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The aim of this paper is to study the behaviour of sheath structure in plasma with
collisions, and simulation of the effects of collisionality on the plasma sheath using
the Runge–Kutta routine. We consider the near-wall region of an unmagnetized
dusty plasma which consists of electrons, ions, micron-size dust particles and neu-
tral particles. Since the dust particles are much heavier than electrons and ions,
the latter are assumed to be out of thermal equilibrium with dust as a cold fluid.
The neutrals are taken as immobile. Precise numerical solutions of the model are
used to determine the collisional dependence of the sheath width and the impact
energy at the wall.
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1. Introduction

For many decades, the behaviour of plasma in contact with a negatively biased
surface has been qualitatively studied. It is known that the strong localized electric
field appears between the plasma and such a surface. The ion-rich boundary layer,
called the sheath, confines electrons in and expels ions from the plasma [1].

The sheath is composed of ions, atoms, electrons and dust particles. Sheath
formation at the plasma–boundary interface, which is separating the quasi-neutral
plasma, is ubiquitous in bounded plasma. Accurate sheath modelling is of consid-
erable interest to the effective design of ionized flow in wide-ranging applications in
plasma processing: in the ion cyclotron heating, in electric propulsion devices and
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in controlled thermonuclear fusion. Recently, the study of dusty plasmas represents
one of the most rapidly growing branches of plasma physics research. The relevance
of dusty plasma to both the space plasma and industrial plasma communities has
led to the rapid growth of a variety of laboratory experiments.

Dust grains in plasma are not neutral, they are charged due to their interaction
with electrons, ions and background radiation [2]. The mass of dust grains can have
very high value, up to 106−108 times the proton mass. The presence of the charged
dust grains alters many physical properties of the plasma, including its charge
distribution and potential distribution. Additionally, dusty plasmas facilitate the
investigation of many unique phenomena including the formation of dust crystals
and new collective modes. The proprieties of dusty plasma have been the subject of
increasing interest [3 – 6]. The basic mechanism by which dust grain interacts with
plasma is electrical charge accumulation on the surface of an insulating particle.
In the space environment, this charge accumulates via photoionization, secondary
electron emission due to impacts with energetic particles and collisions with the
background thermal plasma. For the laboratory experiments on dusty plasmas, the
principle charging mechanism is the flux of charged particles (electrons, ions) from
the plasma to dust particles residing on a plasma exposed surface. Due to the high
mobility of electrons, the grains become negatively charged.

Once the surface charge of the dust grain is large enough, the electric force,
due to the sheath electric field, can exceed the combination of gravitational and
adhesive forces that bind the grain to the surface. Under these conditions, the
dust particle is accelerated though the sheath and passes into the main plasma.
In laboratory conditions, it is the balance between the gravitational and electrical
forces, and various neutral-particle and ion-drag forces that control the transport
of individual dust particles in the plasma.

When suspended in the plasma, these charged dust particles interact with ion
and electrons in the plasma. In this way, the dust particles modify many of the
physical properties of the plasma, including its charge distribution and potential
distribution.

The presence of dust grains in a radio-frequency plasma reactor for engraving
in micro-electronic devices or for the deposition of a thin layer may be critical. It
is thus of practical interest to investigate the interaction between a dusty plasma
and solid boundary.

Recently, several authors have considered the effects of collisionality on the
sheath [7 – 8]. A. Samarian and S. V. Vladimirov report on the experiments ded-
icated to clarify the dependence of the dust charge as a function of its size in a
rf-discharge plasma for the ion-neutral friction with the ion drift velocity depen-
dence fitting the existing experimental data on the ion mobility in a low temperature
plasma [9]. Tsytovich, Vladimirov, Morfil and Goree developed the theory of dust
voids in collisional dominated plasma for the one-dimensional case [10]. However,
we develop the model for the ion-neutral and dust-neutral collisions in order to
determine the sheath thickness and the grain impact energy at the wall.

