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action integral is used in the theory.
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The standard Brownian diffusion process governs the scaling of a random walk,
where a tracer in a two dimensional spacetime is governed by the variance of the
displacement of a particle distribution σ2(t) ∝ tγ , γ = 1. In other words, if we
denote by P (x, t) the relative probability of particles at location x ∈ R at time
t, the classical diffusion equation ∂P/∂t = 1

2∂
2p/∂x2 can be solved by means of

the Fourier transform which inverts to a normal probability distribution with the
mean zero and standard deviation t1/2. In the last decade, it has been realized that
the understanding of complex dynamical systems has required the implementation
of the subdiffusion (slower spreading rate, i.e. γ < 1) and superdiffusion (faster
spreading rate, i.e. γ > 1) anomalous random processes. Anomalous superdiffusion
can be modeled using infinite variance particle jumps that lead to space-fractional
derivatives in the governing diffusion equation. Anomalous subdiffusion can be
modeled using IID infinite mean waiting times between particle jumps, leading to
a fractional time derivative in the governing diffusion equation [1]. The aim of this
short communication is to prove that the anomalous subdiffusion can be realized
in quantum physical phenomena without implementing any kind of time-fractional
derivative.
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Over the last decades, the usefulness of the fractional calculus in applications
that are found in different fields of science with various aspects and in different
ways, as well as its merits in pure mathematics, has become more and more evident
and interesting [2]. A number of definitions have emerged over the years including
Riemann-Liouville, Grunwald-Letnikov, Riesz, Weyl, Caputo and Erdelyi-Kober
fractional derivatives. The fact that there is obviously more than one way to define
non-integer order derivatives, not all being equivalent, is one of the most challenging
and rewarding aspects of this special mathematical field. In this work, we essen-
tially consider the continuous view-point based on the Riemann-Liouville fractional
integral. Perhaps the easiest way to access to the idea of the Riemann-Liouville frac-
tional integral is given by Caputo’s well known representation of an n-fold integral
as a convolution integral

Iny(t) =

t
∫

0

tn−1
∫

0

. . .

t1
∫

0

y(t0)dt0 . . . dtn−2dtn−1 =
1

(n− 1)!

t
∫

0

(t− τ)n−1y(τ)dτ, (1)

n ∈ N, t ∈ R+,

where In is the n-fold integral operator. After replacing the discrete factorial (n−
1)! with the Euler’s continuous gamma function Γ(n), one obtains the Riemann-
Liouville definition of a non-integer order integral as follows

Iny(t) =
1

Γ(n)

t
∫

0

(t− τ)α−1y(τ)dτ, 0 < α ≤ 1, t ∈ R+ . (2)

This approach turns out to be useful in treating generalized diffusion processes in
the theory of probability and stochastic processes. While various fields of applica-
tion of fractional derivatives and integrals are already well done, some others have
just been started, in particular the study of fractional problems of the calculus of
variations (COV) and respective Euler-Lagrange type equations that are a subject
of current intensive research and investigations [2]. Recently, we proposed a novel
approach known as fractional action-like variational approach (FALVA) to model
nonconservative dynamical systems where fractional time integral introduces only
one fractional parameter α ∈ [0, 1], while in other models an arbitrary number of
fractional parameters (orders of derivatives) appear [3]. The standard functional
action is replaced by a fractional functional integral action as follows

S
[

f(t)
]

→ Sα

[

f(t)
]

=
1

Γ(α)

t
∫

t0=0

L(ẋ(τ), x(τ), τ) (t− τ)α−1dτ

=

t
∫

t0=0

L(ẋ, x, τ)dTt(τ), [t0, t] ∈ R+ , (3)
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thus revealing interesting features. Here L(ẋ, x, τ) is the Lagrangian weighted with
(t − τ)α−1/Γ(α), and Γ(α + 1) = tα − (t − τ)α−1. We consider in fact two time
variables: the intrinsic time τ and the observer time t. The Feynman path integral,
which is in fact the integration over Brownian-like quantum mechanical paths,
ought to be generalized to describe classical and quantum dynamical systems at
both the classical and quantum levels. To generalize the Feynman path integral
approach, the integration has been expanded from the standard integral to the
fractional action integral for a free particle.

In this work, we define the fractional path integral (FPI) by the following four
guidelines [4]:

1) The FPI is expected to describe the motion from the initial position xi(ti = 0)
to the position xf (tf ) with a fractional quantum amplitude given by

Kα(xf , t; 0, 0) ∝
∑

{γ}

exp

(

i

~
Sα[γ]

)

, (4)

where {γ} is the set of all trajectories satisfying x(ti = 0) = xi and x(tf ) = xf .

2) The standard result is expected to be resurrected in the α = 1 limit and
classical physics is expected to be recovered for ~ = 1 (~ is the Planck’s constant).

