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In this paper an attempt is made to study the Burstein-Moss shift in quantum
wires and quantum dots of ternary and quaternary compounds on the basis of
three-band Kane model, taking into account the influence of warped energy surface
of the heavy hole band. It is found, taking n-Hg1−xCdxTe and In1−xGaxAsyP1−y

lattice matched to InP as examples, that the Burstein-Moss shift exhibits oscilla-
tions of non-ideal Heaviside step functions for quantum wires and quantum dots
with respect to doping and film thickness, respectively. Besides, the three-band
Kane model enhances the Burstein-Moss shift and the numerical values of the shift
are greatest in quantum dots for both compounds. In addition, the corresponding
results for two-band Kane model and that of wide band-gap materials have also
been obtained as special cases of our generalized analysis under certain limiting
conditions.

1. Introduction

With the advent of fine line lithography1), molecular beam epitaxy2), metal-
organic chemical vapour deposition3) and other experimental techniques, low-
dimensional structures4,5) having quantum confinement in two and three dimen-
sions such as quantum wires (QWs) and quantum dots (QDs) have in the last few
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years attracted much attention not only for their potential in uncovering new phe-
nomena in solid state electronics but also for their interesting device applications.
Heterostructures based on various materials are currently being studied because of
the enhancement of carrier mobility6). These properties make such heterostructures
suitable for applications in quantum-well lasers7), optical modulators8), hetero-
junction FETs9) and other devices. In QWs, the motions of the electrons are quan-
tized in the two perpendicular directions in wave-vector space and the carriers can
only move in the single free direction10). In QDs, the dimensions of the quantum
well increases from 1D to 3D, the freedom of motion of free carriers is not allowed
and the density-of-states function is changed from Heaviside step function to Dirac’s
delta function11,12).

For non-parabolic semiconductors the absorption edge lay at much shorter wave-
length when it was very n-type than if it was intrinsic and the explanation of this
effect is well-known13). Though, the Burstein-Moss shift (BMS) has been studied
for various materials under different physical conditions, nevertheless it appears
that the same shift in quantum confined structures has been relatively less studied.
It appears from the literature that the BMS in QWs and QDs of non-parabolic
semiconductors has yet to be studied by considering the various band models. It
would, therefore, be of much interest to investigate the BMS in QWs and QDs of
ternary and quaternary compounds, taking n-Hg1−xCdxTe and In1−xGaxAsyP1−y,
lattice matched to InP as examples, respectively.

The compound Hg1−xCdxTe is the classic narrow-gap semiconductor and is an
important optoelectronic compound, because by varying the alloy composition, its
band gap can be adjusted to cover the spectral range from 0.8 µm to 30 µm15).
Hg1−xCdxTe finds extensive applications in infrared detector materials and photo-
voltaic detector arrays in 8 – 12 µm wave bands16). The above uses have spurred
a Hg1−xCdxTe technology for the production of high mobility crystal. The same
material is ideally suited for studying the physics of narrow-gap compounds since
the relevant material parameters are within easy experimental reach17). It may
be noted in this context that the quaternary compounds have also received con-
siderable attention as a widely used material for heterojunction lasers19) and the
avalanche photo diodes20). This material is being used extensively in PETs’, trans-
ferred electron devices and detectors21). Thus it would be of interest to study the
BMS in quantum confined structures of such ternary and quaternary compounds
because of their importance in semiconductors device and technology as stated
above.

In what follows, in Sect. 2.1 of theoretical background we shall derive the BMS
in QWs of such materials on the basis of three-band Kane model22) and taking
into account the influence of the warped energy surface of the heavy hole band23).
In Sect. 2.2 we shall derive the same in QDs. In Sect. 2.3 we shall obtain the
corresponding results of two-band Kane model and that of wide gap materials as
special cases of our generalized analysis. We shall study the doping and thickness
dependences of the BMS in QWs and QDs of such compounds.
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2. Theoretical background

2.1. Formulation of BMS in QWs of ternary and quaternary

compounds

The energy spectrum of the conduction electrons in bulk specimens of ternary
and quaternary compounds can be expressed, in accordance with three-band Kane
model, as22)

h̄2k2

2m∗
= γ(E), γ(E) =

E(E + Eg)(E + Eg +∆)(Eg + (2/3)∆)