In this paper, we consider an unmagnetized, dusty plasma which is in contact
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with a physical boundary like a wall, probe or substract. It is well known that a
sheath is created to separate the plasma from the surface.

The second section provides the mathematical formulation, the basic equations
that are used to describe the sheath in dusty plasma when both ions and dust grains
are out thermal equilibrium. Precise numerical solutions for the sheath thickness,
the average dusts and ion energy at wall impact as function of the collisional pa-
rameter are presented.

In the last section we comment the results obtained from the couplings equa-
tions.

2. Sheath model of a collisional dusty plasma

2.1. Governing equations

The aim of this section is to study the effect of collisionality in the dusty plasma.
We consider an unmagnetized, charge–neutral plasma in contact with a planar wall.
The potential in the sheath is φ and the wall is held at a negative potential φω.
Consequently, a sheath is formed to separate the plasma from the wall. Ions enter
the sheath as a cold beam with a velocity v0 and strike the wall with a velocity vω.
In order to estimate the sheath characteristics, we adopt a one-dimensional model
of the sheath. The sheath surface is represented by the Oyz plane, and the Ox
axis is perpendicular to the surface. We assume that all physical variables (density,
velocity, potential, . . . ) depend only on the x coordinate and we suppose a steady
process (i.e., the variables do not depend on time). The boundary between the
plasma and the sheath is at x = 0. The sheath thickness is D. That means the wall
is at x = D. The sheath is assumed to be source-free.

It is well known that dust grains are common both in space and laboratory
plasma [3 – 5]. A dusty plasma consists of neutral gas, ions, electrons and micron-
size particles that have a negative charge [6]. Since the dust particles are much
heavier than electrons and ions, we suppose them as a cold fluid. The neutrals are
taken as immobile. Since we assumed the fluid theory for dusts, we can ignore the
variations in shape, size and charge separations among the individual dust particles
[7]. This is so because these variations are sufficiently small and they can not be
distinguished in a fluid element.

The collisions of charged particles in plasma are of two types: collisions with
other charged particles and collisions with neutral atoms and molecules. For plasma
physicists, the collisions with neutral particles are of practical interest, because they
are dominant in low-temperature plasmas where the degree of ionization is only a
few per cent [16]. The opposite case, when the degree of ionization is high, is called
fully ionized plasma. In that case, the collisions with other charged particles tend to
dominate over collisions with neutral particles. We shall assume a partially ionized
gas. The plasma-neutral collision usually determines the kinetics of motion [17].

The electric and ion drag forces scale differently with particle size. The electric
force will dominate for small particles, while ion drag will dominate for larger
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particles [18]. In this work, we shall assume that the dust diameter less than 120
nm, so the electric force exceeds the ion drag force.

The dynamics of electrons is treated as a neutral background in plasma and
they are assumed to follow the Boltzmann relation [19, 20]

ne = n0 exp

{

eφ

kBTe

}

, (1)

where e is the elementary charge, kB the Boltzmann constant and Te the electron
temperature. The cold dust fluid obeys the source-free, steady-state continuity
equation

∇ ·
(

ndvd

)

= 0 , (2)

and the momentum transfer equation

md

(

vd∇
)

vd = Zde∇φ − Fcd , (3)

where md, nd, vd and Zd are, respectively, the dust particle mass, density, velocity
and charge number and nd0, vd0 are dust density and velocity at the sheath edge,
respectively. The temperature ratio is τ ≡ Ti/Te and the negative dust charge is
−eZd, where e > 0 and Zd > 0. The dimensionless dust charge [12] is

z ≡ Zde2

aTe

.

The dimensionless charge z is equivalent to the grain’s floating potential −Zde/a
normalized by Te. Its value must be computed from a charging equation [12].

