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We present a simple scaling form of Mott conductivity formula in case of amor-
phous material in presence of an external magnetic field in an arbitrary spatial
dimension d. The model of the interacting system is chosen as the variable range
hopping (VRH) one with density of states having a soft gap at the Fermi energy.
We indicate the relation between the conductivity exponents (both in weak and
strong magnetic field) with that without the magnetic field. The exponents related
to the variation of activation energy with temperature have also been computed.
We also indicate the lower as well as the upper bound of the conductivity exponents.
Besides, a connecting formula between the exponents (non-interacting, interacting
with weak magnetic field and interacting with strong magnetic field) shows that
only two of them are independent. Previously-known results can be obtained from
this generalized form of the conductivity. Finally, a comparison of the exponents
has been done with the strong electric field case.
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1. Introduction

It is well known that the wave functions for non-interacting electrons in a typical
regular solid are extended Bloch states. But, in the presence of disorder and impuri-
ties, some of these states become localized. In the limit of strong disorder, the wave
function turns out to be extremely distorted and is exponentially localized. When
the electronic states at the Fermi energy are localized, the material is an insulator,
i. e., there is no conductivity at T = 0. But for any finite conductivity at T = 0, the
material is termed as a metallic one. The detailed analysis of this metal-insulator
transition [1, 2] and metal-nonmetal transition [3] as a function of strength has been
reviewed in the literature for various situations. The configurationally averaged d.c.
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conductivity with states near the appropriate energy at T = 0 for these localized
states is zero. In other words, in the thermodynamic limit, these localized states
do not carry any current. Hence, the conduction involving localized states can only
take place by means of transitions of electrons from full states to neighboring empty
states with the help of phonons. The extended states, which can carry current at
T = 0 (i.e. for finite conductivity), can be distinguished from localized one by
a quantity known as generalized inverse participation ratio (GIPR). For localized
states, GIPR vanishes, while for extended ones GIPR is non-zero when the system
size (L) is taken to infinity. This GIPR has been recently used in 2D disordered
system in a magnetic field to shed light on the nature of the energy eigenstates in
the band [4].

Amorphous materials have attracted considerable attention recently with regard
to their electrical properties [5 – 8]. To understand the behavior of electrical con-
duction of such a material, a mechanism originally due to Mott [9] was developed.
The atoms in amorphous material are distributed at random and the electrons as-
sociated with them have distribution of energies. In fact, a band of localized states
appears in an amorphous semiconductor. An atom might have an empty state
whose energy is slightly higher than that of the occupied state of a chosen given
atom. Typically, the activation energy required for electrons to hop to an empty
state is very small and hence the hopping conduction [15] takes place. The hopping
distance varies because of the random arrangement of the atoms having suitable
energy scales and hence the name is given as variable range hopping (VRH). This
hopping process differs from the usual electrical conduction in normal metal. Here,
in the hopping process, phonons assist the transport while in typical band theory,
the transport is impeded by the destruction in periodicity caused by the lattice
vibration.

This VRH model has been applied in various branches of condensed matter
physics to explore the behavior of electrical conduction at low temperature. In
recent years, VRH model has been invoked in metal insulator transition [16, 17],
insulating amorphous alloys [18], thin film transistors [19], inorganic compounds
[20] and in mesoscopic carbon networks [21]. The VRH model has also been ap-
plied to describe the electrical conduction in the DNA double helix [22]. A variant
of VRH model known as quasi 1D VRH model [23] has been applied to charge
transport in the disordered regime of HCl-doped PAN-ES samples. VRH model
has also been proposed in complex systems [24] in the light of percolation theory.
The famous Mott’s 1/4 law in three dimension was obtained in the system having
a constant density of states at the Fermi surface. A soft gap is obtained when the
electron-electron Coulomb interaction is taken into account, and is more realistic
than a constant density of states (DOS) [9]. In particular, a detailed analysis taking
into account the Coulomb interaction [25] between the charged traps in an amor-
phous semiconductor showed the reduction of the DOS [26] at the Fermi surface
by a factor of 2 below its values without the interaction. The exponent 1/2 was
obtained in a dilute interacting impurity model in 3 dimensions known as Efros-
Shklovskii (ES) limit [27, 28]. The change of exponent from 1/4 to 1/2 is due to
the Coulomb gap [29] in VRH. In fact, a better treatment was developed by Larkin
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and Khemelnitskii [30] for a large localization length to solve the electrostatic prob-
lem of Coulomb interaction between the electrons hopping to a new site and hole
produced there. Recently, a kinetic Monte-Carlo method has been invoked [31] to
test the validity of ES mechanism and other related scaling relations. Considerable
discussions regarding the value of the exponent are going on in the literature [32].
Recently, a unifying theory for dc transport has been developed for two-dimensional
and quasi-1D interacting electronic systems [33, 34].