Eg(Eg +∆)(E + Eg + (2/3)∆)
, (1a)

where h̄ = h/2π, h is the Planck’s constant, ~k is the wave-vector, m∗ is the effective
electron mass at the edge of the conduction band, E is the total electron energy as
measured from the edge of the conduction band in the vertically upward direction
in the absence of any quantization, Eg is the band-gap and ∆ is the spin-orbit
splitting of the valence band. The modified electron dispersion law in QWs can be
written following Eq. (1a) as

γ(E) =
h̄2π2

2m∗

[

(

nx
dx

)2

+

(

ny
dy

)2
]

+
h̄2k2z
2m∗

, (1b)

where nx and ny are the size quantum numbers along x and y directions, respec-
tively, and dx and dy are the widths of the QWs along the respective directions.
The use of Eq. (1b) leads to the expression of the density-of-states function as

N1D(E) = (
√
2m∗/h̄)

nxmax
∑

nx=1

ny max
∑

ny=1

[

Θ1(E)/Ψ1(E, nx, ny)
]

H(E − E1) , (2)

where

Θ1(E) = γ(E)

[

E−1 + (E + Eg)
−1 + (E + Eg +∆)−1 −

(

E + Eg +
2

3

)

−1
]

,

ψ1(E, nx, ny) =

[

γ(E)−
h̄2π2

2m∗

(

(

nx
dx

)2

+

(

ny
dy

)2
)]

.

H is the Heaviside step function and E1 can be obtained from Eq. (1b) by putting
E = E1 and kz = 0.

Combining Eq. (2) with the Fermi-Dirac occupation probability factor, the elec-
tron concentration per unit length in QWs of ternary and quaternary materials can
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be written in accordance with three-band Kane model as

n1D =

√
2m∗

πh̄

nxmax
∑

nx=1

ny max
∑

ny=1

[ψ1(EF , nx, ny) + ψ2(EF , nx, ny)], (3)

where

ψ2(EF , nx, ny) =

S
∑

r=1

2(kBT )
2r(1− 21−2r)ζ(2r)

d2r

dE2r
F

.

r is the set of real positive integers, kB is the Boltzmann constant, T is the tem-
perature, ζ(2r) is the zeta function of order 2r14) and Er is the Fermi energy in
the QWs.

The heavy hole spectrum can be written in accordance with the warped energy
band model as23)

Eh =
h̄2k2

2m0
γ1 −

h̄2

m0

[

γ22k
4 − 3(γ23 − γ22)(k

2
xk

2
y + k2yk

2
z + k2zk

2
x)
]1/2

, (4)

where m0 is the free electron mass and γ1, γ1 and γ3 are the well-known Luttinger
constants23).

Therefore the BMS in QWs can be expressed as

δ1d = EF + Eg + E2 , (5)

where

E2 =
h̄2γ1
2m0

[

A+B(EF )
]

−
h̄2

m0

[

γ22
[

A+B(EF )
]2

+3(γ23 − γ22)(π
2/dxdy) + 3(γ23 − γ22)AB(EF )

]1/2

,

A = π2(d−2
x + d−2

y ) and B(EF ) = 2m∗h̄−2γ(EF )−A .

2.2. Formulation of BMS in QDs of ternary and quaternary

compounds

From Eq. (1b) the electron energy spectrum in QDs of the materials considered
can be written as

γ(E′) = (h̄2π2/2m∗)
[

(nx/dx)
2 + ny/dy)

2 + nz/dz)
2
]

, (6)

where E′ is the 3D quantized energy in the present case, dz and nz are the film
thickness and the size quantum number along th z-direction, respectively. The use
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of Eq. (6) leads to the expression of the density-of-states function as

N3D = (2/dxdydz)

nxmax
∑

nx=1

ny max
∑

ny=1

nz max
∑

nz=1

δ′(E − E′), (7)

where δ′ is the Dirac’s delta function. Thus combining Eq. (7) with the Fermi-Dirac
occupation probability factor, the electron concentration per unit volume in QDs
of ternary and quaternary materials can be expressed as

n3D = (2/dxdydz)

nxmax
∑

nx=1

ny max
∑

ny=1

nz max
∑

nz=1

F−1(η), (8)

where η = (kBT )
−1(εF − E′), εF is the Fermi energy in QDs and Fj(η) is the

Fermi-Dirac integral of order j which can be written following Ref. 25 as

Fj(η) =
1

√
j + 1

∞
∫

0

yj [1 + exp(y − η)]−1dy, (9)

for y > −1, or for all y analytically continued as a complex contour integral around
the negative axis,

