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1. Introduction

All mechanical and electrical vibration problems reduce, in the case of small
oscillations, to problems involving one or several coupled oscillators. Problems in-
volving vibrations of strings, membranes, elastic solids, electrical or acoustical can
be reduced to problems of coupled oscillators. The effect of coupling in a simple
system with two degrees of freedom (DOF) produces two characteristic frequencies
and two normal modes of oscillation. The general motion of the system is a superpo-
sition of the normal modes of oscillation, but initial conditions can always be found
so that any one of the normal modes can be independently excited. Identifying
each of a systems normal modes allows a construction of a complete picture of the
motion, even though the general motion of the system is a complicated combination
(superposition) of all normal modes.

Various methods are used to solve for these normal modes: The Lagrangian
method, the Hamiltonian method and the Newton’s force method, to name a few.
Of these, only the Newton’s force method is suitable for use in an introductory
or intermediate course on classical mechanics, where the concept of force is of
fundamental importance. In the Newton’s force method, the standard way of solving
[1 - 5] is to:

(i) assume oscillatory solutions of the displacements;
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(ii) substitute the solutions in (i) into the equations of motion;

(iii) solve a system of equations (usually in the form of a secular determinant)
to determine the normal mode frequencies;

(iv) determine the normal modes of oscillation.

Fig. 1. Coupled oscillators, the problem regularly treated in textbooks on general
physics.

For comparison of the proposed method to the standard method, we present the
latter as can be found in many textbooks. The equations of motion are obtained
by considering the forces on each mass separately. Let the masses be displaced
by amounts x1 and x2 from their equilibrium position as shown in Fig. 1. The
equations of motion for the two masses are

mẍ1 = −k0x1 − kc(x1 − x2) , (1)

mẍ2 = −k0x2 − kc(x2 − x1) , (2)

where ẍ = d2x/dt2.

Adding and subtracting Eqs. (1) and (2) gives

(ẍ1 + ẍ2) = −
k0

m
(x1 + x2) , (3)

(ẍ1 − ẍ2) = −
k0 + 2kc

m
(x1 − x2) , (4)

Eqs. (3) and (4) represent in-phase SHM of the two masses with angular fre-

quency
√

k0/m and anti-phase SHM of the two masses with angular frequency
√

(k0 + 2kc)/m, respectively.

Here, (x1 +x2) and (x1−x2) are the normal mode coordinates of the oscillating
system.

In this article, an alternative method of solving, based on Newtons force method,
is presented. This algebraic method reduces the amount of calculation needed to
determine the normal modes of vibration and normal mode frequencies. The normal
modes of vibration are uniquely determined by the parameter λ. By forcing the
resulting normal mode equations to resemble those of simple harmonic motion
(SHM), the underlying physics is borne out clearly in this method of solving. Since
the method is not widely known, this article could serve to introduce the method
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to instructors of introductory classical mechanics and, thereby, encourage them to
cover the topic of coupled oscillators in their courses.

We begin by examining a system exhibiting 2 DOF. The method is then ex-
tended to two systems having 3 DOF. This method is general and can be applied to
any system having n degrees of freedom. For a system having n degrees of freedom,
introduction of n−1 dimensionless parameters is needed and one must form a suit-
able linear combination of the relative displacements. The coupled systems shown
in Figs. 1 – 4 are used to illustrate the method. By forming a suitable combination
of the equations of motion, we determine that the resulting motion is oscillatory,
and then easily determine the normal modes and normal mode frequencies.

2. General method

The above method of solving takes advantage of the symmetry of the mass-
spring system. However, when there is no symmetry, a general method must be used
to solve for the normal modes. This method consists of introducing a dimensionless
parameter λ, and forming the combination (ẍ1 + λẍ2) of the equations of motion
of the masses. The parameter λ describes the motion of the mass 2 relative to the
mass 1.