Hopping conduction has been observed in high-temperature superconductor
(HTSC) to identify the nature of electrical conduction [35 – 37]. More recently,
the study on 55 MeV Li+3 ion beam irradiation on Bi-2212 system reveals that the
variation of normal state resistivity with temperature shows several crossovers [38]
of the VRH exponents. These crossovers occurred in a narrow window of tempera-
ture and the data point out the existence of a soft gap near the Fermi energy. The
long-range interaction in vortex of superconducting thin films is seen to modify the
Mott’s 1/3 law [39].

Metal-insulator transition below Tc in vacuum-deposited amorphous MoO3-
TeO2 films [40] has been explored via the Mott’s 1/4 law. In the semiconduct-
ing regime, a crossover from Mott VRH to single polaron hopping (SPH) has
been observed which is absent in the bulk phase [41]. A crossover from Mott
to Efros-Shklovskii (ES) model has been noticed [42] in low-doped manganites
La0.875Sr0.125−xCaxMnO3 (0 ≤ x ≤ 0.125). This x-dependent crossover occurs in
the paramagnetic phase. The physical origin of such a transition lies in the change
of DOS at the Fermi surface.

The semiconducting nature of the antiferromagnetic material CaMn1−xCuxO3

(0 ≤ x ≤ 0.20) has been analyzed in the framework of ES model and the au-
thors have shown the fitting of experimental data with the exponent 1/2 in greater
accuracy [43] than with the Mott’s 1/4 exponent.

VRH conduction has also been observed [44] in the bulk samples of single-walled
carbon nanotubes. In particular, the electrical conduction study in the network of
single-wall carbon nanotubes (SWCNT) reveals that the transport process is 2D
VRH [45]. Moreover, the electrical field dependence conductivity in this system
[45] at strong electrical field was confirmed by the theoretical prediction by us [46].
The doping of boron (B) in carbon networks indicates significant changes [47, 48]
in the structural, chemical and optical properties. Recently, 3D VRH conduction
has been observed in B-doped multi-wall carbon nanotubes (MWCNT) [49] in the
temperature range between 5 K to 290 K. A crossover has been noticed from Mott
to ES for T < 55 K in amorphous conducting carbon films [50] with different doping
levels of boron.

The conduction measurement [51] of n-type CdSe nanocrystal film showed the
importance of Coulomb interaction in the temperature regime 10 K < T < 120 K
in which 1/2 exponent was obtained. A magnetic-field induced crossover [52] from
Mott VRH to a weakly insulating (power law divergence) is seen in n-CdSe samples.
A theoretical study of spin-orbit assisted VRH in a strong magnetic field reveals
[53] a sharp increase of DOS in the hopping region.
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A rigorous calculation of the transverse conductivity [54] of finite sample of
amorphous materials in a strong magnetic field shows a transition from Mott to ES
regime at some critical temperature. A magneto-resistance (MR) study [55] with
insulating Al70Pd22.5Re7.5 quasi-crystal reveals a crossover from Mott to ES regime.
With this motivation, we would like to compute the conductivity exponent in a
magnetic field with the more generalized density of states via a scaling approach.

In this paper, we compute the conductivity exponent in the case of a soft gap
under an arbitrary (high and low) uniform static magnetic field in an arbitrary
spatial dimension d. The experimental data as discussed in earlier paragraphs could
lead to crossover to different exponents under the appropriate conditions. This
situation motivated us to derive a set of more general exponents and their inter-
relationship. The paper is organized as follows. In the next section, we give a very
brief introduction to the celebrated VRH model. In Section 3, we discuss the results
of this model for interacting system without the magnetic field. In Section 4, we
compute the exponents in the case of weak as well as strong magnetic field and
discuss their bounds. The comparison of various exponents in different cases is
discussed in Section 6. Finally, we give our conclusions in Section 7.

