1500 @
L)) exp(—A S(A

b0 = ”A?}Zi—;; ()7 (10)
L\

0 = oo )

with

L) = 1214 2n+ (1+1/2)A], (12)
S(A) = (1=n)2X3+6n(1 —n)A2 + 187°X — 12n(1 + 27). (13)
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Analytical expressions can be obtained for the excess internal energy and the
pressure by differentiation, in a straightforward manner, from the standard rela-
tionships

pue 9 (BA) 3

N %(W)‘? (1)
g 0 (A

7= (v) 15)

It is also worth mentioning that series expansion for the pair-correlation function
g(r) has been derived by Henderson et al. [10]. These analytical expressions have
been tested using the molecular dynamic simulation data and exact MSA results
of [22] for some state points. Table 1 displays results for the excess internal energy,
virial pressure and pair-correlation function at contact of the HCY system as a
function of density p* (= po?) for T* = 1/(B3¢) = 1 and X\ = 1.8. The comparison
between the analytical theory (AT) and molecular dynamics (MD) is particularly
good for high densities. The main advantage this EOS is to determine the excess
properties of the HCY system and to connect rigorously the parameters of the HCY
system to the molecular properties.

Table 1. Excess internal energy, virial pressure and pair-correlation function at
contact of the HCY fluid as a function of density, for A = 1.8 and T* = 1. The
analytical theory (AT) data are compared with those of molecular dynamics (MD)
and mean spherical approximation (MSA) of Ref. [22].

P BE® N Bpic/p g(ot)

DM | MSA AT DM | MSA AT DM | MSA | AT
0.3 -2.114 -2.052 | 0.02 0.014 | 2.780 2.527
0.4 | -2.745 | —2.665 | —2.677 | —0.20 | —0.229 | -0.207 | 2.811 | 2.280 | 2.643
0.5 -3.384 | -3.345 | -3.337 | —0.28 | —0.337 | -0.337 | 2.952 | 2.410 | 2.846
0.6 | —4.079 | —4.050 | —4.051 | —0.24 | —0.283 | —0.265 | 3.228 | 2.684 | 3.173
0.7 | -4.838 | -4.813 | -4.813 | +0.19 | +0.143 | 0.160 | 3.685 | 3.098 | 3.669
0.8 | -5.638 | -5.616 | —-5.616 | +1.17 | +1.137 | 1.157 | 4.382 | 3.681 | 4.398

3. Procedures of mapping for the Lennard-Jones system

Restricting the discussion to simple centro-symmetric interactions from the out-
set, we consider the realistic interaction potential of Lennard-Jones (12-6) given
by

uny(r) = dery [(79)2 = ()7 (16)
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Such a functional form gives a reasonable representation of the interactions operat-
ing in real fluids, with the well depth €13 and the collision diameter oy independent
of density and temperature. Figure 1 compares the LJ potential to the HCY po-
tential of same well depth (¢ = e1,3) and same collision diameter (o = orj).
0.4
0.2
0.0
0.2
u(r)
-0.4-
061

-0.84

-1.07

T T T T T T T

10 12 14 16 18 20 22 24
r/ic

Fig. 1. HCY pair potential for different values of inverse screening length (A = 1.5
dashed line, A = 3.5 dotted line, A = 7.5 dash-dotted line), in comparison with the
LJ system of same diameter and well depth..

Each substance has its own values of 1,5 and or; so that, in a reduced form,
the LJ potentials have not only the same shape for all simple fluids, but rigorously
superimpose each other. This is the condition for substances to conform to the
principle of corresponding states [23]. With the assumption that a fluid is made
up of particles interacting with the LJ potential, the partition function and many
other thermodynamic properties can be written in terms of reduced temperature
T{y = kpT/eny and reduced density pf; = pJ%J only. In particular, the virial
pressure can be expressed in the implicit form [1]

BpLs

= fui(TLy, pLy)- (17)
As far as the HCY potential is concerned, the virial pressure is given by

Bpucy

P = fHCY (T*7p*7)‘)a (18)

where T*(= kpT/e), p*(= po?) and X\ are the reduced parameters of the HCY
potential, as defined in Eq. (1).