If we apply this technique to the problem above, we expect to get λ = ±1 and
hence arrive at the same solutions for the normal mode frequencies. When we form
the combination (ẍ1 + λẍ2), we get

(ẍ1 + λẍ2) = x1(λkC − kC − k0) + x2(kC − λkC − λk0)/m (5)

= −
(

k0 + kC − λkC

m

)[

x1 +

(

kC − λkC − λk0

λkC − kC − k0

)

x2

]

.

Let X represent the quantity x1+λx2 . Then Eq. (5) can be written as Ẍ = −ω2X.
Here X is the normal mode coordinate of the system.

This represents SHM with angular frequencies given by

ω2 =

(

k0 + kC − λkC

m

)

(6)

and

λ =

(

kC − λkC − λk0

λkC − kC − k0

)

. (7)

One solution of this equation is λ = +1, and the masses move in phase with angular
frequency given by ω2

+ = k0/m. The other solution is λ = −1, the masses move in
anti-phase with angular frequency ω2

+ = (k0 + 2kC)/m, as expected.

Thus we recover the two normal mode frequencies with this method. The pa-
rameter λ determines the normal modes of the system.
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We next apply this method to a mass-spring system that lacks the symmetry
of the above problem.

Problem 2

Consider the mass-spring system shown in Fig. 2a.

The equations of motion for the two masses are given by:

mẍ1 = −kx1 − k(x1 − x2), (8)

mẍ2 = −k(x2 − x1) . (9)

Eqs. (8) and (9) are to be solved to determine the normal mode frequencies of the
oscillating system. Note that the gravitational forces acting on the masses need not
be considered here since they are independent of the displacements and hence do
not contribute to the restoring forces that cause the oscillations. The gravitational
forces merely cause a shift in the equilibrium positions of the masses [1].

Fig. 2. System of two masses hung on springs. Equations of motion, (Eqs. (8) and
(9) in the text) are formulated assuming that x1 and x2 are displacements from
the equlibrium positions as shown in figure a). Figures a) and b) illustrate the

mode when the two masses oscillate in phase with the parameter λ+ = (1+
√

5)/2.
Figures c) and d) illustrate the mode when the two masses oscillate with opposite

phase with the parameter λ− = (1 −
√

5)/2.

To solve, we again introduce the parameter λ into the coupled motion to form a
linear combination of the displacements x1 and x2. Thus, we form the combination
and simplify to give

(ẍ1 + λẍ2) = ω2
0 [(λ − 2)x1 + (1 − λ)x2] (10)

160 FIZIKA A (Zagreb) 16 (2007) 3, 157–166



hunte: coupled oscillators: an informative problem solving approach

i.e.,

(ẍ1 + λẍ2) = −ω2
0(2 − λ)

[

x1 +

(

1 − λ

λ − 2

)

x2

]

, (11)

where ω2
0 = k/m. Hence, the combined motion is clearly simple harmonic with

angular frequency ω, given by

ω2 = ω2
0(2 − λ) (12)

and

λ =
1 − λ

λ − 2
. (13)

It is now justified to assume oscillatory solutions of x1 and x2. Equation (12) de-
termines the normal mode frequencies of oscillation of the coupled system. Solving
Eq. (13) gives

λ2 − λ − 1 = 0, (14)

with the solutions λ+ = (1 +
√

5)/2 and λ− = (1 −
√

5)/2.

There are thus two normal modes of the system described by λ+ and λ−, corre-
sponding to the in-phase and anti-phase oscillations of the two masses, respectively.

Substituting λ+ and λ− into Eq. (12) gives the normal mode frequencies (eigen-
frequencies) of the oscillations

ω2
± = ω0(2 − λ±) = ω2

0

(

3 ∓
√

5

2

)

. (15)

Figures 2a and 2b show the first normal mode of the oscillating system. Here
the masses oscillate in phase, i.e., both masses move in the same direction. In this
mode λ = λ+ = 1

2
(1 +

√
5) and x2 = 1

2
(1 +

√
5)x1. The steady-state amplitude of

x2 is always greater that that of x1, and the system oscillates with lower frequency.

