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Theoretical isotherms for monolayer adsorption on heterogeneous surfaces have
been obtained on the basis of the Langmuirian local isotherm and three differ-
ent distribution functions of adsorption energies (Boltzmann, quasi-Gaussian and
shifted quasi-Gaussian distribution functions). The isotherm obtained with the
Boltzmann distribution function proposed 40 years ago by Glueckauf predicts well
the maximum surface coverage, Freundlich region, as well as Henry behaviour at
extremely low surface coverages. It has been demonstrated that the so–called Du-
binin - Radushkevich isotherm appears in the transition between the Freundlich and
Henry regions if the upper limit to the energy of adsorption is high enough. The
isotherm obtained with the quasi-Gaussian distribution function also predicts well
the maximum surface coverage and reduces to the Henry region at low surface cov-
erages. Shifted quasi-Gaussian adsorption energy distribution function suggested
by Cerofolini et al. results in mixed isotherms between these two extreme cases.
Transition between these two types of adsorption energy distributions can also re-
sult in the appearance of the so–called Dubinin - Radushkevich behaviour in a
certain range of adsorbate concentrations . The characteristics of the correspond-

1A part of this work was made during a visit to the Department of Chemistry at the University
of Aarhus, Denmark.
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ing isotherms are discussed in detail and advantages of Glueckauf’s suggestions are
demonstrated.

1. Introduction

The reasons why the theory of homogeneous submonolayer adsorption cannot
always explain the experimental results are very often the effects of surface irreg-
ularities. Surface imperfections of molecular dimensions have as a result the ener-
getic inhomogeneity of the surface, and this has a profound effect on the adsorption
isotherms determined experimentally. The theory of submonolayer adsorption on
heterogeneous surfaces has been the subject of many scientific papers [1-8]. It was
developed for adsorption of gases at heterogeneous surfaces and later for adsorption
of solutes at different solid-liquid interfaces. Recently, these theoretical results were
applied to interaction of solutes with biological and geological interfaces. The basic
concepts of this theory can be summarised in the following way. If dF = f(Q)dQ
is the distribution function of sites available for adsorption of adsorption energy
between Q and dQ, and if the local adsorption isotherm is defined by function
Θ(Q,KC), K being the strength of adsorption (i.e. adsorption equilibrium con-
stant) corresponding to a ground state of energy and C the concentration (assum-
ing that the activity coefficient is close to unity) of adsorbate to be adsorbed at the
interface from a homogeneous phase, then the net surface coverage should be [9]:

ΘT =

∞
∫

−∞

Θ(Q,KC)f(Q)dQ =

∞
∫

0

Θ(Q,KC)dF. (1)

For example, as shown by several authors, if the local adsorption is described by
the Langmuir isotherm:

Θ(Q,KC) =
1

1 + e−Q/RT /KC
(2)

and if a Boltzmann distribution function is selected as a model of site hetero-
geneities:

F = e−Q/nRT (3)

where n is the parameter of the heterogeneity, the resulting net surface coverage
will follow the known Freundlich adsorption isotherm:

ΘT = A(KC)1/n (4)
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where A is a constant. This result has been obtained both by a semi-empirical
approach [10-12] and by a rigorous treatment [9]. The reverse problem, i.e., de-
termination of the distribution function, was first discussed by Roginskii [12] and
analyzed in a rigorous way by Sips [13]. He derived the Boltzmann distribution for
the Freundlich isotherm using this procedure. Later, House and Jaycock [14] de-
veloped a computer program for numerical evaluation of the distribution function
for a given local adsorption isotherm on the basis of such methodology. Cerofolini
and coworkers [15,16] state that the analytical solution can also be obtained on
the basis of the Langmuir type of local isotherm and the quasi-Gaussian type of
adsorption energy distribution :

F = e−QQ/bRT (5)

assuming that only positive values of Q are possible (i.e. Q > 0), where b is the pa-
rameter of the distribution function. They stated that, using the so–called conden-
sation approximation [17], known Freundlich (Eq. (4)) and Dubinin-Radushkevich
[18]:

logΘ = A+B(log(KC)2) (6)

isotherms can be derived from the distribution functions (3) and (5), respectively.
This statement disagrees with the existing rigorous solutions reported in literature
[10,13]. We discovered the same interpretation of the results of Sips in the book
written by Adamson [6], where Q > 0 limit is mentioned for the classical Fre-
undlich isotherm (instead of the infinite limit which is valid for this case). For the
combination of the Langmuir and Freundlich isotherms:

