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A simple and unified method is presented to find the bell-type soliton solutions
for nonlinear evolution equations by introducing a transformation containing two
unknown functions and selecting appropriately trial functions. We demonstrate its
effectiveness by applications to certain physically significant equations as particu-
lar examples. The technique used herein can also be used to explore the bell-type
soliton solutions of other nonlinear evolution equations.
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1. Introduction

Many phenomena in physics and other fields are often described by nonlinear
evolution equations (NEEs). When people want to understand the physical mech-
anism of natural phenomena described by NEEs, explicit exact solutions of NEEs
have to be explored, and thus investigation of the explicit exact solutions of NEEs
plays an important role in the study of nonlinear physical phenomena. For exam-
ple, the wave phenomena observed in fluid dynamics, plasma and elastic media
are often modelled by bell and kink shaped soliton solutions, and the vibration of
masses in a lattice with exponential interaction force is often modelled by the trav-
elling wave solutions of the Toda lattice. In recent years, a vast variety of powerful
and efficient methods have been established and developed to construct the explicit
exact solutions of NEEs. Among them are the homogeneous balance method [1, 2],
the hyperbolic tangent function expansion method [3-6], the trial function method
[7 – 11], the sine-cosine method [12], the Jacobi elliptic function expansion method
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[13, 14], the superposition method [15], the auxiliary equation method [16 – 19], and
so on. Nevertheless, there exists no unified method for solving NEEs. As a result,
it is still a very challenging task to seek new and more powerful methods to solve
NEEs.

In the present paper, by introducing a transformation containing two unknown
functions and selecting appropriately trial functions, we successfully derive the bell-
type soliton solutions of some physically important NEEs in a simple and unified
manner.

2. Essentials of the approach

The fundamental idea of our approach is as follows. Consider a given NEE, say,
in two independent variables x and t, such as

P

(

u,
∂u

∂t
,
∂u

∂x
,
∂2u

∂t2
,
∂2u

∂x2
, . . .

)

= 0 . (1)

Generally speaking, the left-hand side of Eq. (1) is a polynomial in terms of un-
known function u(x, t) and its various partial derivatives.

The primary aim of the present paper is to construct the bell-type soliton so-
lution of Eq. (1) in a systematic and unified way. To this end, we introduce a
transformation in the form

u = u0 +
∂u

∂x
, w =

1

w

∂w

∂x
, w = w(y), y = y(x, t) , (2)

where w(y) and y(x, t) are two functions to be determined later, and u0 is an
undetermined constant.

To begin with, let us determine the trial function y = y(x, t). It is well known
that the travelling wave solution of NEEs should contain the factor k(x − ct).
Therefore, we directly choose the trial function y = y(x, t) of the following form

y = ek(x−ct) , (3)

where k and c are the wave number and wave speed, respectively.

For the other trial function w(y), after our careful and repeated considerations,
we select it in the following form

w(y) = (a+ y2)b , (4)

where a and b are constants to be determined later.

Based on Eqs. (2) – (4), it is easily deduced that

v =
1

w

∂w

∂x
=

2bky2

a+ y2
, (5)
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and

u = u0 +
∂v

∂x
= u0 +

4abk2y2

(a+ y2)2
, (6)

Now, let us simply describe our procedure. Firstly, substituting Eq. (6) and
Eq. (3) into Eq. (1) engenders a set of algebraic equations because of the coefficients
of all powers of y must vanish. Secondly, by solving the obtained system of algebraic
equations, we get the unknown constant b. Lastly, putting b into Eq. (6) and
utilizing Eq. (3) together with the setting a = e−2kx0 , the bell-type soliton solutions
of Eq. (1) are obtained. In the following, we would like to employ the approach
stated above to find the bell-type soliton solutions of certain physically significant
NEEs.

3. Applications

3.1. Benjamin Ono equation

The celebrated Benjamin Ono equation with the dispersive term reads

∂2u

∂t2
+ 2p

(

∂u

∂x

)2

+ 2pu
∂2u

∂x2
+ q

∂4u

∂x4
= 0 , (7)

where p and q are arbitrary real constants.

Plugging Eq. (6) and Eq. (3) into Eq. (7), and collecting the coefficients of pow-
ers of y with the aid of Mathematica, then setting each of the obtained coefficients
to zero, yields a set of algebraic equations with respect to the unknown constants
a and b as follows

16a5bc2k4 + 32a5bk4pu0 + 64a5bk6q = 0 , (8)

−32a4bc2k4 − 64a4bk4pu0 + 256a4b2k6p− 1664a4bk6q = 0 , (9)

−96a3bc2k4 − 192a3bk4pu0 − 768a3b2k6p+ 4224a3bk6q = 0, , (10)

−32a2bc2k4 − 64a2bk4pu0 + 256a2b2k6p− 1664a2bk6q = 0, , (11)

16abc2k4 + 32abk4pu0 + 64abk6q = 0 . (12)

Solving the above set of algebraic equations by Mathematica, we obtain

u0 = −
c2 + 4k2q

2p
, b =

6q

p
, a = an arbitrary constant. (13)

FIZIKA A 18 (2009) 1, 1–8 3



yuan-xi xie: finding the bell-type soliton solutions to nonlinear . . .

Putting Eq. (13) into Eq. (6) and considering Eq. (3) simultaneously, we arrive
at

u = −
c2 + 4k2q

2p
+

24ak2q exp(2k(x− ct))

p
[

a+ exp(2k(x− ct))
]2 . (14)

Setting a = e−2kx0 in Eq. (14) and applying the following identity

ex

e2x + 1
=

1

2
sech x , (15)

we obtain the bell-type soliton solution of the Benjamin Ono Eq. (7) as follows

u = −
c2 + 4k2q

2p
+

6k2q

p
sech2 k(x− ct+ x0) , (16)

where x0 has a definite physical significance, namely, it represents the center of the
soliton.

