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We discuss polaron formation in anharmonic lattice. Expanding the local lattice
distortion into coherent Glauber states, from the minimum energy condition we
determine the hybridization amplitude renormalization and discuss its influence on
polaron mobility and magnetic interactions.

The polaron concept was introduced to describe localized states in which elec-
tron and the lattice degrees of freedom are coupled together via strong electron-
phonon interaction. The model of formation of two polaronic bands in copper oxides
based on mixed-valent (MV) behaviour of both copper and oxygen ions was pre-
sented in Ref. 1. In this approach, however, only linear terms in lattice distortion
electron-phonon coupling and harmonic lattice were taken into account. The aim
of the present contribution is to study anharmonic effects associated with small
polaron formation. With transition between different electronic configurations of
MV ion is associated respective change in ionic volume. Provided that valence
fluctuations are sufficiently slow to allow surrounding ions to relax to appropri-
ate electronic state they generate local distortion of the lattice. The distortion
can achieve significant values, for example, in the La 2−xSrxCuO4 the Cu-O bond
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length change from 0.213 nm in case of [Cu-O]0 complex Cu+2-O−2 states to 0.194
nm in the [Cu-O]+1 complex. The large values of local lattice distortions indicate
that anharmonic effects may be of importance in polaron formation.

Let us assume that MV ion located at site Ri fluctuates between | ln > and
| ln−1L > electronic states, where l = d or f denote localized electronic state while
L = s, p or d are the band states. The Hamiltonian of the system we assume to be
given in the form [2]:

H0 =
∑
k

ǫk · c+k ck +
∑
j

Ej · b
+

j bj +
∑
kj

[Vkj · e
i~k ~Rj · c+k bj + h.c.] (1)

where in (1) first and second term describe energies of band and localized electronic
states with c+k , ck, b

+

j and bk being respective creation and destruction operators,
while third term describes hybridization between these states.

In the copper oxides one would expect two fluid picture of Cu+3 and O−1 po-
larons, the one being small and heavy the latter of intermediate character between
large and small polarons [1]. In the following we will focus our attention on the small
polarons associated with the CuO6 octahedron breathing modes i.e. to a case for
which the anharmonic effects are of importance. In the conventional approach the
linear coupling of an electron to harmonic lattice of the following form is considered
[2]

H1 =
∑
i

h̄ω · a+i ai + λ
∑
i

(a+i + ai) · (2b
+

i bi − 2n+ 1) (2)

where n-is the occupation number of | ln > state. The first term in (2) repre-
sents the energies of N harmonic oscillators, while the second describes the linear
electron-phonon interaction. For n=1 the Hamiltonian (2) reduces to form given,
e.g., in Refs. 2 and 3. In (2) we assume that the electron-phonon coupling is
dominated by longitudinal optic (LO) phonons (represented by operators a+i and
ai), which sense more effectively the ionic shift or size effect. Provided that both
electron-phonon coupling constant λ and lattice distortion are small, Eq. (2) de-
scribes satisfactorily the elastic contribution to the energy of the system. However,
since the ligand distortions in case of the above mentioned substances exceed 10
percent of the lattice spacings neither harmonic lattice nor linear electron-phonon
coupling approximations can be justified. In this case the description of polaronic
effects requires consideration of higher degree electron-phonon coupling as well as
anharmonic contribution to the elastic energy. The aim of this paper is to study the
effect of anharmonic lattice and higher-order electron-phonon coupling on polaronic
effect in mixed-valent solids. The expansion of the electron lattice interaction en-
ergy in powers of local distortion will allow consideration of the higher-order terms,
at least of the bilinear one of the form

H2 = Γ2

∑
i

(a+i + ai)
2 · (2b+i bi − 2n+ 1). (3)
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Similar generalization of electron-phonon coupling in polaron theory has been con-
sidered recently in Ref. 4. Let us consider a system described by the Hamiltonian:

H = H0 +H1 +H2 =
∑
i

Hi (4)

i.e. MV ion system with local quadratic electron-phonon interaction and anhar-
monicity of the lattice taken into account. First of all we will find the ground states
of the lattice associated with the two accessible electronic configurations. According
to Ref. 5 the strain fields around the MV ion associated with the two accessible
electronic states can be expanded in a unique way in terms of the the coherent
Glauber states |α)i :

|α)i = exp[α · (a+i − ai)] · |0 > . (5)

They are the eigenstates of the phonon destruction operators ai i.e. fulfilling the
relation [5]:

ai|α)i = α · |α)i. (6)

In Eq. (4) |0 > denotes the phonon vacuum. In principle the expansion of
arbitrary lattice state |F )i reads :

|F )i =
1

Π
·

∫
|α)i · F (α∗) · e−

1

2
|α|2 · d2α (7)

where

F (α)i = (α|F )i · e
− 1

2
|α|2 (8)

and the integration is extended over entire area of complex plane. However, since
both accessible electronic states have well defined value of local normal coordinate

Qi = (
h̄

2Mω
)

1

2 · (a+i + ai), (9)

which describes distortion of local environment, only one value of α is allowed in (5)
i.e. the expansion amplitude F(α∗) should be proportional to Dirac delta δ(α−αo).
Following Sherington and von Molnar [2] the local lattice ground state in case of
|ln > ionic configuration we assume to be given by the coherent Glauber state |αn)i
(5) while this of |ln−1L > by the |αn−1)i . The ground state eigenenergies of single
site Hamitonian Hi (4) associated with these configurations are given by :

En = (αn|Hi|αn)i and En−1 = (αn−1|Hi|αn−1). (10)
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The values of the parameters αn and αn−1 can be easily determined from the
energy minimum condition