ΘT (KC) =
1

1 + 1/A(KC)1/n
(7)

Sips [13] reported using his reverse method, a complex distribution function which
is very similar to the Gaussian one only for n = 2. In his paper Sips mentions the
difficulties in calculating the adsorption isotherm for a Gaussian adsorption energy
distribution (due to the “intractable definite integrals”). Cerofolini and coworkers
[15,16] proposed a shifted quasi-Gaussian distribution:

F = e−Q(1 +Q/b)/nRT (8)

and solved it numerically for the Langmuirian type of local adsorption isotherm.
They concluded that this isotherm produces, within a sufficiently large scale of sur-
face coverages, a transition between the Henry (Θ = KC), Dubinin–Radushkevich
and Freundlich isotherms, while individual distributions, as they claim, produce
Freundlich (see Eq. (4)) or Dubinin–Radushkevich isotherms (see Eq. (6)). Both of
these isotherms fail to produce the Henry region at very low surface coverages and
at the same time they don’t predict the formation of the complete monolayer.
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2. Why Henry behaviour does not appear at low coverages

If we study the shape of the overall adsorption isotherm for the Langmuirian
type of local adsorption isotherm with different adsorption energies (see Eq. (2)),
we can conclude that it is impossible to obtain pure Henry conditions at very
low coverages, assuming validity of Eq. (2) and that −∞ < Q < ∞, or 0 <
exp(−Q/RT ) < 1. The reason is, however small adsorbant concentration is present
in the homogeneous phase from which the adsorption takes place, high adsorption
energies will always be available that will make the term exp (−Q/RT ) /KC small
enough in comparison with unity. This will make the change of total coverage due
to high energy sites comparable to the change of the distribution function:

dΘT = f(Q)dQ = dF for Q >> RT ln(1/KC). (9)

Taking into account the fact that all other changes of total coverage could be
only smaller than the change in the distribution function, the Henry conditions
could never be reached, a fact well known for the classical Freundlich isotherm
(see Eq. (4)). The question arises whether both the Boltzmann and quasi-Gaussian
distributions lead to adsorption isotherms which do not reach the Henry conditions
at very low surface coverages (as stated by Cerofolini et al. [15,16]) and how their
combination could produce the Henry condition for the same limiting conditions. At
the first moment our impression was that numerical errors may cause an appearance
of the Henry isotherm at very low coverages. If d, a certain increment of distribution
function F is used, then there is a limit ofQ values (let us call it q) which would limit
the integration procedure. In fact, this could allow the adsorbate concentration to
become so small that exp (−q/RT ) ≫ KC and, consequently, the local adsorption
isotherm described by Eq. (2) would yield:

Θ(Q,KC) = KCeQ/RT . (10)

This is the Henry (the so–called linear or ideal) adsorption isotherm. This numerical
error is equivalent to the solution of the integral :

ΘT =

q
∫

−∞

Θ(Q,KC)f(Q)dQ =

∞
∫

d

Θ(Q,KC)dF (11)

which should produce a linear domain of the adsorption isotherm for sufficiently
low surface coverages. We have, therefore, decided to use a numerical method to
reexamine the findings of Cerofolini and coworkers [15,16].
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3. Development of the simple numerical method

We developed a simple numerical method for integration of Eq. (1) and tested
it for the well–known analytical solution, for the Boltzmann distribution and the
Langmuir type of local adsorption isotherm. The simplest possible method was
used to avoid any error and to have the results of integration under full control.
Introducing F = exp(−Q/nRT ), i.e., exp(−Q/RT ) = Fn, the change of total
coverage is:

DT =
DF

1 + Fn/KC
(12)

Fig. 1. Results of the numerical integration of Eq. (12) within the limits 0 < F < ∞

(solid lines are equivalent to the classical Freundlich isotherm) and 0 < F < 1
(dashed lines, producing new adsorption isotherms) for different values of the n
parameter.

where DT is the change of the total surface coverage and DF = 1/N , N being the
number of iterations during the integration. The limits for F were from 0 to ∞.
The results are shown in Fig. 1. Obviously, this simple procedure produces very
good results. The perfect classical Freundlich isotherm was obtained as expected.
Then, we repeated the calculations in order to evaluate the integral described by
Eq. (11) in the following way:
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∞
∫

d

Θ(Q,KC)dF =

∞
∫

0

Θ(Q,KC)dF −

d
∫

0

Θ(Q,KC)dF. (13)

