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We have studied the dynamic control of the spontaneous emission spectrum in a
Y -type atomic system driven by two coherent fields. In different dynamic condi-
tions, the evolution of coherent spectral features in the bare-state model, has been
analyzed by using the dressed-state model. For the system under purely dissipative
environment, it has been shown that the behaviour of spectral components can be
coherently controlled by changing the values of the Rabi frequencies and detun-
ings of external fields. At the condition of resonant evolution of spectra, present
work highlights that the emission line shape can be strongly modified for unequal
decay rates of the uppermost doublet states. In this situation, the phenomenon of
constructive quantum interference gives rise to the emergence of a single peak at
a certain spectral position when two distinct peaks disappear at the other spectral
positions. Owing to the mutual orientation of polarizations of the fields interacting
with the atom in a specific configuration, we have incorporated the static phase-
variation effect to exhibit phase-dependent spectra. We consider the present model
with a typical field configuration such that the frequency mismatch between two co-
herent fields introduces the dynamic phase-variation effect. This phenomenon leads
to obtain anomalous peak-shifting effect accompanied by the selective quenching of
emission within the spectral profile.
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1. Introduction

Over the past two decades, much attention has been paid to the study of effects
of quantum interference arising from the interaction between atomic transition
pathways [1 – 3]. The phenomenon of destructive quantum interference plays a vital
role in quantum optical effects like electromagnetically induced transparency (EIT)
[2, 4], gain without population inversion (GWI) or lasing without inversion (LWI)
[5] and enhancement of refractive index [6]. In ideal three-level schemes (Λ, V and
Ξ), such coherency effects can be obtained by applying the external coherent fields
and can be dynamically controlled by changing the amplitudes and detunings of the
fields. In four-level schemes, incorporation of an extra coherent field considerably
changes the optical properties and leads to a number of interesting phenomena like
two-photon inhibition [7] and enhancement [8], photon switching [9], non-linear
light generation [10], spontaneous emission cancellation [11 – 15]. Modification and
control of spontaneous emission is an active research topic in the recent years as the
suppression of spontaneous emission reduces the limit of quantum-noise. Further,
the quenching of spontaneous emission on some atomic transition will facilitate
to achieve a population inversion on this transition using a very weak incoherent
pumping. Thus, the control of spontaneous emission can be potentially useful to
construct lasers in the high-frequency domain. Coherent control of spontaneous
emission in an atom which is near-resonant with the edge of a photonic band gap,
opens up the possibility to realize a single-atom optical memory device [16]. These
facts motivate us to study the dynamic control of the behaviour of spontaneous
emission in a doubly driven four-level Y -type atomic system. Among the four-
level schemes, the Y -type schemes have attracted a lot of attention [7, 17 – 20].
Present Y -type model with different field configurations has not yet been studied
for the purpose of controlling the spontaneous emission spectrum. In order to make
our study more plausible, we need to review briefly the earlier studies regarding
spontaneous emission modification in different level-schemes.

Fontana and Srivastava [21] predicted the appearance of a spectral ‘hole’ in
the spontaneous emission spectrum of a three-level atom whose one excited level
is nondecaying and coherently coupled by a static field to another excited level.
Twenty-two years later, for a sinusoidal coupling field in a similar Ξ-type system,
the dark line in the spontaneous emission spectrum has been explained by Zhu
et al. [22] from the standpoint of destructive quantum interference. Similar works
[23 – 25] based on this field-induced interference effect, have been performed in
different three-level schemes. Apart from the dynamically induced coherence con-
trolling of the spectrum, other types of coherence-like vacuum-induced coherence
(VIC) or spontaneously generated coherence (SGC) [26] have been employed in
various level-schemes [27 – 31] to exhibit the phenomena like spontaneous emission
cancellation, suppression of spectral components and spectral narrowing. However,
the occurrence of VIC requires a stringent condition under which two transition
dipole matrix elements corresponding to the interfering decay channels should be
non-orthogonal. Still now, such a condition is experimentally [32] found to ex-
ist in molecule-like sodium dimer, but not in other atomic systems. Since, the
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orthogonal dipoles for two transitions to the excited states with very small en-
ergy separation are more easily found in nature, there is a need to find different
mechanism which is beyond the condition of non-orthogonality. Depending upon
multiple decay-interference mechanisms [33, 34], in folded-type atomic configura-
tions, attempts have been made by different authors [12 – 15, 35, 36] to generate the
coherency effects in the spontaneous emission spectrum. In contrast to the earlier
investigations regarding spontaneous emission modification, in this work, we study
the evolution of spectra for appreciable values of incoherent pumping rates and
the coherence decay rates involved in the field-induced transition channels. The
dynamic control of spontaneous emission spectrum in our Y -type model is shown
within both the non-dissipative and purely dissipative environments. On controlling
the emission spectra, the static and dynamic phase-variation effects are introduced
in the given model.

The salient features of the work presented in this paper are listed as follows.
i) We study the coherent features in the present model at different conditions of
detunings and Rabi frequencies of the external fields when the spectral line shapes
are not affected by the dissipative factors. The evolution of coherent spectral fea-
tures in the bare-state model, has been analyzed by using the dressed-state model.
Dressed-state interpretation leads us to obtain the limiting values of the subnatural
linewidths of the emission peaks in different cases. ii) It has been predicted that
for coherent superposition of the uppermost excited states at the initial moment,
the total cancellation of emission over the whole spectral range is possible when
the incoherency effects are absent in the system. iii) Considering the system under
purely dissipative environment, for different dynamic conditions, we discuss the
coherent control of the spectral behaviours. The required conditions of achieving
subnatural linewidths of the spectral lines are also discussed. iv) It is shown that at
the condition of equal and opposite detuning of the coherent fields, three-peak spec-
trum will occur with asymmetric peak-widths when decay rates of the uppermost
excited doublet are unequal. v) For unequal decay rates of the excited doublet, we
also show that the phenomenon of constructive quantum interference can strongly
modify the emission line shape at the condition of non-resonant detuning of the
fields. In such a condition, due to this phenomenon of quantum interference, two
distinct peaks disappear at their spectral positions and a new peak results in the
line shape at a different spectral position. vi) For non-resonant evolution of emission
peaks, it is found that symmetric change in peak-distribution may occur within the
line shape by incoherent means. vii) We show the dependence of the line intensities
on the incoherent pumping rate. viii) On inclusion of the static phase-variation
effect arising from the mutual orientation of polarizations of the field vectors in our
model with a specific field configuration, we also study the phase-dependent switch-
ing of the spectral lines. Phase tuned spontaneous emission spectrum can exhibit
a narrow structure. ix) For frequency mismatch between two coherent fields, the
emission spectrum can be further controlled by introducing the effect of dynamic
phase variation which gives rise to anomalous peak-shifting effect along with the
selective quenching of emission.
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2. A four-level Y-type model

We consider an ideal four-level Y -type atom as shown in Fig. 1a. Two upper
levels |3〉 and |4〉 are coupled to the lower level |2〉 by the single-mode driving fields
E(ω2) and E(ω1), respectively. Here ω1 and ω2 are their frequencies. The atom-
field coupling constants are accordingly named as g1 and g2. The energy level |2〉
can spontaneously radiate to the level |1〉 due to the interaction with the vacuum
modes and their coupling constant is denoted as gk where k represents both the
wave-vector and polarization of the vacuum modes [37].