2. The variable range hopping (VRH) model

In one sentence, the variable range model is a typical one associated with the
low-temperature conduction of localized states in amorphous material. In fact, it
is this low-temperature conduction which is of interest to semiconductor device in-
dustry because of their attempt to replace the single-crystal device by glass (amor-
phous) layers. Thus, in this conduction process, a nontrivial competition of inelastic
scattering with thermal activation and long-range Coulomb interaction takes place.
Before Mott, Miller and Abrahams [10] studied the conduction process through
disordered systems via random resistor network known as RRN model [11] in the
literature. This model (RRN) is based on the idea on percolation used extensively
in studying the geometrical phase transition in statistical mechanics. The variable
range model (VRH) defined in the literature [5, 12] for strongly localized system
without the external magnetic field has been justified in the light of percolation
theory [13, 14]. For the sake of completeness, we here mention some salient features
of the model. In the Mott-VRH version, the non-interacting electrons in the pres-
ence of phonons (that provide the necessary inelastic scattering for transition) hop
from one state to another one having different energy.

We consider two localized states, one filled at or slightly below the Fermi energy
EF , and the other empty above EF ; their energy and spatial separations are W
and R, respectively. The hopping transition rate p is given by

p = ν0 exp
(

− 2αR− βW (R)
)

. (1)

The first factor is the quantum mechanical tunnelling probability and is just the
overlap between the two localized states decaying with the same characteristic lo-
calization length α−1. In typical amorphous semiconductors, the localization length
α−1 is much smaller than the distance between the impurities. In fact, we will notice
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later that this helps strongly in the process of hopping conduction.The second fac-
tor arises because of the fact that the different localized states must have different
energy. This difference in energy W (R) is supported by the phonon scattering and
governed by the Boltzmann weight at temperature T . Note that W (R) essentially
depends on the separation between the localized states. This mechanism is effective
only at low temperature. It is to be noted that the first factor exp(−2αR) favors
short hops. With increase of R, W (R) decreases while the exponential weight in-
creases. Hence, the second factor, the energy activation, favors long hops. In other
words, with larger hops, one can reduce the activation energy. Hence, the conduc-
tivity is estimated by optimizing the competition between these two terms. At high
enough temperature, the variable-range hopping distance R becomes equal to the
nearest neighbor distance. The so called attempt frequency ν0 essentially depends
on the electron-phonon coupling and phonon density of states but independent of R
and W as defined above. However, in Miller and Abrahams model [10], ν0 depends
on R as well as W .

The above equation (1) can be understood in the light of percolation theory
[13] as follows. The conduction of the electrons from site i to site j depends on the
transition rate τij and whether the site i is occupied along with site j unoccupied
and vice versa. Hence, the conduction can be simply written as

σ = τijf(Ei)
(

1− f(Ej)
)

, (2)

where f(Ei) is the Fermi-Dirac function of electrons at site energy Ei. Now, τij
crucially depends on the localized states and density of phonons at that particular
temperature T . Therefore, the transition rate can be written as

τij = ν0 exp
(

− 2αRij

)

ρ
(

∆ij

)

. (3)

Since phonons do obey Bose-Einstein distribution, the density of phonons is
ρ
(

∆ij

)

= 1/
(

exp(β∆ij) − 1
)

. The mismatch energy ∆ij = (Ei − Ej) is required
for hopping from site i to site j. Combination of these two equations (2) and (3)
justify the equation (1) and the requirement of low temperature for occurring of
this process.

The transition probability is maximized by the optimization of the exponent
P = 2αR + βW (R). For a constant density of states in an arbitrary dimension d
[7], it was found that the conductivity, which is related to the transition probability,
varies with temperature as

σ(T ) = σ0 exp
(

−AT−1/(d+1)
)

. (4)

The exponents in two and three dimensions have been verified experimentally
[15]. All these results were obtained for a flat density of states and neglecting
the electron-electron interaction.