This can be easily achieved by storing the value of TH for a given F value (which
corresponds to the energy q) and later subtracting it from the total integral. The
results are presented in Fig. 2. One can see that an increase of the value d (i.e., the
upper limit of adsorption energy q = RT ln(1/d)) causes appearance of the Henry
behaviour at lower values of surface coverages. From this we can conclude that an
improper use of the numerical method could produce the effect of the apearance
of Henry behaviour at energies of adsorption higher than the one corresponding
to the increment of the distribution function. However, we can draw an even more
important conclusion. Because the energy of adsorption is limited and therefore has
a maximum value, then at low surface coverages the Henry behaviour should arise,
decreasing the range of concentrations of adsorbate in the homogeneous phase for
which a Freundlich isotherm can be observed. The intersection of the Freundlich and
Henry slopes in the corresponding log-log plot of surface coverage vs. concentration
of adsorbate in homogeneous phase can, then, serve for determination of such a limit
of adsorption energies. This has been found out first by Glueckauf [19] about 40
years ago, and rediscovered later by several authors [8,20,21], without any reference
to the old Glueckauf’s work.

Fig. 2. Results of the numerical integration of Eq. (11) within the limits d <
F < ∞ (corresponding to the limits of adsorption energy 0 < Q < q, where
q = nRT ln(1/d)). (1) d = 0; (2) d = 0.002; (3) d = 0.005; (4) d = 0.01; (5) d=0.02;
(6) d = 0.05.
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4. Prediction of the complete monolayer

The Freundlich isotherm has also been criticized for the fact that it does not
predict well the maximum surface coverage corresponding to the complete mono-
layer. It seems that invention of special isotherms, such as those proposed by Sips
[13], is actually unnecessary for this purpose. Here, we refer to Eq. (6) and the
following equation:

ΘT (KC) = 1/(1 + 1/KC)1/n (14)

or, for example, even the more unusual one:

ΘT (KC) log k = log
kKC + 1

KC + 1
(15)

reported later in Refs. 22-24. We will show that this can be achieved simply by
accepting the comments of Hill [25] and Tompkins [26], who complained about the
other limit to the negative energies necessary to perform an analytical derivation of
the classical Feundlich isotherm. We performed additional numerical calculations
for the Freundlich isotherm only up to the limit F = 1 (which corresponds to the
energy of the ground state and to the strength of adsorption K). The results are
presented in Fig. 1 (dashed lines). They show that when the negative energies
are not taken into account, the prediction of maximum coverage is obtained and
Eq. (4) is valid only in the range of low adsorbant concentrations. In this way,
we could come to the conclusion that the statement of Hepler [27], who claimed
that the integral between the limits 1 < F < ∞ is very small compared to that
between 0 < F < 1, is not generally true. It is true only at very low surface
coverages. However, how can we explain the fact that the numerical solution for
F ≤ 1 produces a logical limit Θ ≤ 1, while the analytical solution and numerical
solution for F ≫ 1 does not? If we turn our attention back to Eq. (2), then,
for extremely negative energies, exp(−Q/RT ) will become so large that, however
large is the adsorbant concentration in the homogeneous phase, exp(−Q/RT ) ≫

KC will eventually become true. Then the Freundlich isotherm (see Eq. (4)) will
appear as a result of the integration. We expect this to happen for energies lower
than about Q = −5nRT (at least for adsorbant concentrations KC < 10) which
would correspond to F = 148. Of course, the consequence of the adsorption energy
limit with F ≤ 1 is the prediction of correct maximum coverages ΘT ≤ 1. In the
case of formation of multiple layers, negative adsorption energies could also have
a physical meaning. It would be interesting to study the shape of the part of the
isotherm obtained for the limit F ≤ 1 and compare it with some other isotherms of
a similar type (see, for example, Eqs. (7), (14) and (15)). We compared the shapes
of some of these isotherms in Fig. 3. The conclusion is that each of these special
isotherms does not coincide with the shape of the isotherm obtained rigorously
by numerical integration of the Langmuirian local isotherm with the Boltzmann
distribution of adsorption energies. Therefore, these special isotherms should not be
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named “generalized Freundlich isotherms” because they do not possess the common
origin from the point of view of the nonhomogeneity of the adsorption sites on the
interface. In conclusion, we could say that the combination of the Langmuirian
local isotherm and the Boltzmann adsorption energy distribution, if integrated
within the energy limits 0 < Q < q where q is a certain maximum adsorption
energy (the limits which correspond to d < F < 1, which have been mentioned
fourty years ago by Glueckauf [19]), produces a new theoretical isotherm which,
at extremely low surface coverages, reduces to the Henry isotherm. At very high
adsorbate concentrations, it predicts well the maximum monolayer surface coverage
and, in the intermediate range of surface covarages, corresponds to the known
Freundlich isotherm. We will show that under certain conditions the so–called
Dubinin–Radushkevich isotherm appears as the transition between the Freundlich
and Henry behaviour.