Fj(η) = Cj

(0+1)
∫

(−∞)

yj [1 + exp(y − η)]−1dy, (10)

where
√
j + 1 is the complete gamma function and Cj =

√
−j/2π

√
−1. Therefore

the BMS in QDs of nonparabolic materials is given by

δ3D = εF + Eg + E3, (11)

where

E3 =
h̄2γ1D1

2m0
−
h̄2

m0

[

γ22D
2
1 + 3(γ23 − γ22)e1

]1/2

,

D1 = π2(d−2
x + d−2

y + d−2
z ) and e1 = π4(d−2

x d−2
y + d−2

y d−2
z + d−2

z d−2
x ).

2.3. Special cases

(a) Under the conditions ∆ ≫ Eg (e.g. n-InSb) or ∆ ≪ Eg (e.g. n-GaAs),
Eq. (1a) assumes the form

h̄2k2/2m∗ = E(1 + αE), α = 1/Eg, (12)
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which is the well-known two-band Kane model26). The basic forms of all aforemen-
tioned equations will be unchanged for two-band Kane model where

γ(E) = E(1 + αE) and Θ1(E) = 1 + 2αE. (13)

(b) For relatively wide band-gap materials α → 0. In this case, all equations
considered will also be unaltered where

γ(E) = E and Θ1(E) = 1. (14)

3. Results and discussion

Using Eqs. (3) and (5) and taking the values of the energy band parameters23,27,28)

for Hg1−xCdxTe and In1−xGaxAsyP1−y lattice matched to InP as given in Table 1,
we have plotted the normalized BMS as functions of electron concentration per unit
length and film thickness as shown in Figs. 1 and 2, respectively, in accordance with
both the three- and two-band Kane models for QWs of both compounds, respec-
tively. Using Eqs. (8) and (11) and taking the parameters as used in obtaining
Figs. 1 and 2, we have further plotted the normalized BMS as functions of elec-
tron concentration per unit volume and film thickness as shown in Figs. 3 and
4, respectively, in accordance with the aforementioned band models for QDs of
both compounds. From the figures and the above discussion, the following features
follow.

TABLE 1.

Parameters InP GaP In1−xGaxAsyP1−y

γ1 4.95 4.05 Q(x, y)

γ2 1.65 0.49 Q(x, y)

γ3 2.35 1.25 Q(x, y)

m∗/m0 0.080− 0.0393y

∆ (0.114 + 0.26y − 0.22y2) eV

Eg (1.337− 0.73y + 0.13y2) eV

Q(x, y) = (1− x)yBAC + (1− x)(1− y)BAD + xyBBC + x(1− y)BBD

for the material A1−xBxCyD1−y, x = 0.1844y[0.4184− 0.013y]−1

Energy band parameters of In1−xGaxAsyP1−y lattice matched to InP and
Hg1−xCdxTe, respectively.

a) Parameters for In1−xGaxAsyP1−y, lattice matched to InP27).

Eg = [−0.302 + 1.93x+ 5.35x 10−4 T (1− 2x)− 0.810x2 + 0.832x3] eV,

m∗=3h̄2Eg(x)/4P
2(x), P 2(x)=(h̄2/2m0)(18+3x), ∆ = 0.63+0.24x−0.27x2] eV,

γ1 = 8.3, γ2 = 7.4, γ3 = 7.5,

b) Parameters for n-Hg1−xCdxTe
23,28).
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1. It appears from Figs. 1 and 2 that the BMS in QWs increases with increasing
electron concentration and decreasing film thickness, respectively, for both com-
pounds. The BMS oscillates both with n1D and dx in a step-like manner which
reflects the dependence of the density-of-states function with energy in QWs. The
influence of 1D motion is immediately apparent from Fig. 2 since the BMS has be-
come strongly dependent on the thickness of the QWs in contrast with bulk spec-
imens of the corresponding compounds. The step functional oscillations of BMS
is non ideal due to the presence of finite temperature. The influence of spin-orbit
splitting of the valence band in the dispersion relation of the conduction electrons
in accordance with three-band Kane model enhances the values of the BMS for
the whole range of the variables considered. The numerical values of the BMS for
quaternary compounds are greater than those of ternary materials.