In order to determine the HCY system equivalent to the LJ system at a given
T and p, it is necessary to choose the values of the relevant parameters €, o and A
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to be used in the equations for the thermodynamic properties. As there are many
combinations for the values of the parameters giving the same pressure in both
systems, restrictive conditions have to be imposed. The natural constraints consist
in posing € = ey and p* = pi;a?, where a = o/oLj, so that the pressure of the
HCY system becomes

Bpucy

P = fHCY(TEJapiJagv)‘)a (19)
and that the two remaining parameters to be determined are « and A. These
parameters are state dependent contrarily to those of the LJ potential. Hence, the
procedure of mapping is reduced to the choice of the parameters o (or ) and \. As
an example of mapping, the HCY potential could be used with a state-dependent
diameter o(T, p) obtained in the same manner as the hard-sphere potential has
been used by Verlet and Weis [15] to approximate the LJ potential. Then, the
parameter A(T, p) could be fitted by using some reasonable fitting procedure to
give a good approximation of the dispersion potential tail. Nevertheless, though
the HCY potential outside the core is similar in its overall form to the LJ potential,
one can expect that this method is not prudent because of the radically different
functional forms of the long-ranged HCY and LJ potentials. Alternatively, two other
procedures of mapping have been used in this work to determine the parameters
o and A as a functions of the thermodynamic states; one uses a fine adjustment of
the parameters ¢ and A at a given T and p in fitting virial pressure and internal
energy of the HCY system into those of the LJ system, and the other is based on
the concept of collision frequency proposed and tested by del Rio and coworkers
[11, 24, 16).

(i) The first procedure employed to determine o (or o) and A consists in fitting
simultaneously the virial pressure and the excess internal energy of the HCY system
into those of the LJ system. At selected thermodynamic states, the excess internal
energy and pressure of the HCY system are identified, respectively, with those of
the LJ system, so that a and A can be adjusted by iterations until the following
equations are simultaneously satisfied

BUsey (T7, PfJa3v A) _ BUES (115, pi.5) (20)
N N

Bpucy (I1y, iy, \) _ Bpu (Tt PLy) . (21)
p p

The interesting aspect of this mapping procedure is that the sets of points represen-
tative of the excess internal energy and virial pressure constancy are located on two
smooth lines in the plane (o, A) and that the uniqueness of their point of intersec-
tion provides the HCY system with the appropriate values of & and A, at a given T
and p. It should be mentioned that the slopes of both curves are generally opposite
in sign so that the point of intersection is obtained without difficulty. However, at
temperatures below the critical point, the slope of the isobar line reverses as the
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density is decreased, and that is why no point of intersection can be found in the
range of the metastable states where the two curves are more or less parallel.

(ii) The result of the second procedure of mapping is the following. For systems
with purely repulsive potential, it is well known that the non-ideal contribution to
the pressure is proportional to the rate of collisions between particles [2]. Extending
their investigation to systems with realistic potentials, del Rio and Gil-Villegas [24]
introduced two collision rates related to the repulsive and attractive parts of the
potential, and proposed a mapping between two equivalent thermodynamic systems
in such a way that, respectively, the repulsive and attractive contributions to the
pressure are kept the same in both systems. This can be readily accomplished with
the pressure equation

Bp

_:]_+
P

[SCR)

[ o d=Bu(r)]
mp | rg(r)—S—21dr. (22)
0/ dr

Imposing the equality between the repulsive contributions to the HCY and LJ
potentials, on one hand, and between their attractive contributions, on the other
hand, the mapping equations read explicitly

Xm
2 2 d[—
“npadgucy (o, \) ==mpoi; XBQLJ(X)MdX, (23)
3 3 dX
0
2 ooy Bumey ()] 2 7 S Be )
3#/%“ gucy (r; o, A) I dr—gwpam X°gL1X) X dX, (24)
o Xm

where the left-hand side of Eq. (23) corresponds to the rate of collision for the
hard-sphere contribution of the HCY system. On the right side, X (= r/oLjy) is
the reduced length and X,, = 2/ is the position of the minimum of the LJ
potential. Then, the mapping procedure is performed by solving iteratively Egs.
(23) and (24) until both parameters o and \ are obtained consistently. Practically,
the right-hand sides of Eqs. (23) and (24) can be calculated as soon as grj(r) is
available as a function of T" and p.