Fig. 3. Comparison of different types of theoretical adsorption isotherms. (1) Clas-
sical Freundlich isotherm for n = 2 (see Eq.(4)); (2) Sips isotherm defined by Eq.
(6); (3) new isotherm proposed here for the limits of integration 0 < Q < ∞ (i.e.,
0 < F < 1); (4) Sips isotherm defined by Eq. (17).

5. Adsorption isotherm for a quasi-Gaussian distribution

function

Now we use the same numerical approach to solve the adsorption isotherm
for the case when the local adsorption isotherm is still of the Langmuirian type,
but assuming the quasi-Gaussian distribution of adsorption energies (see Eq. (5)).
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In this case F = exp(−QQ/bRT ) and, consequently, exp(−Q/RT ) = F x, where
x = (b/RT ln(1/F ))1/2. Therefore, the numerical integration should be performed
using the following difference equation:

DT =
DF

1 + F x/KC
(16)

Fig. 4. Results of the numerical integration of Eq. (16), using x = (b/RT ln(1/F ))1/2

and the integration limits 0 < F < ∞ (solid lines) and the corresponding Henry
isotherms (dashed lines) for different b values.

instead of Eq. (12). The results of the calculations are shown in Fig. 4. We were
surprised to see that isotherms similar to Henry behaviour were obtained instead
of the Dubinin–Radushkevich ones at lower adsorbate concentrations. In addition,
this isotherm predicts well the maximum coverage if the constant factor A = 1/2
is added to obtain ΘT = 1 for high adsorbate concentrations in the homogeneous
phase. Therefore, it is probable that the numerical method of Cerofolini and cowork-
ers [16] is correct, but they used it only for the shifted and not for pure quasi-
Gaussian distribution function, for which they assumed the Dubinin–Radushkevich
isotherm should be valid. Of course, if Henry behaviour can be obtained with a
quasi-Gaussian distribution function alone, then the shifted quasi-Gaussian distri-
bution function should produce the same result. Let us see if we could obtain the
quasi-Gaussian distribution from the Dubinin - Radushkevich isotherm. For this
purpose, we could used the method of Sips [13] and the result is the following:
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f = A sin(Q/aRT )e−QQ/bRT (17)

and this is certainly not the quasi-Gaussian distribution (mentioned above, see Eq.
(5)). For small adsorption energies, this distribution function reduces to the simpler
form:

f = A
Q

aRT
e−QQ/bRT (18)

which is equivalent to the first derivative of Eq. (5). Only for adsorption energies
Q = aRT (n+ 1/2)π, the distribution function (17) reduces to the quasi-Gaussian
values. Due to the fact that Eq. (17) generates also negative distribution function
values makes the Dubinin–Radushkevich isotherm rather unnatural. It could well
be that this type of adsorption isotherm appears in the transition range between
the Boltzmann and quasi-Gaussian distributions, as suggested by Cerofolini and
coworkers [16]. Therefore, we tried to recalculate their results to check this possi-
bility. For this purpose, we used the shifted quasi-Gaussian distribution function
F = exp(−Q(1 +Q/b)/nRT ) and, consequently, exp(−Q/RT ) = F x where:

x = 2n/(1 +
√

1 + (4nRT/b) ln(1/F )). (19)

Fig. 5. Results of the numerical integration of Eq. (16), using x from Eq. (19), and
the integration limits 0 < F < ∞, for b = RT and different n values (solid lines),
as well as for n = 4.5 and different b values (dashed lines).
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Numerical calculation were performed using the same difference equation (16)
with the new meaning of x according to Eq. (19). The results are presented in
Fig. 5. If these results are plotted vs. (lnKC)2, one can see that the values in
a transition between the Boltzmann and quasi-Gaussian distributions sometimes
show, in a certain range of adsorbate concentrations, a straight line corresponding
to what is known as the Dubinin - Radushkevich isotherm. In fact, any transition
between Freundlich and Henry behaviour will also produce the same result. This
is true of some of the plots from Fig. 2 that have not been obtained using the
quasi-Gaussian distribution (see Fig. 6.).

