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In this paper a study is made of the thermoelectric power of electrons in quan-
tum wires of nonparabolic semiconductors in the presence of crossed electric and
magnetic fields on the basis of a newly derived electron dispersion law considering
all types of anisotropies of the energy spectrum. It is found, taking n-CdGeAs2 as
an example, that the thermopower increases with increasing film thickness, mag-
netic field and electric field, respectively. The crystal field splitting enhances the
thermopower with respect to all physical variables. In addition, the corresponding
expressions for quantum wires of parabolic semiconductors have also been obtained
from our generalized analysis under certain limiting conditions.

1. Introduction

With the advent of fine lithographical methods [1], molecular beam epitaxy [2],
organo-metallic vapour-phase epitaxy [3] and other experimental techniques, low-
-dimensional structures [4,5] in the last few years attracted much attention not
only for their potential in uncovering new phenomena in physical electronics but
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also for their interesting device applications [6]. In quantum well wires (QWW’s)
the electron gas is quantized in two transverse directions and charge carriers are
free to move only in the single free direction. The potential use of these synthetic
lD materials for high speed devices under different physical conditions makes the
knowledge of their appropriate band structure desirable. It appears from the litera-
ture that the thermoelectric power of electrons (TPE) in QWW’s in the presence of
crossed electric and magnetic fields has yet to be investigated even for parabolic en-
ergy bands. With the advent of quantum Hall effect [7] there has been considerable
interest in studying the TPE in quantized materials.

We have used the ternary chalcopyrite semiconductors having non-parabolic and
non-standard energy band as an example of non-parabolic materials. We shall work
out the problem for the more interesting case which occurs from the presence of
various types of anisotropies of the energy spectrum. This will make our analysis a
generalized one since we can obtain the TPE in QWW’s of even parabolic semicon-
ductors. Rowe and Shay [8] have demonstrated that the quasicubic model [9] can be
used to explain the observed splitting and symmetry properties of the conduction
and valence bands at the zone center of the ternary chalcopyrite semiconductors.
The s-like conduction band is single degenerate and the p-like valence bands are
triply degenerate. The latter splits into three subbands because of spin-orbit and
crystal field interactions. The largest contribution to the crystal field splitting of
the valence band occurs from the non-cubic potential [10]. The experimental data
on the absorption constant [11], the effective masses [12], and the third order opti-
cal susceptibility [13] have produced strong evidence that the conduction band in
the same semiconductor corresponds to a single ellipsoid of revolution at the zone

center in ~k space. Incorporating the anisotropic crystal potential to the Hamilto-

nian, Kildal [11,14] proposed an E-~k dispersion relation of the conduction electrons
in the same semiconductor based on the assumptions of isotropic spin-orbit split-
ting parameters and isotropic interband momentum-matrix elements, respectively,
though the anisotropies in the two aforementioned band parameters are significant
physical features of the ternary chalcopyrite semiconductors [15].

In what follows, in Section 2.1. we shall derive the TPE in QWW of ternary
chalcopyrite materials under cross-field configuration by using the generalized dis-
persion relation of the conduction electrons incorporating the above mentioned
anisotropies as derived elsewhere [16]. In Section 2.2, we shall give the limiting
cases of three-band Kane model, two-band model and that of parabolic energy
bands in QWW’s. We study the dependence of the TPE in QWW’s of non-parabolic
semiconductors in the presence of crossed electric and magnetic fields on electron
concentration, electric and magnetic field strength and thickness. We take QWW’s
of n-CdGeAs2 as an example.
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2. Theoretical background

2.1. Thermoelectrical power of electrons in quantum well wires

The generalized dispersion relation of the conduction electrons, incorporating
the aforementioned anisotropies of the energy bands in bulk specimens of ternary
chalcopyrite semiconductors, can be expressed [16] as

U(E) = p2s/2M⊥ + p2zV (E)/2M‖ (1)

where U(E) = [E(1 + αE){(E +Eg)(E +Eg +∆‖) + δ(E +Eg +
2

3
∆‖) +

2

9
(∆2

‖ −
−∆2

⊥)}]/ζ(E), E is the electron energy as measured from the edge of the conduction
band in the vertically upward direction in the absence of any quantization, α =