Fig. 1. Schematic diagram of an ideal four-level Y -type system interacting with
two coherent fields designated by their frequencies ω1 and ω2 (a) in the bare-state
picture (γ2 denotes the spontaneous decay rates of the excited level |2〉), (b) in the
dressed-state picture of both coupling fields. γ± and γ0 are the decay rates of the
dressed excited triplet-states |±〉 and |0〉, respectively.

2.1. Theoretical formulation

The total Hamiltonian of the system can be written as

H = Ho +H ′ , (1)

where Ho includes the independent contributions of the atom and the field systems
and H ′ includes the perturbation effect of the external fields on the atom. The
Hamiltonian Ho can be expressed as

Ho = HA +HF +HV , (2)

where HA, HF and HV represent the Hamiltonians for the atom, driving fields and
the vacuum field, respectively. The Hamiltonian for the atom is written as

HA =
∑

j=1,2,3,4

Ej |j〉〈j| , (3)
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where Ej is the energy of the level j. The energy E2 is taken as the reference and
is set as zero. We define the atomic transition operator for the transition from the
upper level |j〉 to the lower level |k〉 as the lowering operator σjk = |k〉〈j| and for
the transition from the lower level |k〉 to the upper level |j〉 as the raising operator

σ†
jk = |j〉〈k|. The expression of the Hamiltonian HA can be rewritten as

HA = −h̄ω21σ21σ
†
21 + h̄ω32σ

†
32σ32 + h̄ω42σ

†
42σ42 , (4)

where σ21σ
†
21 = |1〉〈1|, σ†

32σ32 = |3〉〈3|, σ†
42σ42 = |4〉〈4| and ωjk denotes the re-

spective atomic transition frequency. If a1 and a2 (a†1 and a†2) are assumed to be
the annihilation (creation) operators for the single-mode driving fields E(ω1) and
E(ω2) respectively, the Hamiltonian HF can be expressed as

HF = h̄ω1a
†
1a1 + h̄ω2a

†
2a2 . (5)

Similarly, the Hamiltonian HV can be written as

HV =
∑

k

h̄ωka
†
kak , (6)

where ak (a†k) is the annihilation (creation) operator for the kth vacuum mode with
frequency ωk. The time evolution of the atomic and field operators is determined
by considering the operator equation of motion in the interaction picture. On re-
stricting to the electric-dipole approximation, the Hamiltonian H ′ can be expressed
in the interaction picture by using the rotating wave approximation (RWA) [37] as

H ′
int= h̄[(g1σ

†
42a1e

−i∆1t+H.c.)+(g2σ
†
32a2e

−i∆2t+H.c.)+
∑

k

(gkσ
†
21ake

−i∆kt+H.c.)],

(7)
where the detuning terms are ∆1 = ω1 − ω42, ∆2 = ω2 − ω32 and ∆k = ωk − ω21.
We define the state vector of the total system in the interaction picture at time t
as

|ψ〉int =
∑

k

b1,k|1, n1, n2〉|1k〉+ b2|2, n1, n2〉|{0}〉

+b3|3, n1, (n2 − 1)〉|{0}〉+ b4|4, (n1 − 1), n2〉|{0}〉 , (8)

where nj is the number of photons in the single-mode fields, |1k〉 represents the
state with one photon in the kth vacuum mode and |{0}〉 represents the absence
of photon state. Without loss of generality, the coupling constants are taken to be
real [37]. By substituting Eqs. (7) and (8) in the Schrödinger’s equation

ih̄
∂

∂t
|ψ〉int = H ′

int|ψ〉int , (9)
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we obtain the equations of motion for the probability amplitudes as follows

ḃ1,k = −igke
i∆ktb2 , (10)

ḃ2 = −i
∑

k

gke
−i∆ktb1,k − ig2

√
n2e

i∆2tb3 − ig1
√
n1e

i∆1tb4 , (11)

ḃ3 = −ig2
√
n2e

−i∆2tb2 , (12)

ḃ4 = −ig1
√
n1e

−i∆1tb2 . (13)

We assume Ω1 = g1
√
n1 and Ω2 = g2

√
n2. They can be treated as the equivalent

Rabi frequencies of two coherent fields as obtained in the semiclassical picture. On
using the initial condition b1,k(0) = 0, we obtain from Eq. (10)

b1,k(t) = −igk

t
∫

0

ei∆kt
′

b2(t
′)dt′. (14)

In Eq. (11), we replace
∑

k by
∞
∫

0

dωkD(ωk) [37,38] and substitute b1,k(t) from

Eq. (14). Here D(ωk) = V ω2
k/(π

2c3), which represents the density of states per unit
frequency range in the interval between ωk and ωk + dωk within the quantization
volume V . We follow the well known Weisskopf-Wigner approach [37] to obtain

ḃ2 = −γ2
2
b2 − iΩ2e

i∆2tb3 − iΩ1e
i∆1tb4 . (15)

The explicit time dependence lying in Eqs. (12), (13) and (15) can be removed
by introducing the transformations b3 = c3 e−i∆2t and b4 = c4 e−i∆1t [39]. Then
Eqs. (12), (13) and (15) can be written as follows

ḃ2 = −γ2
2
b2 − iΩ2c3 − iΩ1c4 , (16)

ċ3 = −iΩ2b2 + i∆2c3 , (17)

ċ4 = −iΩ1b2 + i∆1c4 . (18)

In order to find nonvanishing population in the upper states, the determinant of
the coefficient-matrix for the variables b2, c3 and c4 in the set of Eqs. (16) – (18)
must be equal to zero, i.e.

γ2
2
∆1∆2 + i(Ω2

1∆2 +Ω2
2∆1) = 0 . (19)

Thus the resulting condition for population trapping [1] is satisfied when the real
and imaginary parts of Eq. (19) are simultaneously zero for ∆1 = ∆2 = 0.
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2.1.1. Emission spectra

The steady-state expression for the probability amplitude b1,k can be obtained
by changing the upper limit of integration in Eq. (14) into infinity [12, 39]

b1,k(t→ ∞) = −igk[b2(s)]s=−i∆k
, (20)

where b2(s) =
∞
∫

0

b2(t)e
−stdt; s is the Laplace space variable.