Fig. 6. Plots of ΘT vs. (lnKC)2 for different models of adsorption at hetero-
geneous surfaces. (1) Boltzmann distribution function with n = 2; (2) Shifted
quasi-Gaussian distribution function with n = 4.5 and b = RT ; (3) Boltzmann
distribution function with n = 2 and q = 4.6nRT ; (4) Quasi-Gaussian distribution
function with b = 4RT ; (5) Henry isotherm.

6. The meaning of Dubinin-Radushkevich isotherm

While Freundlich and Henry isotherms have a definite physical meaning (the
first is a result of nonhomogeneities of active binding sites, and the second is a
consequence of the equation of state for the ideal two–dimensional gas model), it
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ružić: theoretical isotherms for monolayer adsorption . . .

seems that the so–called Dubinin–Radushkevich isotherm represents only a transi-
tional region between the first two isotherms. From the results obtained here it is
not surprising that the Dubinin–Radushkevich isotherm has been discovered em-
pirically. Cerofolini et al. [15,16] have assumed the relation between the pure quasi-
Guassian adsorption energy distribution and the Dubinin–Radushkevich isotherm.
One cannot find any evidence for such conclusions in the literature. Dubinin him-
self illustrated the form of such an isotherm with experimental data only within
the range of at the most one and a half order of magnitude in the volume of ad-
sorption space for gases on different surfaces [29]. One should mention, however,
the experimental results have been reported by some other authors who obtained
the shape of the Dubinin–Radushkevich [18] type of isotherm for a range of sev-
eral orders of magnitude in KC values [30-32]. In addition, Dubinin [29] described
also some data with clear deviations from his isotherm (the same is true for some
other experimental data [31]) and proposed the use of several different isotherms
of the same kind to fit the experimental data. As one can see from Fig. 6, rigorous
solutions can explain this fact without any additional formal interventions in the
equation of the overall isotherm. Dubinin–Radushkevich isotherm has been corre-
lated [33,34] with Brunauer–Emmett–Teller (BET) and Sips isotherms. However, if
it is true what we are suggesting in this paper, the connection between them is un-
reasonable. BET, Sips and Dubinin–Radushkevich isotherms appear in completely
different regions of surface coverages. Some authors [35,36] suggested the use of
Dubinin–Radushkevich isotherm (fitting only a part of the total isotherm at het-
erogeneous surfaces) for the choice of the local isotherm. This suggestion appears
to have no physical meaning. Cerofolini and coworkers [16] assumed that a com-
bination of Boltzmann and quasi-Gaussian distributions are necessary to “explain
the Freundlich and the Dubinin–Radushkevich behaviours”. We demonstrated in
this work that this is not the necessary condition.