In the second mode shown in Figs. 2c and 2d, the phase difference of oscillations
of the two masses is equal to π, i.e., the masses move in opposite directions. In this
mode λ = λ− = 1

2
(1 −

√
5) and x2 = 1

2
(1 −

√
5)x1. The amplitude of x2 is always

less than that of x1, and the system vibrates with the higher frequency.

Problem 3

We now extend the method to a system having 3 DOF. Systems with a larger
number of degrees of freedom are treated similarly.

Consider the system shown in Fig. 3. We need two dimensionless parameters,
say λ2 and λ3, representing the ratios of the amplitudes of x2 to x1 and of x3 to
x1, respectively.
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Fig. 3. System of three masses
hung on springs. Equations of
motion (Eqs. (16), (17) and
(18) in the text) are formu-
lated assuming that x1, x2 and
x3 are displacements from the
equlibrium positions. The fig-
ure also shows the first mode
when all three masses oscillate
in phase.

The equations of motion for the three masses are

mẍ1 = −2kx1 + kx2 , (16)

mẍ2 = kx1 − 2kx2 + kx3 , (17)

mẍ3 = kx2 − kx3 . (18)

We now form the combination (ẍ1 + λ2ẍ2 + λ3ẍ3). Forming this combination and
simplifying gives

(ẍ1+λ2ẍ2+λ3ẍ3) = −ω2
0(2−λ2)

[

x1+

(

1−2λ2+λ3

λ2 − 2

)

x2 +

(

λ2−λ3

λ2−2

)

x3

]

. (19)

Now, we introduce replacements

ω2 = ω2
0(2 − λ2), (20)

where

λ2 = (1 − 2λ2 + λ3)/(λ2 − 2) , (21)

and

λ3 = (λ2 − λ3)/(λ2 − 2) . (22)

Combining Eqs. (21) and (22) gives

λ3
2 − λ2

2 − 2λ2 + 1 = 0 . (23)
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Using MATLAB to solve this cubic equation gives the following solutions: λ2 =
1.8019, -1.2470 and 0.4450. Hence we can calculate the corresponding values of λ3

and of ω. These values are tabulated in Table 1.

TABLE 1. Values of λ2 with corresponding values of λ3 and angular frequency ω.

λ2 1.8019 -1.247 0.4450

λ3 2.2470 0.5550 -0.8018

ω/ω0 0.445 1.8019 1.247

In one mode (first column) the masses move with the same phase (all three
masses move in the same direction). It is the mode with lowest frequency ω and
both λ2 and λ3 are positive. In the other modes two of the three masses move in
the same direction and one in the opposite direction as either λ2 or λ3 are negative.

Problem 4

Consider the ring structure shown in Fig. 4a which consists of three equal masses
m which slide without friction on a circular ring of radius R. The masses are
connected by identical springs of spring constant k. The angular positions of the
three masses are measured from a rest position.

For small displacements from equilibrium, (assuming equal masses) the equa-
tions of motion can be written as

θ̈1 = −ω2
0(2θ1 − θ2 − θ3) , (24)

θ̈2 = −ω2
0(2θ2 − θ3 − θ1) , (25)

θ̈3 = −ω2
0(2θ3 − θ1 − θ2) , (26)

where ω2
0 = k/m.

Thus

(θ̈1+λ2θ̈3+λ3θ̈3)=−ω2
0(2−λ2−λ3)

[

θ1+

(

2λ2−λ3−1

2−λ2−λ3

)

θ2+

(

2λ3−λ2−1

2−λ2−λ3

)

θ3

]

. (27)

This equation represents SHM with angular frequency given by

ω2 = ω2
0(2 − λ2 − λ3) (28)

if

λ2 =
2λ2 − λ3 − 1

2 − λ2 − λ3

(29)
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and

λ3 =
2λ3 − λ2 − 1

2 − λ2 − λ3

(30)

Fig. 4. System of three masses on a circular ring with elastic springs between them.
a) The positions are given by angles θ1, θ2 and θ3, measured from a fixed direction
and motion is given by Eqs. (24), (25) and (26) in the text. b) The first solution is
a simple rotation, i.e., no oscillations are present. c) and d) In the second solution,
masses m1 and m2 oscillate in phase and mass m3 with opposite phase. e) and
f) In the third solution, one mass is stationary (m2), while the other two masses
oscillate with opposite phase.