4. General features of the mapping parameters a and \

The purpose of the calculations reported here is to achieve an assessment of the
mapping parameters a and A obtained by two different treatments. In using the
first approach based on the simultaneous fitting of the virial pressure and excess
internal energy of the HCY system into those of the LJ system, the inaccuracies
of the numerical calculations have been greatly eliminated. Table 2 summarizes
the behaviour of @ and A\ over a wide range of state variables covering reduced
densities p* from 0.1 up to 1 and temperatures from the triple point (7T* ~ 0.8)
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up to T* = 5. Focusing our attention on a3(= ¢%/03;) to gain a feeling, we ob-
serve a weak variation of the effective hard-sphere diameter o compared to that of \.

Table 2. Values of the parameters o and A for the HCY potential as functions of
thermodynamic states, aimed to achieve the correspondence with the LJ fluid.

T | p* — 0.1 0.2 0.4 0.6 0.8 0.9 1
5 o® 1 0.72162 | 0.72920 | 0.74828 | 0.76540 | 0.77230 | 0.77410 | 0.77285
A 1.5609 | 1.5968 | 1.7175 | 1.9520 | 2.4830 | 3.1900 | 5.0950
3 a® | 0.80600 | 0.80425 | 0.81500 | 0.83230 | 0.84535 | 0.84632 | 0.84395
A 1.5504 | 1.5603 | 1.6260 | 1.7475 | 2.0128 | 2.2745 | 2.7785
25| o® |0.83600 | 0.82920 | 0.84090 | 0.85825 | 0.87115 | 0.87235 | 0.86968
A 1.5484 | 1.5553 | 1.6171 | 1.7215 | 1.9385 | 2.1457 | 2.5240
2 o® | 0.88275 | 0.87600 | 0.87010 | 0.88601 | 0.90215 | 0.90490 | 0.90168
A 1.5599 | 1.5729 | 1.6102 | 1.6985 | 1.8770 | 2.0462 | 2.3319
1.6 | o3 |0.95200 | 0.94000 | 0.91202 | 0.91745 | 0.93420 | 0.93755 | 0.93430
A 1.6030 | 1.6050 | 1.6257 | 1.6942 | 1.8450 | 1.9855 | 2.2178
14| o® |1.02700 | 1.00720 | 0.94855 | 0.93810 | 0.95410 | 0.95702 | 0.95377
A 1.6435 | 1.6445 | 1.6481 | 1.6997 | 1.8364 | 1.9610 | 2.1695
1.2 o 0.96120 | 0.97645 | 0.97955
A 1.7075 | 1.8305 | 1.9430
1 a? 1.00175 | 1.00686
A 1.8287 | 1.9331
08| o 1.03495 | 1.03990
A 1.8404 | 1.9320

This emphasizes the role of the repulsive forces in establishing the thermodynamic
properties of liquids, since the particles are so close to each other that a small in-
crease of their size produces a large increment of the pressure. The parameter «,
almost always smaller than one, depends on both T* and p*. While it is clearly
inversely dependent on temperature, its density dependence seems to be more com-
plicated with no detectable general trend. The parameter A, characteristic of the
attractive region of the HCY potential, depends strongly on 7™ and p*. It always
increases with density, whatever the temperature, but its variation as a function of
temperature is different at low and high densities: A decreases with increasing 7™
at low densities, whereas the situation is reversed at high densities. This behaviour
is consistent with the observation of Ashcroft [25] assessing that the HCY system
passes from a supercritical fluid phase to a solid phase as the density increases. It
is worth knowing that, at T* = 5, the parameter A is about 15 for p* = 1.1 and
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becomes infinite for p* = 1.2 with the impossibility to reach the exact value of the
excess internal energy (+0.370). Note that Hagen and Frenkel [3] have obtained
the disappearance of the stable liquid phase for the significantly lower value of
A = 7.4 using a Monte-Carlo based perturbation theory. The values of o®(p*,T*)
and A(p*,T*) displayed in Table 2 can be adequately represented as a function of
temperature by the following parametric expressions

oP(T*) = Ao(p*) + A1 (p")T* + Azx(p*)T™ + As(p*)T*° (25)
MT*) = Bo(p") + Bi(p*)T* + Ba(p")T** + Bs(p*)T*, (26)

where the parameters A4;(p*) and B;(p*) obtained by least squares-fitting are given
in Table 3.