Fig. 1. Plot of the normalized BMS versus n1D in QWs in accordance with (a) three-
band Kane model for In1−xGaxAsyP1−y, lattice matched to InP; (b) two-band Kane
model for In1−xGaxAsyP1−y, lattice matched to InP; (c) three-band Kane model
for Hg1−xCdxTe and (d) two-band Kane model for Hg1−xCdxTe (x = y = 0.5,
T = 4.2 K, dx = dy = 40 nm).
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Fig. 2. Plots of the normalized BMS versus dx in QWs for all the cases of Fig. 1
(x = y = 0.5, T = 4.2 K, dy = 40, n1D = 1011 m−1.

2. It appears from Figs. 3 and 4 that the BMS increases with increasing electron
concentration and decreasing film thickness very sharply in nonideal steps on QDs of
ternary and quaternary materials. It may be noted that the 3D quantization in QDs
leads to the discrete energy levels which produces very large changes. Under such
quantization, there remains no free electron states and consequently the crossing of
the Fermi levels by the size quantized subbands under 3D quantization would have
much more greater impact on the redistribution of the electrons as compared to
found for ID quantization. It is basically this impact which results in the increased
sharpness of the oscillatory variations of the BMS in QDs as compared to QWs.

In this paper we have first formulated the simple expressions of the electron
statistics and the BMS for ternary and quaternary compounds by using the gener-
alized three-band Kane model and the warping of the heavy hole band without any
approximations among the energy band constants. The three-band Kane model is
also valid for III-V compound semiconductors, in general, but must be used as such
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Fig. 3. Plots of the normalized BMS versus n3D in QDs for all cases of Fig. 1
(x = y = 0.5, dx = dy = dz = 40 nm, T = 4.2 K).

for n-InAs where the spin-orbit splitting constant is of the order of band gap. For
many important semiconductors ∆ ≫ Eg (e.g. n-InSb) or ∆ ≪ Eg (e.g. GaAs),
where the two-band Kane model is applicable. Thus our simple analysis is valid
for various materials under different quantum confined conditions. Besides, the
influence of the energy band models on the BMS in QWs of ternary and quaternary
materials can also be assessed from our work. The BMS could have been plotted
with other physical variables. We have numerically plotted a few cases for the
purpose of condensed presentation. Since the experimental results are not available
in the literature to the best of our knowledge, we can not compare our theoretical
analysis with experimental data. The general qualitative features of the BMS as
shown here would be valid for most n-type semiconducting materials. Finally it
may be noted that the basic purpose of the present work is not only to investigate
the BMS but also to formulate the appropriate density-of-states function since the
different electronic properties and transport coefficients are based on this function
in quantum confined structures.
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Fig. 4. Plot of the normalized BMS versus dx in QDs for all cases of Fig. 1 (x =
y = 0.5, dy = dx = 40 nm, n3D = 1019 m−3, T = 4.2 K).
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KVANTNIM OGRANIČENIM STRUKTURAMA TERNARNIH I

KVATERNARNIH SPOJEVA

KHAMAKHYA P. GHATAK∗ i MANABENDRA MONDAL∗∗

∗Dept. of Electronics and Telecomm. Eng., Faculty of Engineering and Technology,
University of Jadavpur, Calcutta 700032, India

∗∗Dept. of Physics, Y. S. Palpara College, Post-Palpara, Dist. Midnapore, 721458, India

UDK 621.315

Originalni znanstveni rad

Koristeći Kaneov model s tri vrpce proučavan je Burstein-Mossov pomak u
kvantnim točkama i kvantnim žicama ternarnih i kvaternarnih spojeva. U obzir
je uzeta iskrivljenost energetske plohe teških šupljina. Uzevši n-Hg1−xCdxTe i
In1−xGaxAsyP1−y kao primjere, nad–eno je da Burstein-Mossov pomak pokazuje
neidealne oscilacije Heavisideove step funkcije u odnosu na dopiranje i debljinu
sloja. Burstein-Mossov pomak najveći je u kvantnim točkama za oba spoja. Odgo-
varajući rezultati za Kaneov model s dvije vrpce i velik energetski procijep dobiveni
su uz odred–ene granične uvjete.
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