It is easy to find solutions of Eq. (29): λ2 = 1 and λ2 = −(1 + λ3) and of
Eq. (30): λ3 = 1 and λ3 = −(1 + λ2). Hence, three modes are possible:

(i) λ2 = λ3 = 1 when ω2 = ω2
0(2 − λ2 − λ3) = 0;
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(ii) λ2 = 1 and λ3 = −(1 − λ2) when ω2 = ω2
0(2 − λ2 − λ3) = 3ω2

0 ; and

(iii) λ2 = −(1 − λ3) and λ3 = −(1 − λ2) when ω2 = ω2
0(2 − λ2 − λ3) = 3ω2

0 .

Hence the normal mode frequencies are given by ω = 0, ω =
√

3ω0 and ω =√
3ω0. Notice that there is a degeneracy between two of the normal modes with

frequency
√

3ω0.

Consider the mode (i), λ2 = λ3 = 1 and ω2 = ω2
0(2 − λ2 − λ3) = 0. For this

zero-frequency mode, all three masses move at constant and equal velocity around
the ring as shown in Fig. 4b, so there are no oscillations at all and all springs remain
at their equilibrium lengths.

In the mode (ii), the masses m1 and m2 oscillate in phase with the same am-
plitude as shown in Figs. 4c and 4d. The spring between the two masses remains
at its equilibrium length. However, the mass m3 oscillates in anti-phase with the
amplitude twice as large as the amplitude of either m1 or m2.

Consider the mode (iii), λ2 = −(1 − λ3), λ3 = −(1 − λ2) and ω2 = ω2
0(2 −

λ2 − λ3) = 3ω2
0 . Since λ2 = −(1 − λ3), then θ1 + θ2 + θ3 = 0. If θ2 is arbitrarily

set to zero, (m2 held stationary), then θ1 = −θ3 and m1 and m3 oscillate in anti-
phase with the same amplitude. If θ3 is set to zero (m3 held stationary), then and
m1 and m2 oscillate in anti-phase with the same amplitude. In these cases one of
the coordinates is constant while the other two coordinates oscillate with opposite
phase as shown in Figs. 4e and 4f.

3. Conclusions

The coupled harmonic oscillator, traditionally reserved for upper-level physics
courses, is studied at a level appropriate for introductory college physics students.
This suggests that other important systems, usually considered too complicated for
the introductory physics class, are in fact very suitable when studied with modern
techniques.

An alternative approach of solving for the normal modes and normal mode
frequencies of coupled oscillators with two or more degrees of freedom is presented.
The introduction of the symmetry parameter reduces the amount of calculation
needed to obtain the normal mode frequencies of vibration of the coupled system.
The method described can be extended to any number of coupled mechanical or
electrical harmonic oscillators. The algebraic details become tedious for systems
with large numbers of degrees of freedom and we often have to resort to numerical
methods in order to solve such systems. However, this method of solving has the
advantage over other general methods of solving in that requires much less algebraic
manipulations. There are no assumptions about the motion of the masses other
than that they are displaced by small amounts from equilibrium. The method of
solving requires no calculus and is hence suitable for both majors and non majors
in physics.

It is hoped that with this method of solving, introductory physics students can
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study more interesting and realistic problems than they could previously, and this
can only increase their understanding of and hopefully their enthusiasm for physics.
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VEZANI OSCILATORI: POUČAN NAČIN RJEŠAVANJA

Izlaže se jednostavan i poučan način rješavanja problema vezanih oscilatora radi
dobivanja svojstvenih modova i frekvencija. Uvodi se bezdimenzijski parametar koji
jednoznačno odred–uje svojstvene načine i frekvencije oscilatornog sustava.
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