By solving Eqs. (16) – (18) in Laplace space, we evaluate

b2(s) =
(s− i∆1)(s− i∆2)b2(0)− iΩ2(s− i∆1)c3(0)− iΩ1(s− i∆2)c4(0)

(s+ γ2/2)(s− i∆1)(s− i∆2) + Ω2
2(s− i∆1) + Ω2

1(s− i∆2)
. (21)

The spontaneous emission spectrum is the Fourier transform of the field-correlation
function 〈E−(t+ τ)E+(t)〉t→∞, and can be written as [12, 39]

S(∆k) =
γ2

2πg2k
|b1,k(t→ ∞)|2 . (22)

The spectrum S(∆k) as defined in the above equation can be obtained finally by
using Eqs. (20) and (21) in the following form

S(∆k) =
γ2
2π

∣

∣

∣

∣

∣

∣

∣

∣

b2(0) +
Ω2

∆k +∆2
c3(0) +

Ω1

∆k +∆1
c4(0)

i∆k − γ2
2

+
Ω2

2

i(∆k +∆2)
+

Ω2
1

i(∆k +∆1)

∣

∣

∣

∣

∣

∣

∣

∣

2

. (23)

In the case of very weak coupling fields, the spectrum S(∆k) can be simplified by
the following expression

S(∆k) =
γ2
2π

∣

∣

∣

∣

b2(0)

i∆k − γ2/2

∣

∣

∣

∣

2

. (24)

The spectrum in Eq. (22) represents a single Lorentzian profile around ∆k = 0.

From Eq. (23), it can be shown that the complete quenching of spontaneous
emission is possible. In this context, b2(0) is taken to be zero. When Ω1 = Ω2, ∆1

= ∆2 and c3(0) = −c4(0), S(∆k) is found to be zero for all values of ∆k. For this
purpose, the excited states |3〉 and |4〉 will have to be initially prepared in their
coherent superposition state [33].

When b2(0) is taken to be nonzero, one can obtain selective quenching of emis-
sion for different values of Rabi frequencies and detuning. If we consider the situa-
tion for cj(0) ≪ b2(0), then two quenching points occur at the positions ∆k = −∆1,
−∆2. In this case, the spectrum S(∆k) can be expressed as

S(∆k)=
γ2
2π

∣

∣

∣

∣

(∆k +∆1)(∆k +∆2)b2(0)

(∆k+iγ2/2)(∆k+∆1)(∆k+∆2)−Ω2
1(∆k+∆2)−Ω2

2(∆k+∆1)

∣

∣

∣

∣

2

.

(25)
The quenching points are surrounded by three spectral-peaks, what can be envis-
aged from the analysis of imaginary part of the denominator in the right-hand side
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of Eq. (25). For |∆1| = |∆2| = ∆, the quenching points coincide at ∆k = −∆ and
the three-peak spectrum reduces into two-peak spectrum.

At the condition of population trapping (∆1 =∆2 = 0) as suggested by Eq. (19),
it is straightforward from Eq. (23) to derive the spontaneous emission spectrum

S(∆k) =
γ2
2π

∣

∣

∣

∣

∣

∣

∣

∣

∆k +Ω2
c3(0)

b2(0)
+ Ω1

c4(0)

b2(0)

∆k(∆k +
γ2
2
)− Ω2

1 − Ω2
2

∣

∣

∣

∣

∣

∣

∣

∣

2

b22(0) . (26)

So the emission does not vanish at ∆k=0 unless Ω2c3(0)/b2(0)+Ω1c4(0)/b2(0) = 0.
We mention that for high values of Rabi frequencies, the absolute suppression of
emission is possible at ∆k = 0 depending on the Rabi-splitting effect.

By setting the values of Rabi frequencies as Ω1 = Ω2 = 10γ2, we obtain all
spectral features which are accordingly presented in Fig. 2 by the curves (a) (∆1 =
∆2 = 10γ2) for b2(0) = 0, c3(0) = −c4(0) = 0.5, and (b) (∆1 = −∆2 = 10γ2), (c)
(∆1 = ∆2 = 0), (d) (∆1 = ∆2 = 10γ2) for b2(0) = 1, c3(0) = c4(0) = 0.

Fig. 2. Resonant and non-resonant evolution of spontaneous emission specta in the
ideal bare-state model for R1 = R2 = 10. Other parameters are: (a) ∆1 = ∆2 = 10,
b2(0) = 0 and c3(0) = −c4(0) = 0.5, (b) ∆1 = −∆2 = 10, b2(0) = 1 and c3(0) =
c4(0) = 0, (c) ∆1 = ∆2 = 0, b2(0) = 1 and c3(0) = c4(0) = 0, (d) ∆1 = ∆2 = 10,
b2(0) = 1 and c3(0) = c4(0) = 0. All rates are in units of γ2.
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2.2. Dressed-state interpretation

Origin of the spectral components can be analyzed in the dressed-state picture
(Fig. 1b) of both coupling fields operating in the excited states of the system. In
this respect, we consider the reversible dynamics represented by Eqs. (16) – (18)
of motion of the probability amplitudes b2, c3 and c4. Thus, the characteristic
equation of the interaction Hamiltonian-matrix can be represented as,

ξ3 + (∆1 +∆2)ξ
2 + [∆1∆2 − (Ω2

1 +Ω2
2)]ξ − (Ω2

1∆2 +Ω2
2∆1) = 0 . (27)

For different combinations of the driving fields with typical values of the Rabi
frequencies and detuning parameters, the formation of dressed states corresponding
to the eigenvalues ξi will be different. In the following, we discuss the dynamical
evolution of spectra as presented in Fig. 2 in different occasions.

At the condition of population trapping for ∆1 = ∆2 = 0, we obtain the eigen-
values ξ0 = 0, ξ± = ±

√

Ω2
1 +Ω2

2. The energy levels |2〉, |3〉 and |4〉 in the bare-state
model can be replaced by the new eigenstates |+〉, |0〉 and |−〉 whose probability
amplitudes are given as

b+ =
1√
2
b2 +

1√
2
cos θ c3 +

1√
2
sin θ c4 , (28)

b0 = − sin θc3 + cos θ c4 , (29)

b− =
1√
2
b2 −

1√
2
cos θ c3 −

1√
2
sin θ c4 , (30)

where sin θ =
Ω1

√

Ω2
1 +Ω2

2

, cos θ =
Ω2

√

Ω2
1 +Ω2

2

. We note that three bare-states |2〉,

|3〉 and |4〉 individually contribute to the formation of the states |±〉, whereas the
antisymmetric superposition of states |3〉 and |4〉 gives rise to the state |0〉 which
is decoupled from the state |2〉. The atom initially in the state |2〉 gives rise to the
coherent transfer of population into the dressed states |3〉 and |4〉.