Let me point out an important feature associated with the above well-known
derivation. The hopping distance has been cleverly used in two senses of the above
discussion. In one sense, it represents the distance between two localized states,
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while in other sense, it implies the radius of the sphere within which the hopping
conduction takes place. Thus, one has to be very careful to take into account the
appropriate weights of the various conduction within the sphere. If one considers
the states very close to the sphere, then one may obtain a different power law apart
from the usual 1/4 in 3 dimensions. Moreover, the DOS near the Fermi level turns
out to be quite high when compared to the standard value of 1028cm−3(eV)−1

without metallic conduction. For a good discussion of these points, the readers
are referred to Refs. [56, 57]. This does not indicate at all that the underlying
qualitative concept is wrong. Till date, Mott’s 1/4 law is one of the inspirations to
all experimentalists to study the electrical conduction of amorphous materials at
low temperature, although it may not be the best fit throughout the whole range
of temperature. That is why we are looking for a more generalized description in
which the values of the exponents can change with the variation of the density of
states.

3. Results of VRH for pseudo-gap system without the
magnetic field

In this section, we would like to generalize the non-interacting result to inter-
action one following the single-particle DOS as

N(E) ∼ |E − EF |
ν . (5)

The non-negative parameter ν actually determines the way the DOS vanishes at the
Fermi surface. This particular nature of the density of states arises while studying
the localized electrons interacting via Coulomb interaction [27] at low temperature.
A bound for the exponent ν was also obtained as [29]

ν ≥ d− 1 (6)

for an arbitrary dimension d. This argument is based on the following two important
points as indicated by Efros and Shklovskii [27, 29]. Firstly, all excitation energies
are positive and secondly, the Coulomb interaction energy Eint

ij at separation Rij

scales with the density in an arbitrary d dimension as

Eint
ij = −e2

[

N̄(Ej − Ei)
]1/2

, (7)

where N̄ is the average density. These two facts immediately point out that the
interaction energy cannot have a larger magnitude than (Ej −Ei). With the above
density of states, the unitarity condition yields [46] that within the energy intervals
EF ±W (R) in an arbitrary dimension d, the activation energy W (R) scales as

∫

ddR

EF+W (R)
∫

EF

N(E) dE = 1 , W (R) ∼ R−d/(ν+1) . (8)
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Incorporating the above density of states in the Fermi-Dirac distribution function,
Eq. (1) takes the form

σ ∼ 2e2R2T νν0 exp
(

− 2αR− βW
)

. (9)

Hence, the exponent P in the hopping transition rate in Eq. (1), p = ν0 exp(−P),
becomes

P = 2αR+ βbR−d/(ν+1) . (10)

Note that b is a constant independent of R, W and T . Maximizing the hopping
transition rate with respect to R, we obtain [46, 61]

σ(T ) = σ0T
B(ν,d) exp

(

−AT−φ
)

, (11)

where the exponent φ is given by

φint(d, ν) =
ν + 1

d+ ν + 1
, B(ν, d) =

ν2 + dν − ν − 2

d+ ν + 1
, (12)

which matches with an earlier result [58]. Even for a power-law type of density of
states (N(E) ∝ Eν), the same exponent φ(d, ν) was obtained recently [33]. For
d = 3, the exponent reduces to the result φint(3, ν) = (ν+1)/(4+ν) derived earlier
by Pollak [59] and Hamiltonian [60].

It is also clear from the above derivation that the condition of applying VRH
model is

W > kBT, αR > 1 . (13)

The relation in Eq. (11) can also be written as

ρ(T ) = ρ0 exp

(

Ea

kBT

)

, (14)

where ρ0 = T−B(ν,d) and Ea = kBT
(

T0/T
)p
. This is useful in analyzing experimen-

tal data. The weak temperature dependence of the ρ0 (pre-factor of the resistivity)
for the Mott and ES regime is shown in Table 1.

TABLE 1. Temperature dependence of the pre-factor of conductivity.