= 1/Eg, Eg is the band gap, ζ(E) = [(E + Eg)(E + Eg +
2

3
∆‖ + δ(E + Eg +

+
2

3
∆‖)+

1

9
(∆2

‖−∆2
⊥)], ∆‖ and ∆⊥ are the spin-orbit splitting parameters parallel

and perpendicular to the direction of the c-axis, respectively, δ is the crystal field

splitting parameter, ~ps = h̄~ks, h̄ = h/2π, h is the Plancks constant, k2s = k2x + k2y,

M‖,⊥ = m∗
‖,⊥[(Eg+

2

3
∆‖,⊥)[(Eg+∆‖,⊥)]

−1], m∗
‖ andm

∗
⊥ are the band edge effective

electron masses along and perpendicular to the direction of the c-axis, ~pz = h̄~kz

and V (E) = [(E + Eg)(E + Eg +
2

3
∆‖)]/ζ(E).

Thus, extending the method as given in the literature [17], the modified electron
energy spectrum in QWW of the same materials in the presence of crossed electric
field E0 along x-axis and magnetic field B along z-axis can be written as

f + (q2/2) sin−1(ψ) = eBπh̄l (2)

where the symbols are defined in Appendix A.1. The use of (2) leads to the expres-
sion for electron concentration n0 as,

F +
1

2
Q2 sin−1(Φ) = eBπh̄l (3)

where the symbols are defined in Appendix A.2.

The TPE in the present case can be expressed as

D = s0/en0 (4a)

where s0 is the entropy in the present case. Then using (3) and (4a) we get

D = (π2k2T/3en0)(q1/q2) (4b)

where the symbols are defined in Appendix A.3.
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2.2. Special cases

1. Under the conditions δ = 0, ∆‖ = ∆⊥ = ∆ (the isotropic spin-orbit splitting
parameter) and m∗

⊥ = m∗
‖ = m∗ (the isotropic effective electron mass at the edge

of the conduction band), (1) assumes the form

h̄2k2

2m∗
= γ(E), γ(E) =

E(E + Eg)(E + Eg +∆)(Eg +
2

3
∆)

Eg(E + Eg +
2

3
∆)(Eg +∆)

(5)

which is the three-band Kane model [18] for III-V semiconductors, and ternary and
quaternary alloys. It is used in this form for the study of electronic properties of
n-InAs where ∆ ≃ Eg. Thus with the above mentioned substitutions, the electron
statistics and the TPE can, respectively, be expressed as

F1 +
1

2
Q2

1 sin
−1(Φ1) = eBπh̄l (6)

and

D = (β1/β2)(π
2k2BT/3en0) (7)

where the notations are defined in Appendix A.4.

2. Under the conditions ∆ ≫ Eg (e.g. in n-InSb, n-HgTe) or ∆ ≪ Eg (e.g.
n-InP, n-GaAs), (5) assumes the form

E(1 + αE) = h̄2k2/2m∗, α = 1/Eg (8)

which is the two-band Kane model [19]. Therefore in this case, the basic forms of
(6) and (7) will not change where γ(E) = E(1 + αE) and ψ0(E) = (1 + 2αE).
Finally under the condition α → 0, as for wide band gap materials, the forms (6)
and (7) remain same where γ(E) = E and ψ0(E) = 1.

3. Results and discussion

Using the appropriate equations together with the parameters [14] m∗
‖ =

0.030m0, m
∗
⊥ = 0.039m0, ∆‖ = 0.34 eV, ∆⊥ = 0.36 eV, δ = −0.21 eV,

Eg = 0.57 eV, E0 = 103 V/m, B = 3.5 T, d1 = 40 nm and d2 = 60 nm, we
have calculated the normalised TPE as a function of electron concentration. The
results are shown as curve a in Fig. 1. For the purpose of comparison, curve b in
Fig. 1 shows the same dependence, but taking the crystal field parameter as zero. In
addition, in Fig. 1, curve c corresponds to the degenerate three-band Kane model
of n-CdGeAs2 (taking ∆ = 0.35 eV and m∗ = 0.34m0 for the purpose of numerical
computations). We have also plotted the TPE according to with two-band Kane
model and that of parabolic energy bands, using the same parameters as in the
calculations of results shown in Fig. 1. We have presented the TPE as functions
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of film thickness (taking square QWW), magnetic field and electric field as shown
in Figs. 2, 3 and 4, respectively. The various simplified limiting cases have further
been considered for the purpose of assessing the influence of energy band models
on the TPE in QWW’s of nonparabolic materials.

