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In spite of the fact that the usual hyperspherical harmonics expansion method has
a number of advantages, the rate of convergence is quite slow for diffused atomic
systems interacting through long–range Coulomb forces. An efficient truncation
scheme of the basis, in which only l1 = 0 partial waves for K > KM1

, are retained is
proposed. This results in a marginal increase in computation beyond that for KM1

.
Calculation of various quantities indicate that the truncation scheme is particularly
useful for diffused atomic systems.

1. Introduction

Available experimental results as well as multiparameter variational calcula-
tions [1,2] for atomic bound systems are extremely precise. There are several
other theoretical approaches for studying the bound states of few–electron atoms.
Among these, the hyperspherical harmonic expansion (HHE) method has certain
advantages. Based on first principles, it provides a solution of the nonrelativistic
Schrödinger equation which is essentially exact, in the sence that there are no ap-
proximations other than an inevitable truncation of the expansion basis. Provided
computation facilities are adequate and adopted numerical codes are efficient, one
can, in principle, demand any preset precision, by appropriately truncating the
basis. Furthermore, a clear physical picture of the system in terms of the configu-
ration space wave function is possible. On the other hand, the convergence of the
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binding energy (BE) with respect to addition of higher partial waves is slow for the
long–range Coulomb potential. This demands solving a large number of coupled dif-
ferential equations (CDE) for a specified precision. The number of CDE increases
rapidly with the inclusion of higher partial waves. Thus inclusion of additional
partial waves requires extremely time consuming and tricky numerical algorithms.
Limitations of computer facility and numerical algorithms set a rather severe limi-
tation on the precision attainable by the HHE method. It is our endeavour in this
communication to show that truncation in appropriate physical quantities (not in
hyperangular momentum but in relative orbital angular momenta), coupled with
the use of convergence theorems on HHE, can lead to sufficiently high precision,
even with a fairly small–sized computer.

In an earlier calculation [3], we applied the hyperspherical harmonic expansion
method (HHEM) to various two–electron atoms achieving a good degree of success.
In that calculation, no truncation in the expansion basis was made for all partial
waves upto and including a limiting grand orbital quantum number KM ; then
theorems [4] on convergence of hyperspherical harmonics (HH) basis were utilized
to extrapolate the calculated BE for various KM values to obtain a converged BE.
The accuracy of this procedure depends on (1) the accuracy of the calculated BE for
a given KM , and (2) whether such KM values are large enough to be already in the
asymptotic K region satysfying the convergence theorems. Sufficient attention was
paid to the first criterion in the earlier calculation [3], but limitations of computer
facility restricted us to KM ≤ 20, with little possibility of a precise verification
whether the asymptotic K region was attained for these values of KM . In the
present work we investigate this point more carefully.

2. HHE method

The nonrelativistic Hamiltonian of a two–electron atom (disregarding the mo-
tion of the nucleus), is

H = −
1

2
∇2

1 −
1

2
∇2

2 −
Z

r1
−

Z

r2
+

1

r12
, (1)

where ~ri is the position of the i-th electron (i = 1, 2), r12 is the relative separation
between the electrons, Z the charge of the nucleus, and atomic units are chosen
such that m = e = h̄ = 1. The wave function for the ground state of the system is
expanded in HH basis {YK,l1(Ω)};

Ψ(~r1, ~r2) =
∑

Kl1

ρ−5/2UKl1(ρ)YK,l1(Ω), (2)

where ρ =
√

r21 + r22 is the hyperradius and Ω = {r̂1, r̂2, φ}, φ = tan−1(r1/r2)
represent the hyperangles. The quantity K is the grand orbital quantum number
and li the orbital angular momentum of the i-th electron. For the ground state of
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this system, the spin wave function of the two electrons is singlet, and consequently
Ψ should be symmetric under the exchange of the positions of the two electrons.
From the properties [5] of the HH (YK,l1,l2,L,M (Ω)), this requirement is satisfied if
n = (K − l1 − l2)/2 is an even integer ≥ 0. For the ground state, the total orbital