∂En

∂αn

=
∂En−1

∂αn−1

. (11)

Solving Eqs. (10-11) we obtain:

αn =
−λ

h̄ω + 4Γ2

, αn−1 =
λ

h̄ω − 4Γ2

. (12)

The most important effect of the local lattice distorsion is the renormalization
of the hybridization amplitude Vkj . If we account for the lattice states the MV ions
fluctuate between |ln, αn) and |ln−1, L, αn−1) quantum states. Thus, the effective

hybridization Heff
hyb renormalizes according to [2]:

Heff
hyb = (αn|H

0
hyb|αn−1) (13)

where the H0
hyb is the third term of Eq. (1). In view of Eq. (13) the effective

hybridization can be written as:

Ṽkj = Vkj · exp(−
1

2
(|αn|

2+ |αn−1|
2)+αnαn−1) = Vkj · exp(−

1

2
|αn−αn−1|

2). (14)

The classical current density formula in the MV system reads [8]

~j = −e
∑
k

∂ǫk
∂k

c+k ck − e
∑
jk

∂Vjk

∂k
(bjcke

i~k ~Rj + h.c.). (15)

In the adiabatic limit, when the phonon cloud follows the electron, the second term
in Eq. (15) gives us the polaron motion contribution to the current density. This
allows us to estimate change in the polaron mobility. The immediate consequence of
renormalization (14) is the increase of lifetime of localized state i.e., the reduction
of polaron mobility and effective exchange integrals. Depending on the relation
between quantities γ = |αn − αn−1|

2 and γ0 = |αn(Γ2 = 0) − αn−1(Γ2 = 0)|2 the
quadratic coupling (3) can either increase (for γ > γ0) or reduce (γ < γ0) the
renormalization (14). As one can see from (12-14), independently on the sign of
coefficient Γ2 the quadratic electron-phonon coupling reduces the renormalization
below the Γ2 = 0 value provided that Γ2

2 > (h̄ω)2/8. In the Γ2 → ∞ limit polaron
recovers the free electron mobility. Contrary to the former case, for Γ2

2 < (h̄ω)2/8
the renormalization factor γ increases and for Γ2

2 → (h̄ω)2/16 we have complete

localization, i.e. Ṽkj → 0.

Provided that the lattice distortion associated with the polaron formation is
sufficiently large, it is reasonable to account for anharmonic contribution to the
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elastic energy. We take the anharmonic contribution to the elastic energy in the
form of double-well potential, i.e. in the Hamiltonian we should account for a
contribution HA given by:

HA =
∑
i

δ · (a+i + ai)
4. (16)

To study the effect of anharmonic term in elastic energy we add the term (16) to
the Hamiltonian (4) and determine anew the ground state of the lattice associated
with respective ionic configurations. Repeating the procedure performed in (10-
12), with anharmonic contribution (16) included in (4), we find the ground state
eigenenergies associated with both electronic configurations of an ion:

En = (h̄ω + 4Γ2) · |αn|
2 + 2λ · |αn|+ 16δ · |αn|

4

En−1 = (h̄ω − 4Γ2) · |αn−1|
2 − 2λ · |αn−1|+ 16δ · |αn−1|

4. (17)

The minimization procedure (11) enables us to find the values of αn and αn−1.
The positive 4th term (16) will supress the lattice distorsion and therefore further
increase the polaron mobility. From (17) one obtains that for some values of pa-
rameters Γ2 and δ, the quantity γ = |αn − αn−1|

2 can be smaller compared to the
case Γ2 = δ = 0.

Let us consider the bipolaron binding effect on the mobility. The local lattice
distortion, associated with the polaron formation, is a source of atomic level stresses
[7]. Two polarons associated with different ionic centers couple to each other via
long-range components of these stresses [6,7].

The Cu3+ polaron coupling via long-range nonsymmetric strains can be written
as [6,7]

HLR =
∑
ijµν

∆µν
ij · (Q+

iµ +Qiµ)(Q
+

jν +Qjν). (18)

The coupling constants ∆ij depend on relative separation of polarons as r−3

ij , thus

it suffices to limit the elastic interaction (18) to nearest neighbours. Let us evaluate
the ground state eigenenergy of the lattice system with one pair of polarons, located
at neighbouring sites, bound by interaction (18). The elastic energy correction is
given by [7]:

δEcorr = ∆̃ · αi
n−1α

j
n−1 ≈ ∆̃ · α2

n−1. (19)

Repeating the minimization procedure with the term (19) taken into account, in
the case δ = 0 we receive the respective formulae for α∗

n−1 and α∗
n as:

α∗
n−1 =

λ

h̄ω + ∆̃− 4Γ2

, α∗
n =

−λ

h̄ω + 4Γ2

. (20)
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Since the polaron binding requires ∆̃ < 0 the polaron binding constant acts in
the same way as the phonon mode softening. Provided that Γ2 has the value, for
wich the polaron mobility increases with respect to the Γ2 = 0 case, the bipolaron
binding energy strengthnes this effect. This means, in view of Eq. (12), that with
anharmonic contribution to elastic energy accounted for, the Cu+3 like polarons
are not neccessarily localized. Its mobility can be further increased by bipolaron
formation. Thus, along with the oxygen centered polaron band the copper-like
polaron band can contribute to formation of superconducting state.
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Razmatra se tvorba polarona u anharmoničkoj rešetki. Razvojem lokalnog
izobličenja rešetke u Glauberova stanja, postavljanjem uvjeta minimalne energije
renormalizirana je amplituda hibridizacije i razmotren njezin utjecaj na pokretnost
polarona i magnetska djelovanja.
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