By using Eqs. (28) – (30), after some algebraic calculations, Eqs. (16) – (18) can
be replaced by

ḃ+ = −(
γ+
2

+ iΩ+)b+ −
√
γ+γ−

2
b− + iΩ0b0 , (31)

ḃ0 = iΩ0b+ + iΩ0b− , (32)

ḃ− = −(
γ−
2

− iΩ−)b− −
√
γ+γ−

2
b+ + iΩ0b0 , (33)

where γ+ = γ− = γ2/2, Ω+ = Ω− = Ω2 cos θ+Ω1 sin θ and Ω0 = Ω2 sin θ−Ω1 cos θ.
As the decay rates of the dressed-states |±〉 are equal, the spectrum will contain
two symmetric peaks (Fig. 2c), one at each position of the dressed states. We note
that the dressed states |±〉 can decay at a slower rate (γ2/2) in comparison to the
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decay rate γ2 of the bare-state |2〉. Two dressed levels |±〉 can interact with each
other via their spontaneous decay channels as can be interpreted by the presence
of the term

√
γ+γ−/2 in Eqs. (31) and (33).

When the values of the detuning parameters ∆1 and ∆2 are equal and opposite,
we can impose the following condition on Eq. (27)

(

Ω1

Ω2

)2

= −∆1

∆2
. (34)

For further simplification we assume |∆1| = |∆2| = Ω1 = Ω2 = η (say). Then

the eigenvalues are given as ξ0 = 0, ξ± = ±
√
3η. Correspondingly, the probability

amplitudes of the dressed states can be expressed as

b+ = − 2√
12
b2 −

1 +
√
3√

12
c3 +

1−
√
3√

12
c4 , (35)

b0 =
1√
3
b2 −

1√
3
c3 +

1√
3
c4 , (36)

b− = − 2√
12
b2 −

1−
√
3√

12
c3 +

1 +
√
3√

12
c4 . (37)

In the present case, the dynamical Eqs. (31) – (33) take the following forms

ḃ+ = −
[

γ+
2

+iη

(

12+
√
6

3
√
2

)]

b++

√
γ+γ0

2
b0−

[√
γ+γ−

2
−iη

(

6−
√
6

3
√
2

)]

b− , (38)

ḃ0 = −γ0
2
b0 +

√
γ+γ0

2
b+ +

√
γ−γ0

2
b− , (39)

ḃ− = −
[

γ−
2

−iη

(

12+
√
6

3
√
2

)]

b−+

√
γ−γ0

2
b0−

[√
γ+γ−

2
+iη

(

6−
√
6

3
√
2

)]

b+ , (40)

where γ+ = γ0 = γ− = γ2/3. The appearance of the interference terms with positive
or negative signs in Eqs. (38) – (40) suggests that the effect of decay-interference
on the central peak arising from the dressed state |0〉 is constructive. Thus the
profiles of three peaks (Fig. 2b) in the emission spectrum can be asymmetric for a
particular set of values of Rabi frequencies and detunings of the coupling fields.

We also consider the situation when ∆1, ∆2, Ω1 and Ω2 are of equal magnitudes
and ∆1, ∆2 are of the same sign. Then we should have the following relationship

Ω2
1∆2 +Ω2

2∆1 = −(∆1 +∆2)[∆1∆2 − (Ω2
1 +Ω2

2)]. (41)

Making use of the above equation, we solve the Eq. (27) to find out the eigenvalues
for |∆1| = |∆2| = Ω1 = Ω2 = χ (say). Now we obtain the eigenvalues ξ+ = χ,
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ξ0 = −χ and ξ− = −2χ. The probability amplitudes of the corresponding eigen-
vectors are given as

b+ =
2√
6
b2 +

1√
6
c3 +

1√
6
c4 , (42)

b0 =
1√
2
c3 −

1√
2
c4 , (43)

b− =
1√
3
b2 −

1√
3
c3 −

1√
3
c4 . (44)

The state |0〉 results from coherent superposition of two bare states |3〉 and |4〉,
and is decoupled from the other state |2〉. Hence, the dressed state |0〉 remains
unpopulated. The equations of motion for the probability amplitudes of the dressed
states can be given as

ḃ+ = −(γ+/2 + iχ)b+ − γintb− , (45)

ḃ0 = iχb0 , (46)

ḃ− = −(γ−/2 − i2χ)b− − γintb+ , (47)

where γ+ = 2γ2/3, γ− = γ2/3 and γint = γ2/(3
√
2). The decaying nature of the

dressed states leads to an asymmetric two-peak spectrum (Fig. 2d).

We note that the spectral features exhibited in Figs. 2a-d are obtained in the
present model without incorporating the decays from the upper excited states.
Such a model can be realized when, instead of the one-photon process, the tran-
sitions from the state |2〉 to the upper excited states are governed by the two-
photon transition processes [40, 41]. In this situation, the Rabi frequencies Ω1 and
Ω2 can be regarded to be the effective two-photon Rabi frequencies [40, 41], i.e.

Ωi =
∑

k Ω2kΩkj

(

1

ωk − ωa
+

1

ωk − ωb

)

for i = 1, 2 and j = 3, 4; k denotes the

intermediate states, ωa and ωb are the frequencies of the absorbed two photons.

3. Emission under dissipative environment

For the non-decaying energy levels |3〉 and |4〉, we have already shown that if the
Rabi frequencies and the detuning parameters of the coupling fields in the upper
transitions follow a certain relationship, there will be a condition of population
trapping in the upper states. The inclusion of decays from the upper energy levels
|3〉 and |4〉 to their next lower level will, in general, disrupt the ideal condition of
population trapping. If we consider the purely dissipative environment of the atom,
it needs to incorporate the effect of natural de-excitation of the upper states |3〉 and
|4〉 in their respective one-photon transition channels. We also include the effect
of application of an incoherent field (a broadband source) in the lower transition
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|2〉 ↔ |1〉. The incoherent pumping is considered to be in both directions [28]; the
rate of population transfer from level |1〉 to |2〉 and back is denoted by Λ. To obtain
the quantitative results in the present model, it is convenient to describe the system
by standard density-matrix formalism, and the spontaneous emission spectrum can
be obtained with the use of the quantum regression theorem [37].

3.1. Theoretical formulation

The coupling fields acting in the upper transitions are defined classically, i.e.
E(ωj , t) = (Ej/2)e

iωjt+ c.c. (j = 1, 2). In the present formulation, we have ignored
the non-radiative transitions among the atomic states due to interatomic collisions.
The dynamical behaviour of the system under consideration can be represented by
the time evolution of the density-matrix operator [19]

∂ρ′

∂t
=

(

∂ρ′

∂t

)

reversible

+

(

∂ρ′

∂t

)

spon.damping

+

(

∂ρ′

∂t

)

inco.pumping

, (48)

where the reversible part represents the interaction between coherent fields and
medium and can be given as

(

∂ρ′

∂t

)

reversible

= − i

h̄
[H ′, ρ′]. (49)

The irreversible dynamics of the system can be obtained by following the general-
ized system-reservoir interaction for the dissipative process [39]. We can derive the
expression for the rate of change of density operator relating to the spontaneous
relaxation as given below

(

∂ρ′

∂t

)

spon.damping

= −γ2
2
[{|2〉〈2|, ρ′} − 2|1〉〈2|ρ′|2〉〈1|]