3) The particle jumps satisfy the spatial fractional diffusion equation [5]

∂P (~x, t)

∂t
= −

~
β−1

(2m)β/2
(−∇2)β/2P (~x, t), 1 < β < 2 , (5)

where (−∇2)β/2 is the fractional Laplacian, often called the Riesz fractional deriva-
tive in term of the Riesz potential Is

d of order s and dimension d that reads [6]

Is
d ϕ(x) =

Γ((d− s)/2)

πs/22sΓ(s/2)

∫

Ω

ϕ(ξ)

||x− ξ||d−s
dΩ(ξ), 0 < s < 2 , (6)

where Ω is the integral domain.

4) The fractional action of the one-dimensional free particle in Minkowski’s
space follows from Eq. (5) and is given by [5]

Sα,β =
f(α, β)

Γ

t
∫

0

[

(ẋ)2
]β/(2(β−1))

(t− τ)α−1 dτ , (7)

where f(α, β) has dimensions [E][T]α+1/[L]β/(β−1) and is given by

f(α, β) = (β − 1)

[

(2m)β/2

ββRα,β

]1/(β−1)

. (8)
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In Eq. (8), Rα,β is a constant with dimensions [Rα,β ]=[E]1−β/2[T]α(1−β)+1.

To get an estimate of the mean-square displacement of a free particle moving
from an initial point x(ti = 0) = xi = 0 → x(tf = t) = xf , we follow the Feynman
standard technique and write the fractional quantum mechanical kernel in the form
[7]

Kα(xf , t; 0, 0) =

xf
∫

0

D[x(τ)] exp

(

i

~
Sα[x(τ)]

)

=

xf
∫

0

D[x(τ)] exp





i

~

f(β)

Γ(α)

t
∫

0

(

[

(ẋ)2
]β/(2(β−1))

− V (x(τ), τ)

)

(t− τ)α−1dτ



 .

(9)
where

xf
∫

0

D[x(τ)] . . . = lim
n→∞

(2πiε~)1/2

∞
∫

−∞

N−1
∏

j=1

(2πiε~)1/2dxj . . . , ε =
t

N
, (10)

denotes the sum over all paths between (0, 0) → (xf , tf ), and V (x(τ), τ) is the
potential energy of the mass m. The wave function ψ(xf , t) at (xf , t) is given in
terms of ψ(0, 0) at (0, 0) by the equation

ψ(xf , t) =

xf
∫

0

dxiKα(xf , t; 0, 0)ψ(0, 0). (11)

This fractional equation describes the evolution of the quantum mechanical system
in terms of the wave equation.

We will proceed by calculating the fractional quantum-mechanical amplitude
for a free particle (V (x) = 0) using Eqs. (1) to (8):

K0
α(xf , t; 0, 0) =

xf
∫

0

D[x(τ)] exp





i

~

f(β)

Γ(α)

t
∫

0

(t− τ)α−1
[

(ẋ)2
]β/(2(β−1))

dτ



 (12)

= lim
n→∞

(2πiε~)1/2

∞
∫

−∞

N−1
∏

j=1

(2πiε~)1/2dxj×

N
∏

j=1

exp





if(β)

~

t
∫

0

[

(ẋ)2
]β/(2(β−1))

dTt



 (13)

= lim
n→∞

(2πiε~)1/2

∞
∫

−∞

N−1
∏

j=1

(2πiε~)1/2dxj ×

N
∏

j=1

f(β) exp

(

i

~

Xj,β

ε̄α

)

, (14)
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where

ε̄α =
tα − (t− τ)α

NΓ(α+ 1)
, (15)

and

Xj,β = x
β/(2(β−1))
j . (16)

After N − 1 steps, after performing the integration and establishing a recursion
procedure, we find

K0
α(xf , tf ;xi, ti) =

(

2πi~(tf − ti)
)−1/2

exp

(

if(β)Γ(α+ 1)

~

x
β/(β−1)
f

tα − (t− τ)α

)

, (17)

and, consequently, the mean displacement after simple scaling is given by

∆x ∝ (∆t)α(β−1)/β , 0 < α ≤ 1, 0 < β ≤ 2 , (18)

which corresponds to a subdiffusion process as 0 < α(β−1)/β ≤ 1/2. Thus we argue
that subdiffusion processes in quantum dynamical systems can be realized without
implementing any kind of time-fractional derivative if a fractional action integral
is used in the theory. Example for the subdiffusion processes are charge transport
in amorphous semiconductors. The present result is interesting and several other
applications and consequences need to be studied in a future work, in particular
the fractional classical Brownian motion with dissipation, a quantum Brownian
dissipative motion. A proper and truly unifying foundation of fractional functional
integral should be found and a lot of mathematical research still remains to be
done.
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PODDIFUZIJA PREKO DIJELNIH KVANTNIH PUTEVA BEZ DIJELNIH
IZVODA

Pokazuje se da se poddifuzijski procesi u kvantnim dinamičkim sustavima mogu
ostvariti bez uključivanja bilo koje vrste vremensko-dijelnog izvoda ako se u teoriji
rabi dijelni učinski integral.
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