The dust particle’s charge z or “floating potential” is determined in the steady
state by a balance of the electron and ion currents collected by the particle. The
charging equation for a dust particle is (see Ref. [12])

exp{−z} =
n

ne

√

πme

mi

2z

τ
αch,

where the left-hand side comes from the electron current (which is suppressed expo-
nentially by electrostatic repulsion), and the right-hand side corresponds to the ion
current. The ion charging coefficient αch depends generally on the ion temperature
and drift velocity. In the limit ui ≫ 1 that we used for the collection force (see
Ref. [12])

αch =
1√
τui

(

1 +
τu2

i

z

)

,

so that the ion velocity ui will be taken into account in the charging equation.
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The collisional effects between the dust and the neutrals are introduced. We use
the collisional force term Fcd, which is given by [13]

Fcd = mdnnv2
dσ = mdnnv2

dσs

(

vd

Cd

)γ

. (4)

Here, nn is the neutral gas density and σ is the momentum transfer cross section for
collisions between the dust’s charged grains and neutrals. Cd =

√

(kBTe/md) is the
dust acoustic speed and γ is dimensionless parameter ranging from 0 to −1. The
rate of ion production in dusty plasma is determined by the ionization frequency.

The rate of ionization [9] is given as Si = kinnne. Here, ki is the ionization
coefficient. We shall use the following generalized process rate that is a sum of all
three ionization rates [9]

ki = (−3.2087 × 10−5 T 3
e − 0.0022T 2

e + 0.7101Te − 1.76) × 10−14.

In the high-density, low-pressure plasma, the concentration of molecular ions is low
for dissociative recombination to be important. Furthermore, since such a plasma
is optically thick and the radiative escape factor is zero. Then the only important
recombination mechanism is the three-body recombination. Thus, the probabil-
ity of recombination [9] is Sr = krnine. The recombination coefficient kr can be
approximated [9] by

kr = 1.09 × 10−20 neT
−9/2
e m3s−1.

The ions can be described by as a cold fluid responding to the plasma potential
according to the continuity equation

∇ · (nivi) = Si − Sr, (5)

and momentum transfer equation is

mi (vi∇) vi = −e∇φ − Fci. (6)

Here, mi, ni, vi are, respectively, the ion particle mass, density and velocity, and
ni0, vi0 are the ion density and velocity at the sheath edge, respectively. As the ion
fluid travels through the sheath, the drag force Fci is given by

Fci = minnv2
i σ = minnv2

i σs

(

vi

Cs

)γ

, (7)

where Cs =
√

(kBTe/mi) is the acoustic speed. The speed of ions is assumed to be
great enough to satisfy Bohm’s criteria (vi ≥ Cs).

The electron and ion densities are then included in the Poisson equation [14]

∇2φ = −4πe
(

ni − ne − Zdnd

)

. (8)
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For strong dust-neutral and ion-neutral collisions, the movements of dust grains
are mobility-limited. Therefore, we are interested only about the constant dust
mobility and ion mobility case (i.e., γ = −1). Hence, we do not consider the case
of the constant dust mean free path (i.e., γ = 0).

Combining Eqs. (1) to (8), we find four coupled differential equations describing
the sheath structure as

vi

d

dx
vi = − e

mi

d

dx
φ − nnσs

v2+γ
i

Cγ
s

, (9)

∇ ·
(

nivi

)

= kinnne − krnine, (10)

vd

d

dx
vd =

Zde

md

d

dx
φ − nnσs

v2+γ
d

Cγ
d

, (11)

∇2φ = −4πe
(

ni − ne − Zdnd

)

. (12)

The governing equations can be transformed to the dimensionless form by an ap-
propriate choice of variables [15]. The electric potential φ is scaled by the electron
temperature, η = −eφ/(kBTe) and the distance x is scaled by the Debye length,