Table 3. Values of the coefficients A;(p*) and B;(p*) of the polynomial expressions
given by Eqs. (25) and (26).

ot | Ao A Ay As Bo B B Bs

0.2 | 1.7345 | -0.8057 | 0.2321 | -0.0226 | 2.1276 | -0.5540 | 0.1700 | -0.0161
0.4 | 1.3255 | -0.4037 | 0.1088 | -0.0102 | 1.9286 | -0.3333 | 0.1071 | -0.0098
0.6 | 1.1529 | -0.2127 | 0.0478 | -0.0042 | 1.8255 | -0.1638 | 0.0587 | -0.0042
0.8 | 1.1848 | -0.2127 | 0.0478 | -0.0042 | 1.9091 | -0.1457 | 0.0729 | -0.0042
1| 1.1924 | -0.2335 | 0.0540 | -0.0048 | 1.7734 | 0.3878 | -0.1265 | 0.0364

In the second approach, the parameters o and A can be determined using the
concept of collision frequency. Equations (23) and (24) allow to separate the contri-
butions of repulsive and attractive forces to the virial pressure. For the purpose, the
repulsive and attractive contributions to the virial pressure of the LJ potential have
been calculated with the pair-correlation function obtained in molecular dynamics
(MD). The MD simulations were performed in the NVT ensemble with N = 256
particles. The system was set in a fcc lattice in cubic boxes and surface effects were
avoided by placing each box at the centre of a periodic array of identical boxes. The
LJ potential was truncated at intermolecular separations greater than r. = 2.5r,,,
corresponding to half the box length. Appropriate long-range corrections were used
to recover the full contribution to the intermolecular potential [26]. The equations
of motion were integrated using Verlet’s algorithm in the velocity form with a time
step of At = 107!® s and the pair-correlation function g(r) was extracted from a
sample of 4 x 10* configurations every 10At after an equilibration of 10* steps. In
contrast, the pair-correlation function of the HCY system, necessary to the calcu-
lation of the virial pressure, has been determined with the analytical expression
derived by Henderson et al. [10] as it has been shown to provide very accurate
gucy (r;0, A) and because it is less time-consuming than the MD simulation.

In this mapping procedure, everything amounts to finding o and A by solving
iteratively Eqs. (23) and (24) for each temperature and density. It is found that
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the numerical effort involved in this procedure is not as great as expected because
Eq. (23) is rather insensitive to the parameter A, whereas Eq. (24) is insensitive to
the parameter . This treatment has been only performed for three temperatures,
T* = 1.4, 1.6 and 2 in order to compare the two procedures of mapping. The
parameters corresponding to the collision frequency treatment, labelled as and Ao,
are collected in Table 4 together with those coming from the simultaneous fitting
of the virial pressure and excess internal energy, labelled a; and A\;. The general
trends of both sets of results are qualitatively the same. For the parameter «, the
agreement is excellent at the lowest temperature (T* = 1.4) and still reasonable at
T* = 2 with a difference of about 8% for p* = 0.2. Concerning the parameter A, the
concordance is particularly good for the highest temperature whatever the density,
but deteriorates at high density and low temperature when the critical temperature
is approached. On the whole, there is a reasonable homogeneity in the results of
the parameters a and A for both procedures of mapping.

Table 4. Values of the parameters o> and \ for the HCY potential as functions of
thermodynamic states, derived to achieve the correspondence with the LJ fluid. The
index 1 stands for the direct mapping procedure and the index 2 is for the mapping
that involves the collision frequency concept. The contributions of repulsive and
attractive forces to the virial pressure are also displayed.