angular momentum L = 0 (~L = ~l1 + ~l2). Thus l1 = l2, and each takes nonnegative
even or odd integral values ≤ K/2, whenK/2 is even or odd, respectively. Quantum
numbers l2(= l1) and L = M = 0 have been suppressed in Eq. (2). An expression for
YK,l1(Ω) can be found in Ref. 3. Substitution of Eq. (2) in the Schrödinger equation,
and projection onto a particular HH leads to a set of CDE for the hyperradial partial
waves UKl1(ρ)
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(3)
where L = K + 3/2 and β is the angle between ~r1 and ~r2.

3. Numerical procedure

The matrix elements are reduced analytically to a single integral over φ and are
calculated for ρ = 1 by 32–point Gaussian quadrature for each subinterval, there
being sufficient number of subintervals to ensure a precision of 1 in 1010 in a double
precision calculation. These matrices are stored and used to calculate the matrix
elements for a given ρ value. The system of CDE is then solved by renormalized
Numerov (RN) method [6,7] to obtain the binding energy, −E, and partial waves,
UKl1(ρ). In the earlier calculation [3], all allowed l1 values for a given K were
included in the basis expansion and K was restricted to K ≤ KM . However, in
the course of the present investigation, we find, as one expects intuitively, that for
a given K, the contribution for l = 0 partial wave is the largest (provided K/2 is
even) and that for higher l1 values decreases rapidly as l1 increases. The absolute
probability of a given (Kl1) partial wave become < 10−6 for l1 > 0 and K > KM1

(KM1
= 12 for He and 16 for H−). The total number of (Kl1) partial waves for a

given KM is

N =

{

(KM/4 + 1)2 if KM/2 is even
(KM/2 + 1)(KM/2 + 3)/4 if KM/2 is odd

}

. (4)

Hence the number (N) of CDE for a given KM , increases rapidly with KM . Since
the computation time increases as the cube of the number of CDE, one sees that
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for sufficiently large KM , CPU time increases as the sixth power of KM . However,
contributions of l1 /= 0 for K > KM1

being sufficiently small, we now follow a
truncation scheme in which all allowed l1 values for K ≤ KM1

and only l1 = 0 for
KM1

< K ≤ KM2
are included. This procedure increases the number of CDE only

marginally beyond that for KM1
(only one additional partial wave for only those

K values (> KM1
) which are multiples of 4). This results in a manageable increase

in memory, CPU time and complexity of numerical algorithm. On the other hand,
with this minimal increase in computation, almost all the effects of higher K values
(> KM1

) are taken care of and so one can reach the asymptotic K region, making
the extrapolation formula more reliable.

In the present work, we have also paid careful attention to the correct behaviour
of the partial waves as ρ tends to zero, as also the precise choice of an upper cut–
off ρ value (ρ∞). The former is necessary since the numerical calculation must
exclude the point ρ = 0 (which is a singularity for the Coulomb potential) and
it is replaced by a lower cut–off value ρ0. At ρ0, the partial waves do not vanish
exactly. They have been replaced by an approximate analytic expression obtained
from Eq. (3), and the initial [R−1

0 ] matrix necessary in the RN method [6,7] has
been modified accordingly. This, however, makes an insignificant change in BE (ρ0
has been chosen to be 0.001 au).

TABLE 1.
Effect of increasing ρ∞ (all l1 values for a given K included).