Dimension ν B(ν, d)

d = 1 0 (Mott) −1

d = 2 0 (Mott) − 2
3

d = 3 0 (Mott) − 1
2

d = 1 2 (ES) 1
4

d = 2 2 (ES) 2
5

d = 3 2 (ES) 1

The scaling approach adopted for pseudo-gap system has been further gener-
alized to compute the a.c. conductivity [61] of the system in an arbitrary spatial
dimension d.
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4. VRH conduction in a magnetic field

Metal insulator transition can also be produced by applying magnetic field to
a delta layer [62]. This delta layer in the semiconductor is produced by a dopant
sheet having few angstroms thickness buried typically few tens of nanometers below
the surface of the thin film. A typical delta layer consists of donor atoms which
are randomly distributed in space. Therefore, the above VRH model can again
be applied to study the electrical conduction of such a low-dimensional disordered
system in an external magnetic field. In two dimensions, for non-interacting case,
Pepper [63] showed that the value of the exponent is 1/2. Subsequently, in a Si : Sb
layer, it was confirmed experimentally [64]. Hopping conduction in lightly doped
semiconductor in both weak and strong magnetic fields for constant density of
states at the Fermi level was computed [65]. Equation (4) in the strong magnetic
field limit takes the form

σ(T ) = σ0 exp
(

−AT−1/d
)

. (15)

5. Generalization to arbitrary dimension

In this section, we would like to generalize the Mott conductivity in a magnetic
field taking into account the density of states (DOS) which has a soft gap at the
Fermi energy. We assume the DOS as

N(E) ∼ |E − EF |
ν . (16)

The bound [29] on the exponent ν was obtained as

ν ≥ d− 1 , (17)

in an arbitrary dimension d. The magnetic length scale lc =
√

h̄c/(eB) auto-
matically arises from the solution of the Schroedinger equation for a particle in
a magnetic field. This leads to a typical wave function in the asymptotic limit
exp

(

−R2/(4l2c)
)

. Thus, instead of exponential localization, the magnetic field in-
troduces a Gaussian one. Following the calculation done in 3 dimensions with the
above density of states [15], the unitarity condition within the energy intervals
EF ±W (R) in an arbitrary dimension d indicates that

∫

ddR

EF+W (R)
∫

EF

N(E) dE = 1, CdR
2(d−1)W

ν+1

ν + 1
= 1 . (18)

Note that the magnetic field affects only (d−1) dimension. It is clear from Eq. (18)
that W (R) is essentially the average energy spacing among states spatially located
within a hyper-sphere of radius R. This gives

W (R) ∼ R−2(d−1)/(ν+1) (19)
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The conductivity exponent depends on whether the system is exposed to strong
or weak magnetic field. Typically, for heavily doped and highly compensated sample
like n-Ge, 8 T field is regarded as weak magnetic field. In a weak magnetic field,
the magnetic length lc becomes large enough so that the amplitude of the zero
point motion in the lowest Landau level becomes appreciable. If the state radius
ra without the magnetic field is smaller than this magnetic length lc, then the
magnetic potential energy term becomes smaller compared to the Coulomb energy
within the distance ra. Thus, in this case, the modification over the B = 0 case
is simple to calculate. The average hopping distance according to Eq. (1) for the
generalized density of states varies with temperature as

R(T ) ∼ T−(ν+1)/(d+ν+1). (20)

Considering the average energy integral in a weak magnetic field [8], the above
average hopping distance is modified to

R(T ) ∼ T−d(ν+1)/(d+ν+1). (21)

This implies immediately, the Mott conductivity will vary with temperature as

σ(T ) = σ0 exp
(

−AT−φ1

)

, φ1 =
d(ν + 1)

d+ ν + 1
. (22)

The above analysis fails in a strong magnetic field. In a strong magnetic field, the
exponential factor in Eq. (1) changes. Hence, the optimization exponent P in the
hopping transition rate in Eq. (1), p = ν0 exp(−P) becomes

P =
R2

2l2c
+

βb

R2(d−1)/(ν+1)
. (23)

Here b is a constant independent of R, W and T . Maximizing the hopping transition
rate with respect to R, we obtain

σ(T ) = σ0 exp
(

−AT−φ2

)

, φ2 =
ν + 1

d+ ν
. (24)

For three spatial dimensions, φ2 = (ν+1)/(ν+3) which matches exactly the result
derived earlier by Tokumoto et al. [66]. A simple physical argument in support of
the value of the exponent φ2 can be given as follows. We generalize the arguments
given for the non-interacting case at strong electric field [5] in three dimensions. In
a strong magnetic field, the diamagnetic term dominates over the hopping energy
giving rise to a simple inequality

eBR2

12h̄c
≥ βW . (25)

In this limit, the conductivity is governed by exp(−R2/l2c), which in turn fixes
the conductivity exponent in the conductivity expression. It is interesting to note
that the exponents φ1 and φ2 remain the same even for DOS N(E) ∝ Eν or
N(E) ∝ (E − EF )

ν with no restriction on ν.