T | p* FpLs (rep) PpLs (att) ol A2 1o A1
1.4 | 0.2 1.87169 -1.29949 1.010 | 1.646 | 1.00720 | 1.6445
0.4 2.82476 -2.43903 | 0.947 | 1.648 | 0.94855 | 1.6481
0.6 4.23981 -3.50765 | 0.922 | 1.718 | 0.93810 | 1.6997
0.8 7.00525 -4.33991 | 0.930 | 1.978 | 0.95410 | 1.8364
0.9 9.33909 -4.59601 0.934 | 2.268 | 0.95702 | 1.9610
1 12.72284 -4.84894 0.936 | 2.780 | 0.95377 | 2.1695
1.6 | 0.2 1.80186 -1.13651 0.985 | 1.622 | 0.94000 | 1.6050
0.4 2.70906 -2.09816 | 0.927 | 1.625 | 0.91202 | 1.6257
0.6 4.14577 -3.12830 0.919 | 1.692 | 0.91745 | 1.6942
0.8 6.78998 -3.8283 0.921 | 1.935 | 0.93420 | 1.8450
1 12.29784 -4.46279 0.929 | 2.386 | 0.93430 | 2.2178
2 0.2 1.71470 -0.89083 0.955 | 1.587 | 0.87600 | 1.5729
0.4 2.57347 -1.68103 0.907 | 1.594 | 0.87010 | 1.6102
0.6 3.92339 -2.44415 0.896 | 1.676 | 0.88601 | 1.6985
0.8 6.42608 -3.08320 | 0.902 | 1.878 | 0.90215 | 1.8770
1 11.13069 -3.44213 | 0.901 | 2.358 | 0.90168 | 2.3319
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The evaluation of not only the EOS but also of the corresponding thermody-
namic properties is the ultimate test to judge the accuracy of the parameters o and
A. Starting from the expressions for SA/N, fU* /N and Op/p given, respectively,
by Egs. (3), (14) and (15), the excess thermodynamic quantities (excess free en-
ergy, excess entropy and excess chemical potential) related to them are commonly

evaluated using the relationships

ﬂAeI _ BA 5
N = -1l
Se;c _ /8U6.’,C _ /GACCC

Nkg N N’
Butt = p4 + Bp _ In A3p.

N o p

Because in the first mapping procedure the excess internal energy and virial pres-
sure were forced to fit simultaneously the reference values, all excess quantities
coincide perfectly with the MD data. On the contrary, in the second mapping pro-
cedure, only the pressure fits the MD data. Therefore, we show in Fig. 2 the excess
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Fig. 2. Thermody-
namic quantities of
the HCY system for
the three isotherms
T = 14, 1.6 and 2
(from bottom to top).
Full line corresponds
to the reference data
of the LJ fluid, dotted
line is for the results
derived by the map-
ping procedure that
involves the collision
frequency concept.
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quantities along the isotherms 7* = 1.4, 1.6 and 2 in order to judge the quality of
the mapping procedure based on the collision frequency. On the whole, the excess
internal energy SU®* /N (Fig. 2a), the excess free energy SA®* /N (Fig. 2b), the
excess entropy S /Nkp (Fig. 2c) and the excess chemical potential Gp*(Fig.
2d) are in quite good agreement with the reference data. As expected, the worst
result is observed especially for the excess internal energy and excess free energy
for T* = 1.4 and p* = 1, where the values of the parameters Ay and A1 are slightly
different. In contrast, the excess entropy is hardly affected since it is the difference
between two quantities of equal magnitude (BU®* /N — BA®* /N).

5. Concluding remarks

The investigation of the thermodynamic properties of the LJ fluid has been
made for a system of particles interacting with the HCY potential. The method
is advantageous due to a convenient analytical expression for the equation of state
for the HCY system derived in the mean spherical approximation. Specifically, the
method consists in mapping the thermodynamic properties of the LJ fluid, for every
p* and T*, from the EOS of the equivalent HCY system for suitable values of its
two parameters a and A. An advantage of this approach is that it allows to predict
the thermodynamic properties of the LJ fluid by means of only two molecular
parameters.

In order to establish the particularities of the dependence of o and A on p*
and 7™, two mapping procedures have been employed. The first one requires the
equality of the virial pressure and internal energy of the LJ fluid with those of
the HCY system, and in the second one the repulsive and attractive contributions
to the virial pressure are kept the same in the LJ and HCY systems. In both
procedures, the equations are solved iteratively and provide unique solutions in
any thermodynamic state.

To sum up the work, we point out that the results are threefold: (i) the EOS
of the HCY system can be used to predict the thermodynamic properties of the
LJ fluid over a wide domain of the phase diagram, (ii) the concept of collision
frequency can be used confidently to map any system into another one provided
that both pair-correlation functions are available and (iii) the EOS of the HCY
system is capable to connect rigorously its own parameters to the properties of a
real fluid, without reference to the LJ potential. Therefore, the HCY system is a
good reference system.