ξ ≡ x/λD, where λD =
√

ε0kBTe/(n0e2). The ion velocity vi is scaled by the ion
acoustic speed ui ≡ vi/Cs. Additionally, the dust velocity vd is transformed to
the dimensionless parameter by the dust acoustic speed, ud ≡ vd/Cd. Also the
parameters Zd(nd0/ne0) = δ − 1 and d = D/λD, where d is the dimensionless
sheath thickness. The degree of collisionality in the sheath is parameterized by
α = λD/λmfp = λDnnσs, where λmfp = 1/(nnσS) is the mean free path of dust, and
α is proportional to the neutral gas density nn. The collisionless case (α = 0) is
the limit of zero gas density. If the gas density is high enough, or the Debye length
short enough, the ion mean free path is one Debye length, and then α = 1. The
average number of collisions in the sheath, which will prove to be a useful quantity,
is given by D/λmfp = αd.

Based on these non-dimensional parameters, the basic equations reduce to

uiu
′

i = η′ − αu2+γ
i , (13)

dni

dε
= −η′ni

u2
i

+ αniu
γ
i +

λD

cSui

kinnn0 exp{−η}

− λD

uicS

krnin
2
0 exp{−2η}, (14)

udu′

d = −Zdη′ − αu2+γ
d , (15)

exp{−z} =
n

ne

√

πme

mi

2z

τ
αch, (16)

η′′ =
ni

ne0

− exp{−η} + (1 − δ)
ud0

ud

. (17)

The prime represents the derivative with respect to the spatial coordinate ξ.
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2.2. Numerical solutions

The governing equations were solved precisely for the electric potential ηω, the
ion velocity ui(ξ) and the dust velocity ud(ξ) by integrating them numerically
with a Runge–Kutta routine [16]. The plasma parameters used in the numerical
computation are given in Table 1.

In Figs. 1 – 3 we plot the sheath thickness d, the ion impact energy and the
dust impact energy as functions of the collision parameter α and wall potential ηω.
These plots show three regimes of sheath collisionality. For small α, collisions are
negligible, and d, εωd and εωi are nearly independent of α. For large α the ion and
the dust motion is collisionally dominated, d, εωd and εωi decrease and approach
to a limiting asymptote. Between the collisionless and collisional regimes, there is a
transition regime. Approximate analytic expressions for d and εωi can be derived.

TABLE 1. Main plasma parameters in the numerical computation [17].

Definition Notation Value

Electron temperature Te 2.0 eV

Electron density ne 109 cm−3

Neutral density nn 3 × 1015 cm−3

Ion temperature Ti 0.025 eV

Electron Debye length λD 400 µm

Ion mass mi 40.1836 me

Fig. 1. Precise numerical solutions of the governing equations for the dimensionless
sheath thickness as function of the collision parameter α for various wall potentials.
Three regimes are evident. We have assumed γ = −0.5.
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Fig. 2. Precise numerical solution for the average ion impact energy at the wall as
function of the collisional parameter. We show results for γ = −0.5; three regimes
are evident: a collisionless regime where εωi is nearly independent of collisional
parameter, a collisionally dominated regime where εωi approaches to a limiting
asymptote, and a transition regime. We have assumed that u0i = 100 and γ = −0.5.

Fig. 3. Precise numerical solution for the average dust impact energy at the wall
as function of the collisional parameter for various wall potentials. In this figure,
three regimes are evident: a collisionless regime where εωi is nearly independent of
collisional parameter, a collisionally dominated regime where εωi approaches to a
limiting asymptote, and a transition regime. We also show that the dust impact
energy increases when the electric potential increases.

The transition regime is much more difficult to treat analytically. Consequently,
the numerical results in Figs. 1, 2 and 3 are most valuable for their accuracy in the
transition regime.