7. Discussion

In this paper we proved that several authors [6,16] did not correctly interpret
the conditions for the appearance of classical Freundlich isotherm. For this purpose,
rigorous solutions of Eq. (1) should be used as shown by many authors [9-11,13]
and in this paper. The similar rigorous solution for the quasi-Gaussian distribution
function of adsorption energies is derived in this paper. We demonstrated that it
does not produce the Dubinin–Radushkevich isotherm as suggested by Cerofolini
et al. [16]. It is interesting to learn that a pure quasi-Gaussian distribution of ad-
sorption energies with the Langmuirian type of local adsorption isotherm reduces
to an isotherm with a total surface coverage of the Henry type, in the range of very
low adsorbant concentrations in the homogeneous phase from which the adsorption
takes place. This is true for both cases, when negative values for Q are, or are
not permitted. This can be explained by the fact that the high energy side of the
quasi-Gaussian distribution function is a gradual equivalent to the sharp cut-off
for the high energy limit in the case of the Boltzmann distribution function which
generates the Henry behaviour at small surface coverages. However, the reverse
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procedure developed by Sips [13] generates only the simple Boltzmann adsorption
energy distribution function from the adsorption isotherm of the Henry type. In
addition, the adsorption isotherm obtained using the quasi-Gaussian distribution
of adsorption energies predicts well the maximum coverage, which is not the case
of the Freundlich isotherm (see Eq. (4)) obtained with the Boltzmann distribu-
tion of adsorption energies without the cut-off in the region Q < 0. This is again
not surprising because the low energy side of the quasi-Gaussian distribution func-
tion is a gradual equivalent to the sharp cut-off for negative adsorption energies in
the case of the Boltzmann distribution function when the complete monolayer is
formed. Boltzmann distribution function of adsorption energies has been verified
experimentally with data on surface complexation processes in the region of mod-
erate and high surface coverages. In the same region of adsorbate concentrations,
gas/solid interaction usually undergoes multilayer adsorption, and submonolayer
adsorption isotherms cannot be applied in studies of such systems. Using sequen-
tial analysis of the experimental results for surface complexation processes, it has
been shown [38,39] that weak binding sites are more abundant than the stronger
binding sites. Such behaviour can be explained only with the Boltzmann type of
distribution function. At low surface coverages only the high energy binding sites
are active, and in a certain narrow region of adsorbant concentrations different dis-
tribution functions could fit well the same experimental data. Therefore, different
distribution functions cannot be always distinguished well under such conditions.
Energy distributions very often include exp(−E/kBT ) term, where kB is the Boltz-
mann constant, (this is the case for example in the Boltzmann, Fermi and Bose
distribution functions). Unfortunately, the possibilities of using the Boltzmann dis-
tribution function with appropriate limits to the energy of adsorption was almost
neglected during last 40 years. On the contrary, different types of quasi-Gaussian,
symmetric and nonsymmetric, distribution functions have been widely used for
derivation of a number of semi-empirical isotherms, but all of them applicable
only in a certain narrow region of surface coverages. Some authors tried to resolve
this problem using more sophisticated distribution functions [15,16,28,40] or com-
plex isotherms [13,22,28,41]. As we illustrated in the present paper, based of the
suggestion made by Glueckauf [19], a straightforward solution of this problem is
relatively simple by using Boltzmann distribution function with proper limits to
the energy of adsorption. From the results obtained in this work we can conclude
that the shape of the so-called Dubinin–Radushkevich isotherm can be obtained
from the Langmuirian type of local isotherm and Boltzmann distribution of ad-
sorption energies if a sufficiently high maximum energy of adsorption is assumed.
It does not appear without the upper limit of adsorption energies. It also does not
appear if this limit is not high enough. Therefore, the transition between the Henry,
Dubinin–Radushkevich, Freundlich and Langmuir isotherms can be obtained using
the Langmuirian local isotherm and only the Boltzmann distribution of adsorption
energies. These theoretical arguments can be verified by reinterpretation of very
fine experimental results available in the literature. Preliminary results in fitting
the data for adsorption of noble gases on Pyrex glass [30,31] with rigorous solution
for pure Boltzmann distribution function are very encouraging. In addition, the
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comparison of complexation data for Cu(II) in lake waters rich in organic matter
with this rigorous solution clearly illustrates its advantages over the semi- empirical
isotherms mentioned above [38].
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TEORIJSKE IZOTERME ZA JEDNOSLOJNU ADSORPCIJU NA
HETEROGENIM POVRŠINAMA

IVICA RUŽIĆ

Centar za istraživanje mora Zagreb, Institut Ruder Bošković , Zagreb, Hrvatska

UDK 536.712, 539.233

PACS 68.45.Da, 68.90.+g, 68.35.Md, 82.65.Dp

Dobivene su teorijske izoterme za jednoslojnu adsorpciju na heterogenim po-
vršinama koje se zasnivaju na Langmuirovskoj lokalnoj izotermi i tri različite
funkcije raspodjele energije adsorpcije (Boltzmannova, kvazi-Gaussova i pomaknuta
kvazi-Gaussova funkcija raspodjele). Izoterma dobivena za Boltzmannovu funkciju
raspodjele predložena od strane Glueckaufa pred 40 godina predvida dobro maksi-
malnu pokrivenost površine, Freundlichovo područje, kao i Henryevo ponašanje na
vrlo niskim pokrivenostima površine. Pokazano je da se tzv. Dubinin–Raduškevič-
eva izoterma javlja na prijelazu izmedu Freundlichovog područja i Henryevog po-
dručja. Izoterma koja je dobivena za kvazi-Gaussovu funkciju raspodjele takoder
predvida dobro maksimalnu pokrivenost površine i prelazi u Henryevo područje
na niskim pokrivenostima površine. Pomaknuta kvazi-Gaussova funkcija raspod-
jele energije adsorpcije predložena od strane Cerofolinija i suradnika ima za rezul-
tat miješanu izotermu. Na prijelazu izmedu ta dva različita tipa raspodjele en-
ergije adsorpcije, unutar odredenog područja koncentracija adsorbata, takoder se
javlja Dubinin–Raduškevičeva izoterma. Raspravljene su karakteristike spomenutih
izotermi i prikazane su prednosti Glueckaufovih prijedloga.
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