Firstly, comparison of our predictions of the thermodynamic properties of the
LJ fluid with reference data show that the analytical EOS of the HCY system is
highly reliable when the correct values of the parameters are used. In particular,
this analytical EOS is of precision comparable to those of the integral equation [27]
or simulation data for the LJ fluid. Compared to the strictly empirical equations
of state using a modified form of the Benedict-Webb-Rubin equation (MBWR)
[28], the EOS of the HCY system has only two state dependent parameters, o and
A, instead of 33 parameters of the MBWR equation of state. Taking account of
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the physical meaning of v and ), their extrapolation allows to predict additional
thermodynamic properties outside the range for which the parameters have been
determined.

Secondly, the reasonable homogeneity in the values of the parameters a and A
for both procedures of mapping promotes the treatment based on the collision fre-
quency concept, even if the direct fitting of the virial pressure and internal energy
is expected to provide the best EOS. The parameter values obtained with the pro-
cedure that involves the collision frequencies somewhat differ from those evaluated
within the simultaneous fitting of the virial pressure and internal energy, but the
general shapes of their density and temperature dependence remain very similar
to each other. In particular, the variations of @ and A with temperature are easily
parametrized smooth functions, while the density dependence of a is much more
structured with an evident non-monotonicity in the relevant region of density. Be-
sides, the former mapping procedure involves explicitly the HCY pair-correlation
function, gucy (r), and the latter ignores it by setting up an analytical free-energy
expression for the HCY system. The confidence in the behaviour of gucy (r) is then
replaced by implicitly estimated energetic and entropic effects. As a result, the
precise shape of the pair-correlation function is not so important for the prediction
of the thermodynamics of the LJ system in the low-density region.

Thirdly, the main issue of the work is the proof that the HCY system is a very
good reference system, owing to the quite accurate expressions for the free energy
and the pair-correlation function, which offers the possibility to implement the
variational method in order to determine the thermodynamic properties of fluids
with realistic potentials. Alternatively, it can be used more directly to approximate
the best available rare gas potential without going through the LJ potential as an
intermediate approximation. It should also be mentioned that the inverse screening
length A increases beyond the commonly accepted value of 1.8 for the LJ fluid as
the density and temperature are increasing. Such high values of A correspond to
very short-range potentials, a situation in which the phase diagram of the fluid
undergoes profound modifications with no stable liquid phase among them [3].
Even if the present treatment is still not flexible enough to describe fluids with
nonspherical potentials and mixtures, it is believed to represent simple and useful
means of solving the van der Waals problem of an accurate analytical EOS based
on underlying theory.
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TERMODINAMIC}{A JEDNAKOVALJANOST LENNARD-JONESOVOG
SUSTAVA I PRIVLACNOG YUKAWINOG SUSTAVA S TVRDOM SREDICOM

Istrazujemo termodinamicka svojstva Lennard-Jonesove (LJ) tekuéine proucava-
njem sustava cestica koje medudjeluju potencijalom tvrda sredica i privlacan
Yukawin rep (HCY). Zbog slicnosti LJ i HCY oblika potencijala, vrijedi traziti
priblizenje LJ potencijalu kao $to se rabi referentni potencijal tvrdih kuglica. U
ovom proucavanju opisujemo termodinamiku LJ tekuéine pomoc¢u jednakovaljanog
HCY sustava Cija su svojstva toéno poznata rac¢unanjem termodinamickih veli¢ina
za parametre HCY potencijala. Ta je metoda izvediva zbog pogodnog izraza za
Helmholtzovu slobodnu energiju u prosjeéno-sfernom priblizenju, razvijenu po po-
tencijama reciprotne temperature. Rabe se dva postupka za odredivanje parame-
tara HCY potencijala kao funkcije termodinamickog stanja: jedan se zasniva na
istovremenoj prilagodbi tlaka i unutarnje energije LJ sustava, a drugi rabi zamisao
sudarne frekvencije. Dobra jednolikost ishoda oba postupka snimanja ¢ini HCY po-
tencijal vrlo dobrim referentnim sustavom ¢iji se teorijski izrazi mogu s pouzdanoscu
rabiti za predvidanje termodinamickih svojstava sustava sa stvarnim potencijalima.
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