In the special case of thermal equilibrium without both ionization and recom-
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bination, the ions are assumed to follow the Boltzmann relations [10, 11]

ni = ni0 exp

{

− eφ

kBTi

}

. (18)

We find two coupled differential equations describing the sheath structure,

vd

d

dx
vd =

Zde

md

d

dx
φ − nnσs

v2+γ
d

Cγ
d

(19)

and

∇2φ = −4πe(ni − ne − Zdnd) . (20)

Using the precedent non-dimensional parameters, the basic equations reduce to

udu′

d = −Zdη′ − αu2+γ
d , (21)

η′′ = δ exp{ηθ} − exp{−η} + (1 − δ)
ud0

ud

. (22)

The governing equations were solved precisely by integrating them numerically with
a Runge–Kutta routine.

In Figs. 4 and 5, we plot the sheath thickness d and the dust impact energy as
functions of the collision parameter α for various wall potentials ηω. These plots
show three regimes of sheath collisionality: collisionless, collisional and transition
regime. We show also that both d and εωd decrease and approach a limiting asymp-
tote with increasing collisionality.

Fig. 4. Precise numerical solutions of the governing equations for the dimension-
less sheath thickness as function of the collisional parameter α for various wall
potentials. Three regimes are evident. We have assumed that γ = −0.5.
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Fig. 5. Precise numerical solution for the average dust impact energy at the wall
as function of the collisional parameter for various wall potentials. In this figure,
three regimes are evident: a collisionless regime, a collisionally dominated regime
where εωd approaches to a limiting asymptote, and a transition regime. We also
show that, dust impact energy increases when the electric potential increases.

2.3. Comparison

The dust impact energy profile for the two cases of ions is shown in Fig. 6.
We note that the evolution of dust impact energy is correlated with the evolution
of the collision parameter. This plot shows that a presence of dust charged grains in

Fig. 6. Comparison between the precise numerical solutions for the dust impact
energy at the wall in thermal equilibrium and out of thermal equilibrium. This plot
shows that the dust impact energy at the wall is higher in the case of ions out of
thermal equilibrium.
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plasma influenced the characteristic behaviour of the plasma sheath. The presence
of three regimes of sheath collisionality is also shown in this figure. In the limit
of strong collisions, the decreases in the dust impact energy approach a limiting
asymptote. We also find that the dust impact energy at the wall is greater in the
case of ions out thermal equilibrium than in the case of ions in thermal equilibrium.

3. Summary

The precise numerical solution of our model provides information about the be-
haviour of dust impact energy at the wall. We have demonstrated that the sheath
thickness d, the dust impact energy and the ion impact energy at the wall decrease
with increasing collisionality. Our plots show three different regimes: a collisionless
regime, a collisionally dominated regime where εωd approaches to a limiting asymp-
tote and a transition regime. We show that the dust impact energy increases when
the electric potential increases. It is observed also that the dust impact energy at
the wall is larger in the case of ions out thermal equilibrium than in the case of
ions in thermal equilibrium.

We note that the evolution of the sheath width is correlated with the evolution
of the collisional parameter. In the limit of strong collisions, the decreases in the
sheath thickness approach a limiting asymptote.

Our model can be applied to study the sheath in various material plasma pro-
cessing techniques where negatively charged dust particles are usually found to be
present.
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FIZIČKI PROBLEM I TEORIJSKI OPIS SLOJA U SUDARNOJ PRAŠNJAVOJ
PLAZMI

Cilj ovog rada je proučavanje svojstava graničnog sloja u sudarnoj plazmi i sročenje
učinaka sudara u sloju primjenom Runge–Kutta-ovog postupka. Razmatrali smo
područje blizu zida u nemagnetiziranoj prašnjavoj plazmi koja se sastoji od elek-
trona, iona, čestica prašine mikroskopske veličine i neutralnih čestica. Čestice
prašine su mnogo masivnije nego elektroni i ioni, pa se ovi mogu pretpostaviti
izvan termičke ravnoteže, dok je prašina hladna tekućina. Uzeli smo da su neu-
tralne čestice nepokretne. Primijenili smo točna numerička rješenja za odred–ivanje
sudarne ovisnosti debljine sloja i udarne energije pri zidu.
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