Fig. 1. Plot of the normalized TPE as a function of the electron concentrations per
unit length under cross field configuration in QWW of n-CdGeAs2: curve a, our
proposed dispersion relation; curve b, δ = 0, curve c, the three-band Kane model,
curve d, the two-band Kane model, curve e, the parabolic energy bands.

It appears from Fig. 1 that the TPE decreases with increasing electron concen-
tration at a rate lower than in the case δ = 0. Moreover, for relatively low values of
the electron concentration, the effect of crystal field splitting decreases wheras the
same parameter affects significantly the TPE for relatively large values of the car-
rier degeneracy. The TPE increases with increasing thickness, magnetic field and
electric field is shown in Figs. 2, 3 and 4, respectively. The TPE exhibits largest
value with respect to all the variables in accordance with our proposed generalized
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Fig. 2. Plot of the normalized TPE as function of the film thickness (assuming
square QWW) under cross field configuration in QWW of n-CdGeAs2: curve a,
our proposed dispersion relation; curve b, δ = 0; curve c, the three-band Kane
model; curve d, the two-band Kane model; curve e, the parabolic energy bands.
(n0 = 1016 m−1, E0 = 103 V/m and B = 3 T).
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Fig. 3. Plot of the normalized TPE as function of the magnetic field under cross-field
configuration in QWW in n-CdGeAs2: curve a, our proposed dispersion relation;
curve b, δ = 0; curve c, the three-band Kane model; curve d, the two-band Kane
model; curve e, the parabolic energy bands. (n0 = 1011 m−1, d1 = 40 nm, d2 = 50
nm, E0 = 103 V/m).
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Fig. 4. Plot of the normalized TPE as function of the electric field under cross field
configuration in QWW of n-CdGeAs2: curve a, our proposed dispersion relation;
curve b, δ = 0; curve c, the three-band Kane model; curve d, the two-band Kane
model; curve e, the parabolic energy bands. (n0 = 10−10 m−1, d1 = 40 nm, d2 = 50
nm, B = 3 T).
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dispersion law and the smallest for the parabolic energy bands. The variations
of the TPE with n0, B, d0 and E0 are completely band structure dependent for
all models of QWW of degenerate ternary chalcopyrite semiconductors. Since the
experimental data of the thermoelectric power are not available in the literature to
the best of our knowledge, we can not compare our theoretical analysis with the
experiment. We wish to note that the theoretical results, as given here, would be
useful in analysing the experimental results when they appear. The experimental
values of D will provide an experimental check on the TPE and also serve as a
technique for probing the band structure in degenerate materials.

We wish to note the basic form of (2) remains unaltered for our proposed disper-
sion relation, three-band Kane model, two-band Kane model and that of parabolic
energy bands in QWW of semiconductors in crossed fields. Thus (2) covers vari-
ous semiconductors under different physical conditions. The functions F , Q and Φ
are band structure dependent quantities. The above statement is also true in the
presence of magnetic field only. This peculiarity of transcendental nature of our
present problem, which is valid even for parabolic energy bands, is not at all true
in bulk materials. From the expressions of TPE and electron concentration as given
by Eqs. (4b) and (3) we can get the corresponding expressions for QWW’s of even
parabolic semiconductors in the absence of electric field. It is worth remarking that
the quantization of energy of transverse plane of the direction of application of the
magnetic field, valid for the 3D electron gases in a cross-field configuration, is not
at all valid for QWW under the same physical condition. Besides, the subband
energies can be calculated from Eq. (2).

It may be stated that the analysis of our present work be useful in determin-
ing theoretically the diffusion constant both in the presence and in the absence of
electrical field, even for parabolic semiconductors since the TPE is inversely pro-
portional to the diffusivity-to-mobility ratio. Finally it may be remarked that the
basic purpose of our present paper is not only to investigate the TPE in QWW of
non-parabolic semiconductors under cross-field configuration, but also to formulate
the appropriate generalized electron energy spectrum since the study of the trans-
port phenomena and the formulation of the electronic properties of semiconductors
are based on the dispersion relations in such materials.