−
∑

j=3,4

γj
2
[{|j〉〈j|, ρ′} − 2|2〉〈j|ρ′|j〉〈2|] . (50)

The rate of change of density operator corresponding to the incoherent pumping
process can be represented as

(

∂ρ′

∂t

)

inco.pumping

= −Λ

2

∑

j=1,2

[{|j〉〈j|, ρ′} −
∑

k( /=j)=1,2

2|j〉〈k|ρ′|k〉〈j|] . (51)

Under the dipole-approximation, on using the rotating wave approximation
(RWA), the perturbation Hamiltonian H ′ in the interaction picture is represented
in the time-invariant form [39]

H ′
int = −h̄[∆2|3〉〈3|+∆1|4〉〈4|+ (R2|2〉〈3|+R1|2〉〈4|+H.c.)] , (52)
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where the detunings of the fields from their respective resonances are written as
∆1 = ω1 −ω42 and ∆2 = ω2 −ω32, and the coupling of the atom with the coherent
fields are denoted by the Rabi frequencies R1 = µ̄24.Ē1/(2h̄) and R2 = µ̄23.Ē2/(2h̄),
respectively. By introducing the transformations: Rj = |Rj | eiθj (j = 1, 2), ρ′kk =
ρkk(k = 1, 2, 3, 4), ρ′12 = ρ12, ρ

′
13 = ρ13e

−iθ2 , ρ′14 = ρ14e
−iθ1 , ρ′23 = ρ23e

−iθ2 ,
ρ′24 = ρ24e

−iθ1 and ρ′34 = ρ34e
i(θ2−θ1); θj(j = 1, 2) are the phase parameters, the

set of equations of the required elements of the atomic density matrix are obtained
as follows

ρ̇11 = −Λρ11 + (Λ + γ2)ρ22 , (53)

ρ̇22 = Λρ11−(Λ+γ2)ρ22+γ3ρ33+γ4ρ44+i|R1|(ρ42−ρ24)+i|R2|(ρ32−ρ23), (54)
ρ̇33 = −γ3ρ33 + i|R2|(ρ23 − ρ32) , (55)

ρ̇44 = −γ4ρ44 + i|R1|(ρ24 − ρ42) , (56)

ρ̇12 = −Γ12ρ12 − i|R1|ρ14 − i|R2|ρ13 , (57)

ρ̇13 = −(Γ13 + i∆2)ρ13 − i|R2|ρ12 , (58)

ρ̇14 = −(Γ14 + i∆1)ρ14 − i|R1|ρ12 , (59)

ρ̇23 = −(Γ23 + i∆2)ρ23 + i|R1|ρ43 + i|R2|(ρ33 − ρ22) , (60)

ρ̇24 = −(Γ24 + i∆1)ρ24 + i|R1|(ρ44 − ρ22) + i|R2|ρ34 , (61)

ρ̇34 = −(Γ34 + i(∆1 −∆2))ρ34 − i|R1|ρ32 + i|R2|ρ24 , (62)

where Γ12 = Λ+ γ2/2, Γ13 = (Λ+ γ3)/2, Γ14 = (Λ+ γ4)/2, Γ23 = (Λ+ γ2 + γ3)/2,
Γ24 = (Λ + γ2 + γ4)/2 and Γ34 = (γ3 + γ4)/2.

3.1.1. Emission spectra

The spectrum of spontaneous emission on the transition |2〉 ↔ |1〉 can be shown to
be proportional to the function [42]

S(∆k) =

∞
∫

0

dτ e−i∆kτf(τ) + c.c. , (63)

where the function f(τ) is defined in terms of the two-time correlation function as

f(τ) ≡ 〈σ†
21(t+ τ)σ21(t)〉 = 〈σ†

21(τ)σ21(0)〉. (64)

In general, for the transition from the lower level |k〉 to the upper level |j〉 (as
mentioned in Section 2), we have the time averaged dipole-transition operators:

〈σ†
jk(0)〉 = ρkj(0) and 〈σjk(0)〉 = ρjk(0), where ρkj(0) (or ρjk(0)) is determined

by the steady state value [42]. We use the Hermicity relation (f(−τ) = f∗(τ)) for
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the correlation function as introduced in Eq. (63). According to the rule of Laplace
transformation, the steady state power spectrum of the fluorescence field [42] in
the transition |2〉 ↔ |1〉 can be determined by the following expression

S(∆k) = 2Re[〈σ†
21(τ)σ21(0)〉]τ=−i∆k

. (65)

By solving the density matrix Eqs. (57) – (59) in Laplace space, we find out the
correlation function on the basis of the quantum regression theorem. Thus the
correlation function as defined in Eq. (64) can be expressed as

〈σ†
21(τ)σ21(0)〉 =

M1〈σ22(0)〉 −M2〈σ†
32(0)〉 −M3〈σ†

42(0)〉
M

=
M1ρ22(0)−M2ρ23(0)−M3ρ24(0)

M
, (66)

where

M = |R1|2(s+Γ13+i∆2)+|R2|2(s+Γ14+i∆1)+(s+Γ12)(s+Γ13+i∆2)(s+Γ14+i∆1),

M1= (s+ Γ13 + i∆2)(s+ Γ14 + i∆1) ,

M2= i|R2|2(s+ Γ14 + i∆1) ,

M3= i|R1|2(s+ Γ13 + i∆2) . (67)

The values of ρ22(0), ρ23(0) and ρ24(0) are determined by solving the density matrix
equations in the steady state.

4. Results and discussion

In this section, we discuss the numerical results based on the spontaneous emis-
sion spectrum S(∆k) given in Eq. (65). All the rate-parameters used in the calcu-
lation are scaled by the decay rate γ2. We assume γ2 = γ. Other decay rates are
chosen as γ3 = γ4 = γ.

At the two-photon Raman resonance (∆1 = ∆2 = 0) condition, we have plotted
the curves a (Λ = 0.1γ, R1 = R2 = 6γ), b (Λ = γ, R1 = R2 = 6γ) and c (Λ = γ,

R1 = R2 = 10γ) in Fig. 3a. Two peaks having separation 2
√

R2
1 +R2

2 result in the
spectrum due to the strong two-photon coupling between the excited states |3〉 and
|4〉. Dark feature is still present between two peaks of the spectrum represented
by the curve a of Fig. 3a. With the increase of the incoherent pumping rate, peak
height increases along with the increase in the broadening of the spectral peak as
shown by the curve b of Fig. 3a. As a result of broadening, dark feature tends to
disappear at the middle of the spectrum. For large values of Rabi frequencies, Rabi
splitting effect dominates in the spectrum and the emission almost vanishes in the
middle as shown by the curve c of Fig. 3a. We mention that, in the present dynamic
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Fig. 3. Resonant and non-resonant evolution of spontaneous emission spectra in
the present model under dissipative environment. For R1 = R2 = R (say), we show
(a) the curves a (Λ = 0.1, R = 6), b (Λ = 1, R = 6) and c (Λ = 1, R = 10) when
∆1 = ∆2 = 0; (b) the curves a (Λ = 0.1, R = 6), b (Λ = 1, R = 6) and c (Λ = 1,
R = 10) when ∆1 = ∆2 = R, and (c) the curves a (Λ = 0.1, R = 6), b (Λ = 1,
R = 6) and c (Λ = 1, R = 16) when ∆1 = −∆2 = R. All rates are in units of γ2.

condition, each of the two dressed states |±〉 generating the emission peaks decays
with the rate

Γ+,− =
2(γ2 + Λ) + γ3 + γ4

4
= γ +

Λ

2
, (68)

The subnatural linewidths can be obtained for (γ3 + γ4)/4 + Λ/2 < γ2/2 which
is consistent with the decay rate mentioned in Section 2.2. We note that, unless
γ3 + γ4 < 2γ2, subnatural linewidth can not be obtained even if the incoherent
pumping rate is zero.