FIZIKA A (Zagreb) 19 (2010) 2, 93–108 101



jana: magnetic-field induced hopping conduction of a pseudo-gap . . .

5.1. Inter-relationship between the exponents and their bounds

In fact, the zero magnetic field [46, 61, 58] and strong magnetic field exponents
can be combined in a single compact form as

φγ =
ν + 1

d+ ν + γ
, (26)

where γ = 0 and γ = 1 correspond to the strong magnetic field and zero magnetic
field case, respectively. If we denote the zero magnetic field exponent as φ0, then
the relation between the three exponents is given as

(ν + 1)(dφ2 − φ1) = dφ2φ0 . (27)

The exponents φ1, φ2 and φ0 essentially depend on the density of states close to
the Fermi surface and the spatial dimension. Equation (27) also implies that out
of these three exponents φ1 ,φ2 and φ0, any two of them are independent. For the
non-interacting case, Eq. (27) reduces to

dφ2 − φ1 = dφ2φ0 . (28)

For a special case of Coulomb gap in three spatial dimensions (where ν = 2),
Eq. (27) becomes

3φ2 − φ1 = φ2φ0 . (29)

A quick look to the value of φ2 indicates that

d

2d− 1
< φ2 < 1 . (30)

This follows simply because of the strict bound on the value of ν, as shown in
Eq. (6). Therefore, we have been able to get both the lower as well as the up-
per bound of the Mott conductivity exponent in strong magnetic field. For two
dimensions, the above inequality indicates that

2

3
≤ φ2 < 1 , (31)

while for 3 dimensions
3

5
≤ φ2 < 1 . (32)

It is interesting to note that this type of inequality is also satisfied in the case
of an interacting system without the external magnetic field [61]. Of course, in that
case, the lower bound was different ( 12 ) instead of 2

3 or 3
5 . Also, the variation of this

φ2 exponent with ν is different in comparison to φ3.

The local activation ǫa is an effective way [67] of computing the exponents and
hence, identifying the Mott and ES processes. The activation energy [8] at a given
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temperature can be computed for the above three cases. If ρ is the resistivity, then
the activation energy ǫa is defined as

ǫa =
d(ln ρ)

d(kBT )−1
. (33)

We find that the activation energy ǫa varies with temperature T as

ǫa ∼ Tα1 , ǫa ∼ Tα2 , ǫa ∼ Tα3 , (34)

where α1, α2 and α3 are, respectively, the exponents for the strong magnetic field,
zero magnetic field and weak magnetic field. The relation between the exponents
α1, α2 and α3 is given by

(d+ ν + 1)(α2 − α3) = α1(d+ ν)(ν + 1) . (35)

The above equation implies that only two of the exponents are independent. The
bounds obeyed by these exponents are

d− 1

2d− 1
≤ α1 < 1,

1

2
≤ α2 < 1,

(

1−
d

2

)

≤ α3 < 1 . (36)

6. Comparison of the exponents

We present below a comparison of the exponents in various cases in Table 2,
Table 3 and Table 4.

TABLE 2. Conductivity exponent in the non-interacting case (ν = 0).

Dimension B = 0 Small B Large B

d = 2 1
3

2
3

1
2

d = 3 1
4

3
4

1
3

TABLE 3. Conductivity exponent in the interacting case (ν = 2).

Dimension B = 0 Small B Large B

d = 2 3
5

6
5

3
4

d = 3 1
2

3
2

3
5

TABLE 4. Conductivity exponent in the interacting case (ν = 1).

Dimension B = 0 Small B Large B

d = 1 1
2

2
3

2
3
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For the non-interacting case, we take explicitly ν = 2 and ν = 1 values for the
comparison of the exponents.