Appendix

A.1. f =
[

(b− eBd1) 2
−1

[

q2 − (b+ eBd1)
2
]1/2 − 2−1 (b+ eBd1)

[

q2 − (b−

−eBd1)2
]1/2

]

, b = (eB)−1
[

2M⊥̺(E)eE0 + πh̄elBd−1

2

]

, q2 = [2M⊥U(E) −

−M⊥p
2
za

−1(E)− π2h̄2t2
(

4d22
)−1

+ b2
]

, ψ =
[

ζ+

(

1 − ζ
2

−

)1/2

− ζ− (1 −

− ζ
2

+

)1/2
]

, ζ± = (b ± eBd1)/2, 2d1 and 2d2 are the widths along x

and y directions, respectively, t = 1, 2, 3, . . ., l = 1, 2, 3, . . ., ̺(E) =
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= U(E)
[

(1 + 2αE) {E(1 + αE)}−1 − J(E){I(E)}−1 + (E + Eg +∆‖)
−1−

−
(

E + EG +
2

3
∆‖

)−1
]

, J(E) = I(E)
[

C(E) {1 +A(E)}−1 −H(E){1+

+G(E)}−1
]

, I(E) = [1 + A(E)][1 + G(E)]−1, A(E) = [(E + Eg + ∆‖)(E +

+ Eg)]
−1[

1

9
(∆2

‖ − ∆2
⊥) + δ(E + Eg +

1

3
∆‖)], G(E) = [(E + Eg)(E + Eg +

+
2

3
∆‖)]

−1[δ(E+Eg +
1

3
∆‖)+

1

9
(∆2

‖−∆2
⊥)], C(E) = A(E)[δ{2

9
(∆2

‖−∆2
⊥)+

+ δ(E + Eg +
2

3
∆‖)}−1 − (2E + 2Eg + ∆‖){(E + Eg)(E + Eg + ∆‖)}−1]

and H(E) = G(E)[{δ(E + Eg +
1

3
∆‖) +

1

9
(∆2

‖ − ∆2
⊥)}−1δ − (2E + 2Eg +

+
2

3
∆‖){(E + Eg)(E + Eg +

2

3
∆‖)}−1].

A.2. F = [[C − eBd1]2
−1[X2 − (C − eBd1)

2]1/2 − 2−1(C + eBd1)[X
2 − (C −

− eBd1)
1/2], C = (eB)−1[2M⊥eE0̺(EF ) + πh̄leBd−1

2 ], X2 = [2M⊥U(EF ) +

+ C2 −M⊥h̄
2n20π

2a−1(EF )− π2h̄2t2(4d22)
−1], Φ = [λ+(1− λ2−)

1/2 − λ−(1−
− λ2+)

1/2] and λ± = (C ± eBd1)/2.

A.3. q1 = A1 − QA2 + Q2[2
√

1− Φ2]−1, A1 = (a1/2)[Q
2 − (C + eBd1)

2]1/2 +

+(1/4)(C−eBd1)[Q2−(C+eBd1)
2]1/2[2Qa2−2a1(C+eBd1)]−(a1/2)[Q

2−
− (C − eBd1)

2]1/2 − 1

4
(C + eBd1)[Q

2 − (C − eBd1)
2]1/2[2Qa2 − 2a1(C −

eBd1)], a1 = (eB)−1[2M⊥eE0̺
′(EF )],

′ denotes the differentiation w.r.t. EF ,
a2 = (2Q)−1[2M⊥U(EF ) + M⊥h̄

2n20π
2a−2(EF )a

′(EF ) + (eB)−1(4CM⊥ ·
· ̺′(EF )eE0)], a2 = A2, A3 = [−s+(1 − Γ2

−)
1/2 + (Γ+Γ−)s−(1 − Γ2

−)
1/2 +

+ s−(1 − Γ+)
1/2 − (Γ+Γ−)s+(1 − Γ2

+)
1/2], s± = [a1Q

−1 − Q−2A2(C ±
± eBd1)], Γ± = (C ± eBd1)/2, q2 = [A4 − QA5(sin

−1 Φ) + Q2A6{2 ·
·
√
1− Φ2}−1]; A4 = [[Q2−4Γ2

+]
1/2(−Γ,−QA5)+

1

2
Γ+(Q

2−4Γ2
−)

−1/2(2QA5)],

A5 = n0M⊥h̄
2Q−1, A6 = [λ+

√

1− Γ2
−−λ−(Γ+Γ−)(1−Γ2

−)
−1/2+λ+(Γ+Γ−)·

· (1− Γ2
+)

−1/2 − λ−(1− Γ2
+)

1/2], λ± = (A5/Q)(2Γ±).