If two coherent fields are tuned away from the condition of exact two-photon
resonance (∆1 = ∆2 = ∆), two peaks occur with asymmetric heights in the spec-
trum as exhibited by curves a (Λ = 0.1γ, R1 = R2 = 6γ, ∆1 = ∆2 = 6γ), b (Λ = γ,
R1 = R2 = 6γ, ∆1 = ∆2 = 6γ) and c (Λ = γ, R1 = R2 = 10γ, ∆1 = ∆2 = 10γ)
in Fig. 3b. Quenching of emission, as represented by the curve d in Fig. 2, is still
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observable in the present condition. For the present condition of detunings and
Rabi frequencies of the coherent fields, the decay rates of the dressed states can be
expressed as

Γ+ =
12(γ2 + Λ) + γ3 + γ4

18
=

7γ + 6Λ

9
,

Γ− =
3(γ2 + Λ) + γ3 + γ4

9
=

5γ + 3Λ

9
. (69)

The subnatural linewidths of the peaks corresponding to the dressed states |+〉
and |−〉 can be, respectively, obtained for (γ3 + γ4)/18 + 2Λ/3 ≤ 2γ2/3 and
(γ3 + γ4)/9 + Λ/3 ≤ γ2/3. The equality-sign holds for Λ ≪ (γ3 + γ4)/12. From
Eq. (69), it is apparent that, for the values of Λ < γ/3 and Λ < 4γ/3, subnatural
linewidth can be obtained for the emission peaks arising from the dressed states
|+〉 and |−〉, respectively. We note that, for the value of Λ = γ, the width of the
peak generated by the dressed state |−〉 is confined to subnatural regime.

For equal but opposite detuning of the coherent fields (∆1 = −∆2 = ∆), we
obtain in Fig. 3c the three-peak structure in the emission line shape due to the
contribution of both dressed states |±〉 and |0〉. From the curves a (Λ = 0.1γ,
R1 = R2 = 6γ, ∆1 = −∆2 = 6γ), b (Λ = γ, R1 = R2 = 6γ, ∆1 = −∆2 = 6γ) and
c (Λ = γ, R1 = R2 = 16γ, ∆1 = −∆2 = 16γ) in Fig. 3c, it is evident that at an
appreciable value of the incoherent pumping rate, absolute suppression of emission
is possible between successive peaks in the spectrum for sufficiently large values of
Rabi frequencies of the external fields. In the given condition, three dressed states
can decay with the following rates

Γ0 =
3(γ2 + Λ) + 2(γ3 + γ4)

9
=

7γ + 3Λ

9
,

Γ+ = Γ0 +

√
3(γ3 − γ4)

9
= Γ0 ,

Γ− = Γ0 −
√
3(γ3 − γ4)

9
= Γ0 . (70)

We note that, when the upper excited states decay with unequal rates, the larger
is the difference between the values of the decay rates, the larger will be the the
difference between the widths of two sideband peaks. The subnatural linewidths of
the emission peaks arising from the dressed states |0〉, |+〉 and |−〉 can be respec-

tively obtained for
2(γ3 + γ4)

9
+
Λ

3
≤ γ2

3
,
(2
√
3 + 1)γ3 + (2

√
3− 1)γ4

9
√
3

+
Λ

3
≤ γ2

3
and

(2
√
3− 1)γ3 + (2

√
3 + 1)γ4

9
√
3

+
Λ

3
≤ γ2

3
. The equality-sign holds for Λ ≪ 2(γ3 + γ4)

3
.

According to Eq. (70), the subnatural linewidth for each of the three emission peaks
can be obtained for the values of Λ < 2γ/3. At the condition of non-resonant detun-
ing of the coherent fields, it is interesting to note that in the absence of incoherent
pumping rate in Eqs. (69) and (70), all spectral peaks will evolve in the subnatural
regime.
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Now we focus our attention to the generation of sideband peaks in the emission
spectra for γ3 /= γ4. Hence, we investigate the behaviour of spontaneous emission
spectrum in Fig. 4 under the condition of non-resonant detuning (∆1 = −∆2 = ∆)
of the coherent fields with Rabi frequencies R1 = R2 = R (|R| /= |∆|). In Fig. 4a,
we choose R1 = R2 = 7γ, ∆1 = −∆2 = 5γ, γ4 = γ and Λ = 0.1γ to plot the
curves a (γ3 = γ), b (γ3 = 10γ), c (γ3 = 15γ), d (γ3 = 18.5γ) and e (γ3 = 22γ).

In the curve a (γ3 = γ4), almost at the positions ∆k = ±
√
3η (η = |R|), two

enhanced sideband peaks occur with a less intense peak at their middle. With
the increase in the value of γ3, in the curves b-e, we observe that the middle and
the right sideband peaks approach each other, and eventually merge at a point
which is situated closely to their mid-position. This phenomenon occurs due to
the constructive influence of multiple decay-interference of the dressed decay rates.
The effect of this phenomenon increases with the increasing difference between the
decay rates. Thus, as a result of quantum interference, along with the left sideband
peak, a new peak occurs in the spectrum at the cost of other two residual peaks.
For R1 = R2 = 10γ and Λ = 0.1γ, Fig. 4b showns the curves a (γ3 = 10γ, γ4 = γ
and ∆1 = −∆2 = 9γ), b (γ3 = 10γ, γ4 = γ and −∆1 = ∆2 = 9γ), c (γ3 = 10γ,
γ4 = γ, ∆1 = −∆2 = 18γ) and d (γ3 = γ, γ4 = 10γ, ∆1 = −∆2 = 18γ). Curve a
represents simultaneous enhancement of the left sideband peak and the suppression
of the right sideband peak. If the detuning parameters are reversed, the nature of
the curve a reverses its character as shown in curve b plotted for the same values of
the decay rates. Without any change in the detuning condition, similar variation in
the peak-distribution within the line shape is obtained when we reverse the values
of γ3 and γ4 as clearly depicted by the curves c and d in Fig. 4b.