It is evident from the above tables that in the presence of an external uniform
static magnetic field, the value of the Mott conductivity exponent is higher than
that in zero magnetic field in all dimensions. The physical arguments given for the
three dimensions [8] can also be generalized to an arbitrary dimension d. In a weak
magnetic field, it is the phase space restriction in comparison to the zero magnetic
field which signals the larger value of the exponent in the magnetic field case. It is
also noticed that the weak field exponents are higher than the large B exponents in
all dimensions. But the application of a strong external magnetic squeezes or shrinks
the electronic wave function and thus the typical overlap between the electronic
wave functions decreases in comparison to the zero magnetic field case. This fact in
turn implies an exponentially higher resistivity and a higher conductivity exponent
in comparison to the zero field case.

We also note that the exponents in the interacting cases have higher values in
comparison to the non-interacting case in all spatial dimension. A simple physical
argument presented in the electric field case [61] can also be repeated here. From
Table 4, we notice that for the one-dimensional case, with DOS in the Coulomb
gap varying linearly with energy, that the exponents are same for small as well as
strong magnetic field.

For different values of the transverse magnetic field from 0.4 T to 1.5 T, Toku-
moto et al. [68] found a range of exponents between 0.25 to 0.7 for n-InSb sample
with the doping concentration 4.3× 1014 cm−3. However, surprisingly, majority of
the samples obeyed the exponent 1/2 in three dimensions for the B = 0 case. This
can be understood from the theory developed by Shklovskii [69, 70] for non-resonant
scattering processes in the hopping conduction in a strong magnetic field. In such
a situation, the asymptotic form of the wave function changes to exponential from
the Gaussian one. Because of this exponential nature of the wave function, the
exponent 0.5 is same as that without the magnetic field. However, it should be re-
membered that the magnetic field must be transverse to the direction of tunnelling
of electrons. In Table 5 we show a comparison of some experimental exponents with
theoretical values.

TABLE 5. Comparison of conductivity exponents.

Dimension B = 0 Small B Large B Experimental values

d = 3 0.50 1.50 0.60 (0.25 to 0.7), 0.5 for n-InSb

d = 3 0.25 0.75 0.33 (0.25 and 0.33), Al70Pd22.5Re7.5

d = 3 0.25 0.75 0.33 0.25, carbon nanotube, field upto 0.7T

d = 3 0.50 1.50 0.60 0.5, n-Ge, field upto 8T

d = 3 0.50 1.50 0.60 0.5, InxGa1−xAs, at 10.5T and 0.8T

d = 2 0.33 0.66 0.50 0.33, SWCNT with a nickel impurity

d = 2 0.33 0.66 0.50 0.33, InAs/GaAs, field upto 35T
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7. Conclusions and perspectives

In summary, we have obtained the generalized form of the conductivity in an
external magnetic field in an arbitrary dimension d with a density of states having
a soft gap. In the non-interacting case, it is noticed that in all spatial dimensions
both for weak as well as strong magnetic field, the (Mott) conductivity exponent
is higher than that without the magnetic field. This conclusion is also valid for
the interacting cases. We have also calculated the activation energy as a function
of temperature. The lower and upper bounds of the exponents have also been
estimated.
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PRESKOČNA VODLJIVOST UZROKOVANA MAGNETSKIM POLJEM U
SUSTAVU S PSEUDO-PROCIJEPOM

Opisuje se jednostavan izraz za sumjeravanje za Mottov izraz za vodljivost u
amorfnim tvarima u vanjskom magnetskom polju uz proizvoljnu prostornu dimen-
ziju d. Kao model odabrano je med–udjelovanje preskakivanjem promjenljivog dosega
u sustavu s mekim procijepom na Fermijevoj energiji. Pokazujemo odnos ekspo-
nenata vodljivosti bez magnetskog polja s onima u slabom i jakom magnetskom
polju. Izračunali smo takod–er eksponente u svezi s promjenama aktivacijske en-
ergije s temperaturom. Pokazuju se donje i gornje granice eksponenata vodljivosti.
Relacija med–u eksponentima (bez med–udjelovanja, te s med–udjelovanjem u slabom
i u jakom magnetskom polju) pokazuje da su samo dva eksponenta nezavisna. Od
ranije poznati podaci mogu se izvesti iz novog izraza za vodljivost. Na kraju se daje
usporedba eksponenata s onima za slučaj snažnog električnog polja.
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