KM ρ∞ BE (atomic units)
(atomic units) H− ion He atom

12 12 0.5125769932 2.8760085122
17 0.5125598539 2.8760085122
27 0.5125598242 2.8760085122
77 0.5125598242 2.8760085122

16 12 0.5177256545 2.8875442205
17 0.5177059826 2.8875442205
27 0.5177059247 2.8875442205
77 0.5177059247 2.8875442205

20 12 0.5207346671 2.8935847030
17 0.5207196822 2.8935847030
27 0.5207196150 2.8935847030
77 0.5207196150 2.8935847030

For the choice of ρ∞, especially for a loosely bound system like H− ion, we
compare the BE calculated for various ρ∞ values. The computation time increases
proportionately as ρ∞ is increased, if ρ–mesh size (h) is kept the same. On the
other hand, for sufficiently large ρ, a given partial wave varies slowly with ρ and
hence h can be increased. We have divided the ρ space in several blocks, each block
having uniform mesh size. The blocks are chosen to be 0–12, 12–17, 17–27, 27–77,
with mesh sizes 0.02, 0.05, 0.1 and 0.5, respectively (in atomic units). Calculations
performed for a loosely bound system (H− ion), as also a fairly strongly bound
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system (He–atom), are presented in Table 1. From this, one can conclude that
sufficiently accurate BE is obtained with the choice ρ∞ = 27 au for H− ion and
ρ∞ = 12 au for He atom for a reliability upto the ninth significant digit in the BE.
Furthermore, a cut–off of ρ∞ = 12 au for H− ion will introduce an error in the fifth
significant digit.

4. Truncation scheme

With the values of ρ0 and ρ∞ fixed, we direct our attention to contribution of
partial waves with l1 /= 0. Table 2 presents the probabilities of various partial waves
for KM = 20 for the two chosen systems. One notices that l1 = 0 or l1 = 1 partial
waves contribute the most, if K/2 is even or odd, respectively, the contribution
decreasing steadily with increase of K. Other small l1 values also contribute sig-
nificantly for K < KM1

(KM1
= 12 for He and 16 for H−), however for K > KM1

only l1 = 0 terms have any appreciable contribution (> 10−6).

TABLE 2.
Probabilities of various partial waves for KM = 20.

K l1 Probability K l1 Probability
H− ion He atom H− ion He atom

0 0 0.63455685 0.92021381 14 5 0.00000003 0.00000008
2 1 0.00888331 0.00417341 7 0.00000013 0.00000025
4 0 0.27030521 0.06555545 16 0 0.00460655 0.00038362

2 0.00019659 0.00018739 2 0.00000003 0.00000001
6 1 0.00038605 0.00001118 4 0.00000002 0.00000002

3 0.00001966 0.00002523 6 0.00000003 0.00000004
8 0 0.06361362 0.00780588 8 0.00000008 0.00000012

2 0.00000217 0.00000051 18 1 0.00000060 0.00000003
4 0.00000365 0.00000558 3 0.00000002 0.00000000

10 1 0.00003467 0.00000203 5 0.00000003 0.00000001
3 0.00000003 0.00000036 7 0.00000005 0.00000002
5 0.00000096 0.00000166 9 0.00000012 0.00000006

12 0 0.01596311 0.00151243 20 0 0.00142017 0.00011969
2 0.00000029 0.00000012 2 0.00000010 0.00000000
4 0.00000003 0.00000018 4 0.00000015 0.00000000
6 0.00000032 0.00000060 6 0.00000026 0.00000001

14 1 0.00000396 0.00000006 8 0.00000034 0.00000001
3 0.00000003 0.00000005 10 0.00000079 0.00000003

Next, we investigate the effect on the BE of truncating all l1 values to a maxi-
mum of lM for each K ≤ KM . The results are presented in Table 3. The last entry
for a given KM , represents the BE obtained with the full expansion basis for that
KM . The table vividly depicts how the contribution of larger l1 values to the BE for
a given KM decreases rapidly with l1. But the increment in BE due to the increase
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of lM from one value to the next is nearly independent of KM (especially for larger
lM ). This shows that the contributions of small l1 partial waves come mostly from
smaller KM values.

TABLE 3.
Calculated BE (au) for various KM including all l1 ≤ lM .