Fig. 4. Modification of emission line shape for unequal decay rates of the excited
states |3〉 and |4〉. For γ4 = 1, Λ = 0.1, R1 = R2 = 7 and ∆1 = −∆2 = 5, we
show in (a) the curves a (γ3 = 1), b (γ3 = 10), c (γ3 = 15), d (γ3 = 18.5) and e
(γ3 = 22). For Λ = 0.1 and R1 = R2 = 10, we show in (b) the curves a (γ3 = 10,
γ4 = 1, ∆1 = −∆2 = 9), b (γ3 = 10, γ4 = 1, −∆1 = ∆2 = 9), c (γ3 = 10, γ4 = 1,
∆1 = −∆2 = 18) and d (γ3 = 1, γ4 = 10, ∆1 = −∆2 = 18). All rates are in units
of γ2.

FIZIKA A (Zagreb) 19 (2010) 4, 215–240 231



dutta and mahapatra: coherent control of spontaneous emission spectrum . . .

Fig. 5. Dependence of the line intensity on the incoherent pumping rate under the
condition of resonant detuning of the fields. In the figure ∆+ =

√

R2
1 +R2

2. All
rates are in units of γ2.

To study the effect of incoherent pumping on the intensity of the peak, at the
condition of resonant detuning of the coherent fields, we plotted two curves (a and
b) in Fig. 5. It is found that, for higher values of Rabi frequencies, after attaining
the maximum peak height, it decreases little more rapidly at larger values of Λ.

We end this section by presenting the following discussion. In our choice of decay
rates, narrow non-resonant peaks could be observed in the emission spectra if the
‘direct-pumping’ scheme is replaced by an ‘indirect-pumping’ scheme. In order to
avoid the ‘direct-pumping’ mechanism on experimentation, one could consider the
two-photon excitation mechanism to populate an excited state |e〉 which is located
above the bare states |3〉 and |4〉. Then, depending on the natural de-excitation
of population from the state |e〉 to the lower states |3〉 and |4〉, the steady state
fluorescence from level |2〉 can be detected. In such an experimental arrangement,
as the incoherent contribution of the direct pumping rate Λ has no influence on
the occurrence of coherent spectral features, for nearly equal values of the decay
rates of the doublet |3〉 and |4〉, extremely narrow spectral components could be
obtained in the emission spectrum as a result of quantum interference effect on the
line wings.

5. Static phase-variation effect

In order to study the static phase-variation effect in our model, we take a
similar Y -type system with a different field configuration. This model is chosen by
considering closer separation of the excited states |3〉 and |4〉. In the present field
configuration, two external fields of the same frequency can simultaneously interact
with the excited doublet. Hence, in the prescribed model, one needs to redefine the
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Rabi frequencies as

R1 =
µ̄24.(Ē1 + Ē2)

2h̄
= G1 +G′

1,

R2 =
µ̄23.(Ē1 + Ē2)

2h̄
= G′

2 +G2 . (71)

We choose, G1 = G2 = G and G′
1 = G′

2 = G′ which lead to

|R1|2 = |R2|2 = |G|2 + |G′|2 + 2|G||G′| cos(φ) , (72)

where φ denotes the phase difference which arises due to the mutual orientation
of polarizations of the field modes. Thus, we replace the terms |R1|2 and |R2|2
in Eq. (67) of the Section 3.1.1 by the Eq. (72). We note that the phase φ, as
introduced by the field polarization, remains static to the temporal evolution of the
atomic system during interaction with the external fields.

When φ = π, |R1|2 = |R2|2 = 0. Numerical computation of the spectrum S(∆k)
as defined in Eq. (65) represents a single peak as shown by curve a(G = G′ = 2γ,
∆1 = −∆2 = 4γ, Λ = 0.1γ) in Fig. 6. For the same values of detunings and Rabi
frequencies, three peaks will result in the emission spectrum when φ = 2π/3. This
behaviour is shown in curve b of Fig. 6. If we set the value of φ = 0, for the same
values of other parameters, curve c in Fig. 6 represents the absolute suppression
of the middle peak and simultaneously enhanced sideband peaks. If we compare
curve a (φ = π) to the curve c (φ = 0), the respective appearance and almost
disappearance of the middle peak in the emission spectrum constitute the phase-
dependent switching effect.

Fig. 6. Phase dependent evolution of spontaneous emission spectrum for G = G′ =
2, ∆1 = −∆2 = 4 and Λ = 0.1. All rates are in units of γ2.
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In Figs. 7a-c, we study the phase tuning effect on the emission spectrum for
G = G′ = 2γ and ∆1 = −∆2 = 4γ. There are two sets of curves, one is represented
by the solid line for Λ = 0.1γ and the other by the dotted line for Λ = γ. It is
interesting to note here that, with the increase of the incoherent pumping rate, the
narrow structures as developed in Figs. 7a,b can persist in the spectrum with less
prominent behaviour of selective quenching of emission.

Fig. 7. Phase tuning effect on spontaneous emission spectrum for G = G′ = 2
and ∆1 = −∆2 = 4. In (a) – (c), the curves represented by the solid lines are for
Λ = 0.1, while the curves represented by the dotted line are for Λ = 1. All rates
are in units of γ2.

6. Dynamic phase-variation effect

In contrast to the field configuration employed in Section 4, we can also consider
that the external fields simultaneously interact with the upper excited states |3〉
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and |4〉, and are of different frequencies and of the same static phase. Present field
configuration in our Y -type model is shown in Fig. 8. On inclusion of frequency
mismatch between the field components, a temporal phase fluctuation term along
with the conventional detuning term evolves in the interaction Hamiltonian as
given in section 2.1. Correspondingly, the rate Eqs. (16) – (18) in Section 2.1 of the
probability amplitudes of the bare states |2〉, |3〉 and |4〉 contain the explicit time-
dependent terms which are assumed to be rapidly varying in comparison to the
slowly varying amplitudes of the excited states. On using this approximation based
on the adiabatic evolution of the system under interaction, the time-independent
interaction Hamiltonian of the system takes the following form

H ′
int = −h̄[δ0|2〉〈2|+ δ2|3〉〈3|+ δ1|4〉〈4|

+(G2|2〉〈3|+G1|2〉〈4|+H.c.)] , (73)

Fig. 8. Schematic diagram of a four-level Y -type system having two closely spaced
uppermost levels interacting simultaneously with two independent coherent fields of
frequencies ω1 and ω2. Frequency mismatch (δ) between the two fields is considered
to introduce the dynamic phase-variation effect in the formation of the emission
spectrum. γ2, γ3 and γ4 are the decay rates of the excited levels.

where G1 = µ̄24Ē1/(2h̄) and G2 = µ̄23Ē2/(2h̄). The anomalous peak-shifting effect
is introduced by the newly defined detuning terms as expressed below

δ0 =
|G′

1|2 − |G′
2|2

δ
,

δ1 = ∆1 −
|G′

1|2
δ

, (74)

δ2 = ∆2 +
|G′

2|2
δ

,

where δ = ω1 − ω2, G
′
1 = µ̄24.Ē2/(2h̄), G

′
2 = µ̄23.Ē1/(2h̄), ∆1 = ω1 − ω42 and

∆2 = ω2 − ω32. To find the steady state spectrum, we follow the semiclassi-

FIZIKA A (Zagreb) 19 (2010) 4, 215–240 235



dutta and mahapatra: coherent control of spontaneous emission spectrum . . .

cal density matrix approach as presented in Section 3.1. The relaxation terms,
which need to be redefined in this formulation, are given as Γ12 = Λ + γ2/2 + iδ0,
Γ23 = Λ/2 + (γ2 + γ3)/2 + i(δ2 − δ0), Γ24 = Λ/2 + (γ2 + γ4)/2 + i(δ1 − δ0). The
expression for the correlation function, as defined in Eq. (66), remains the same
in the present formulation. Only the steady-state values of ρ22, ρ23 and ρ24 are
changed.