3.2. Fifth-order nonlinear equation

Consider the following fifth-order nonlinear equation

∂u

∂t
+ u2 ∂u

∂x
−

∂5u

∂x5
= 0 . (17)

Inserting Eq. (6) and Eq. (3) into Eq. (17), and collecting the coefficients of
powers of y with the help of Mathematica, then setting each of the obtained coef-
ficients to zero, results in a set of algebraic equations with regard to the unknown
constants a and b as follows

−8a6bck3 + 8a6bk3u2
0 − 128a6bk3 = 0 , (18)

−24a5bck3 + 24a5bk3u2
0 + 64a5b2k5u0 + 7296a5bk7 = 0 , (19)

−16a4bck3 + 16a4bk3u2
0 + 64a4b2k5u0 − 38656a4bk7 + 128a4b3k7 = 0 , (20)

16a3bck3 − 16a3bk3u2
0 − 64a3b2k5u0 + 38656a3bk7 − 128a3b3k7 = 0 , (21)

24a2bck3 − 24a2bk3u2
0 − 64a2b2k5u0 − 7296a2bk7 = 0 , (22)

8abck3 − 8abk3u2
0 + 128abk7 = 0 . (23)

Solving the above system of algebraic equations by Mathematica, we obtain

u0 = ∓
√
10 k2, b = ±

√
10, a = an arbitrary constant. (24)
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Plugging Eq. (24) into Eq. (6) and considering Eq. (3) simultaneously yields

u = ∓
√
10 k2 ±

24
√
10 ak2e2k(x−ct)

[

a+ e2k(x−ct)
]2 . (25)

Similarly, setting a = e−2kx0 in Eq. (25) and utilizing the foregoing identity
(15), we gain the bell-type soliton solution to the fifth-order nonlinear equation
(17) as follows

u = ∓2
√
10 k2 ± 6

√
10 k2sech2 k(x− ct+ x0) , (26)

3.3. UNSO-KdV equation

The UNSO-KdV equation reads

∂u

∂t
+

4

147
u3 ∂u

∂x
+

5

14

(

∂u

∂x

)3

+
9

7
u
∂u

∂x

∂2u

∂x2
+

2

7
u2 ∂

3u

∂x3
+ 6

∂2u

∂x2

∂3u

∂x3

+
7

2

∂u

∂x

∂4u

∂x4
+ u

∂5u

∂x5
+

∂7u

∂x7
= 0 , (27)

which was first proposed in Ref. [20].

Substituting Eq. (6) and Eq. (3) into Eq. (27), and collecting the coefficients
of powers of y with the aid of Mathematica, then setting each of the obtained
coefficients to zero, brings about a set of algebraic equations with respect to the
unknown constants a and b as follows

32bnk3u3
0 + 1344abk5u2

0 + 18816abk7u0 + 75264abk9 − 1176abck3 = 0 , (28)

160a2bk3u3
0 − 9408a2bk5u2

0 − 1034880a2bk7u0 − 18590208a2bk9

+384a2b2k5u2
0 + 34944a2b2k7u0 + 790272a2b2k9 + 5880a2bck3 = 0 , (29)

288a3bk3u3
0 − 36288a3bk5u2

0 + 35562240a3bk7u0 + 323108352a3bk

1152a3b2k5u2
0 − 169344a3b2k7u0 − 18176256a3b2k9 + 1536a3b3k7u0 (30)

−801024a4b3k9 + 2048a4b4k9 − 5880a4bck3 = 0 ,

160a4bk3u3
0 − 25536a4bk5u2

0 + 4609920a4bk7u0 − 1175548416a4bk9

+768a4b2k5u2
0 − 204288a4b2k7u0 + 72253440a4b2k9 + 1536a4b3k7u0 = 0 . (31)

It follows from Eqs. (28) – (31) that

u0 = −7k2, b = 21, a = an arbitrary constant. (32)
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Plugging Eq. (32) into Eq. (6) and considering Eq. (3) simultaneously, we obtain

u = −7k2 +
84ak2e2k(x−ct)

[

a+ e2k(x−ct)
]2 . (33)

Similarly, setting a = e−2kx0 in Eq. (33), and making use of the previous identity
(15), we acquire the bell-type soliton solution for the UNSO-KdV equation (27) as
follows

u = −7k2 + 21k2sech2 k(x− ct+ x0) . (34)

4. Conclusions

In conclusion, by introducing a transformation which contains two unknown
functions and selecting appropriately trial functions, we develop a simple and uni-
fied method to seek the bell-type soliton solutions of NEEs, and some illustrative
equations are investigated by this means. Its advantage is that one can easily find
the bell-type soliton solutions, if they exist, for NEEs under consideration in a sys-
tematic and unified way, and thus it is readily and conveniently applied to explore
the bell-type soliton solutions of other NEEs.
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NALAŽENJE ZVONASTIH SOLITONSKIH RJEŠENJA NELINEARNIH
EVOLUCIJSKIH JEDNADŽBI JEDINSTVENOM METODOM

Predstavljamo jednostavan i jedinstven način nalaženja zvonastih solitonskih rje-
šenja nelinearnih evolucijskih jednadžbi uvod–enjem pretvorbe koja sadrži dvije
nepoznate funkcije i odabirom pogodnih probnih funkcija. Pokazujemo učinkovitost
metode primjenom na nekoliko važnih jednadžbi fizike kao posebnim primjerima.
Ova se metoda može primijeniti takod–er za nalaženje zvonastih solitonskih rješenja
drugih nelinearnih evolucijskih jednadžbi.
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