A.4. F1 =
1

2
[Θ+(Q

2
1 −Θ2

+)
1/2 −Θ−(Q

2
1 −Θ2

−)
1/2], Θ± = [[h̄tπ(2d2)

−1 +

+m∗E0ψ0(EF )B
−1±eBd1]], ψ0(EF ) = {γ(EF ){(1+αEF )EF }−1[1+2αEF +

+EF (1+αEF ){(EF +Eg+∆)−1−(EF +Eg+
2

3
∆)−1}]}, Q2

1 = [2m∗γ(EF )−
− (h̄2π2n20)+m

∗2E2
0ψ

2
0(EF )B

−2+m∗E0ψ0(EF )πth̄(Bd2)
−1], Φ1 = [ζ1,+(1−

−ζ1,−)1/2−ζ1,−(1−ζ21,+)1/2], ζ1,± = Θ±/Q1, β1 = [
1

2
m∗E0ψ0(EF )B

−1(Q2
1−

−Θ2
+)

1/2+
1

2
Θ2

−E0m
∗ψ′(EF )B

−1(Q2
1−Θ2

−)
−1/2− 1

2
Q1a2Θ−(Q

2
1−Θ2

−)
−1/2+
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+
1

2
(Q2

1 − Θ2
+)

−1/2Qa1Θ+ − 1

2
m∗E0ψ

′(EF )B
−1(Q2

1 − Θ2
+)

−1/2 · (Q2
+) −

− 1

2
m∗E0ψ

′(EF )B
−1(Q2

1 −Θ2
−)

1/2 +Q1a1(sin
−1 Φ1) + (Q2

1s1/2 ·
√

1− Φ2)],

a1 = (2Q)−1[2m∗γ′(EF ) + 2(m∗)2E2
0B

−2ψ0(EF )ψ
′
0(EF ) + m∗E0ψ

′(EF ) ·
· tπh̄(Bd2)−1], s1 = [p1,+(1 − ζ21,−)

1/2 − ζ1,+ζ1,−(p1,−)(1 − ζ21,−)
−1/2 −

− p1,−(1 − ζ21,+)
1/2 + ζ1,+ζ1,−p1,+(1 − ζ21,+)

1/2], p1,± = (m∗E0ψ
′(EF ) ·

· (BQ1)
−1 − a1Q

−2

1 Θ±), β2 = [
1

2
Θ+Q1a2(Q

2
1 − Θ2

+)
−1/2 +

1

2
Q1a2Θ−(Q

2
1 −

− Θ2
−)

−1/2 + Qa2 sin
−1(Φ1) + Q2s2{2

√

1− Φ2}−1], a2 = h̄2π2n0/Q1,

s2 = [p2,+

√

1− ζ21,− − ζ1,+ζ1,−p2,−(1 − ζ21,−)
−1/2 − p2,−(1 − ζ21,+)

1/2 +

+ ζ1,+ζ1,−p2,+(1− ζ21,+)
−1/2] and p2,± = a2Θ±/Q

2
1.
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JEDNOSTAVNA ANALIZA TERMOELEKTRIČNE SNAGE U KVANTNIM
ŽICAMA NEPARABOLIČNIH POLUVODIČA U PREKRIŽENOM

ELEKTRIČNOM I MAGNETSKOM POLJU
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Originalni znanstveni rad

Razmatrana je termoelektrična snaga elektrona u tzv. kvantnim žicama nepara-
boličnih poluvodiča u prekriženom električnom i magnetskom polju koristeći ne-
davno dobiven zakon disperzije za energiju elektrona koji uzima u obzir sve tipove
anizotropije u energetskom spektru. Uzevši n-CdGeAs2 kao primjer, nadeno je
da termoelektrična snaga opada porastom debljine filma, te jakošću električnog i
magnetskog polja. Isto tako, kristalno polje jača termoelektričnu snagu u odnosu
na sve fizikalne parametre.
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