Numerical computation of the spectrum is carried out by choosing G1 = G′
1

and G2 = G′
2. In Fig. 9, we show the spectra for Λ = 0.1γ and δ = 6γ. When

each of the two fields is exactly tuned to resonance with one of the excited levels
such that ∆1 = ∆2 = 0, the three peak structure evolves in the spectrum, as
shown by the curve a in Fig. 9. This spectral behaviour is completely different
from the usual resonant characteristics of the spectrum obtained under the same
condition of detuning as mentioned in Section 3.2, while for non-resonant detuning
(∆1 = −∆2 = 6γ) of the fields, two peak spectrum is obtained as exhibited by the
curve b. Thus, by changing the frequency mismatch between two coherent fields,
spectral positions of the peaks can be shifted without any change in the values of
Rabi frequencies in any of the two cases. The way of shifting is contrary to the
usual peak-shifting effect introduced by the detuning terms ∆1 and ∆2 as studied
in Section 3.2.

Fig. 9. Control of resonant and non-resonant evolution of spectral features via
dynamic phase-variation effect. For δ = 6, G1 = G2 = 6 and Λ = 0.1, we show the
curve a (∆1 = ∆2 = 0) and curve b (∆1 = −∆2 = 6). All rates are in units of γ2.

Figures 10a-b exhibit a strong influence of the dynamic phase-variation effect on
the emission spectrum when the incoherency effect on the spectrum is significant.
The curve a of Fig. 10a is plotted for ∆1 = ∆2 = 0, G1 = 5.605γ, G2 = 4γ and
δ = 4γ. For a comparison of the spectral behaviour, as represented by the curve a
to that can be obtained without any inclusion of the frequency mismatch, we show
the curve b in Fig. 10a with the same values of Rabi frequencies (R1 = G1 and
R2 = G2). For the curve b, the values of detuning parameters are set to be equal to
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Fig. 10. Controlling selective quenching of emission via dynamic phase-variation
effect. For Λ = 1, we show (a) the curves a (∆1 = ∆2 = 0, G1 = 5.605, G2 = 4
and δ = 4), and b (∆1 = δ1, ∆2 = δ2 [δ1 and δ2 are calculated from Eq. (74) for
∆1 = ∆2 = 0], G1 = 5.605, G2 = 4); (b) the curves a (∆1 = ∆2 = 4, G1 = 4,
G2 = 5.84 and δ = 20) and b (∆1 = δ1, ∆2 = δ2 [δ1 and δ2 are calculated from
Eq. (74) for ∆1 = ∆2 = 4], G1 = 4, G2 = 5.84). All rates are in the units of γ2.

δj (j = 1, 2) which appear at the detuning condition of curve a. It is noticeable that
the dynamic phase-variation effect introduces the shifting of peaks with selective
quenching of the emission within the spectral line shape when Λ = γ. In Fig. 10b,
similar spectral behaviour is also depicted by the two peak spectrum shown in curve
a (∆1 = ∆2 = 4γ, G1 = 4γ, G2 = 5.84γ, δ = 20γ and Λ = γ) when it is compared
to the curve b (∆1 = δ1, ∆2 = δ2, R1 = G1, R2 = G2 and Λ = γ).

7. Conclusion

The resonant and non-resonant evolution of spontaneous emission spectra have
been studied in an ideal Y -type model. It has been shown that complete cancellation
of spontaneous emission can be obtained in our model. The coherent features have
been analyzed by using the dressed-state model. Considering the system under
purely dissipative environment, for different dynamic conditions, we discussed the
coherent control of the spectral behaviour. The required conditions of achieving
subnatural linewidths of the spectral lines have been predicted. For unequal decay
rates of the excited states |3〉 and |4〉, we have shown that the phenomenon of
constructive quantum interference can strongly modify the emission line shape at
the condition of non-resonant detuning of the fields. In such a condition, due to the
phenomenon of quantum interference, two distinct peaks disappear at their spectral
positions and a new peak results in the line shape at a different spectral position. We
have shown the dependence of the line intensities on the incoherent pumping rates.
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For a specific field configuration in the present model, the static phase-variation
effect arising from the mutual orientation of the field polarizations is investigated to
exhibit the phase-dependent control of emission spectrum. For two coherent fields
of same static phase, but of different frequencies, the dynamic phase-variation effect
can be introduced by the frequency mismatch between the fields. Depending on the
values of the frequency mismatch, anomalous peak-shifting effect is displayed by
the emission spectra in different dynamic conditions. The peak-shifting effect is
accompanied by the selective quenching of emission within the spectral profile.
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KOHERENTNO UPRAVLJANJE SPEKTROM SPONTANE EMISIJE U
DVOJNO TJERANOM ATOMU TIPA Y

Proučavamo dinamičko upravljanje spektrom spontane emisije atomskog sustava
tipa Y koji tjeraju dva koherentna polja. Proučavamo ovisnost svojstava koheren-
tnog spektra o različitim uvjetima, u oguljenom sustavu i primjenom potpunog
sustava. Ako sustav troši energiju, onda svojstvima spektralnih sastavnica možemo
koherentno upravljati mijenjanjem Rabijevih frekvencija i narušavanjem ugodbe
vanjskih polja. Uz uvjet rezonantnog razvoja spektra, pokazujemo kako se oblik
emisijske linije može jako promijeniti uz nejednoliko raspadanje gornjeg dubleta. U
tim uvjetima konstruktivna kvantna interferencija uzrokuje nastanak jednog vrha
na odred–enom mjestu u spektru kada dva jasna vrha nestanu u drugim dijelovima
spektra. Radi med–usobne orijentacije polarizacija polja koja djeluju na atom u ne-
kom stanju, uključili smo i učinak promjene statičke faze da bismo prikazali faznoo-
visne spektre. Ovaj model predstavljamo s tipičnim oblikom polja tako da nesklad
frekvencija dovodi do dinamičkih promjena faze. Ta pojava vodi na anomalne po-
make vrhova i mogućnost odabira gušenja emisije unutar spektralnog područja.
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