System lM BE
KM = 8 KM = 12 KM = 16 KM = 20

H− 0 0.48427753 0.49553911 0.50144488 0.50502527
1 0.50113333 0.51117763 0.51635119 0.51940270
2 0.50225380 0.51221600 0.51735371 0.52037352
3 0.50249379 0.51244131 0.51757366 0.52058606
4 0.50257359 0.51251658 0.51764793 0.52065764
5 0.51254577 0.51767902 0.52068797
6 0.51255982 0.51769434 0.52070295
7 0.51770590 0.52071089
8 0.51772600 0.52071556
9 0.52071802
10 0.52073626

He 0 2.8243475 2.8506398 2.8623890 2.8685927
1 2.8470786 2.8728177 2.8843216 2.8903669
2 2.8494575 2.8751293 2.8866163 2.8926444
3 2.8500205 2.8756923 2.8871806 2.8932046
4 2.8502159 2.8758909 2.8873813 2.8934039
5 2.8759698 2.8874677 2.8934910
6 2.8760085 2.8875111 2.8935345
8 2.8875320 2.8935725
10 2.8935787

Observations of Tables 2 and 3 suggest that our proposed truncation scheme,
viz, retaining all allowed partial waves for K ≤ KM1

, and only l1 = 0 partial waves
for KM1

< K < KM2
, would be quite beneficial. As mentioned earlier, this scheme

increases the number of CDE and hence the memory and CPU requirements only
marginally, while allowing fairly large KM2

values, which will be in asymptotic
K region. Calculated BE following this truncation scheme with KM1

= 20 and
various values of KM2

are presented in Table 4. We next use these calculated BE
to extrapolate the converged BE. According to the theorems on convergence of
hyperspherical harmonics expansion [4], one expects the following relation to hold
[3]

(KM + x)4∆BKM
= C, (5)

where

∆BKM
= BKM+4 −BKM

, (6)

16 FIZIKA A 5 (1996) 1, 11–19



chattopadhyay and das: on the truncation scheme . . .

BKM
being the BE calculated with a particular KM value; C and x are two con-

stants determined by fitting two successive ∆BKM
values. Once these two constants

are known, Eq. (5) can be used to calculate extrapolated BKM
for KM > KM2

for
any KM2

. Thus, one can obtain extrapolated BE for a fairly large KM (= KM3
)

and the final missing BE from KM = KM3
to K = ∞ can be estimated as

∆ =

∞
∑

K=KM3

∆BK =

∞
∑

n=0

C

(KM3
+ 4n+ x)4

≈
C

12(KM3
+ x)3

. (7)

TABLE 4.
Calculated BE (au) including all allowed l1 for K ≤ KM2

and only l1 = 0 for
KM1

< K ≤ KM2
.

System KM1
KM2

BE
H− 20 24 0.5225750089

28 0.5237949184
32 0.5246226565
36 0.5252072535

He 20 24 2.896944959
28 2.898992302
32 2.900287562
36 2.901155281

Equation (5), together with Eq. (7) have been used to extrapolate the fully
converged K → ∞ BE for both the systems for each triad of three successive
KM values (each a multiple of 4) and are presented in Table 5. One observes
that the converged BE for each triad of KM–values oscillates and approaches a
converged value asKM increases. In the present truncation scheme, asKM increases
beyond 20, two effects become important: on the one hand, asymptotic K region
is gradually reached; on the other hand, the small but finite missing BE due to
K > 20, l1 /=0 partial waves accumulate. While the nonattainment of asymptotic
K region will have a tendency to produce large extrapolated BE, the missing l1 /=0
partial waves will produce a smaller BE. Due to the former reason, an extrapolation
to KM → ∞ using calcualted BE with all l1–partial wave for KM ≤ 20, would
produce the BE to be too large. For this reason, in our earlier work [3] we had to
stop the extrapolation to such a KM , that corresponding ∆BKM

was of the order
of the estimated error in the extrapolation formula (0.00005 au). A close scrutiny of
Table 5 reveals that the KM → ∞ extrapolated BE attains a convergence as KM of
the triad increases. This is due to a gradual attainment of the asymptotic K region.
The cummulative loss of l1 /=0 contributions for KM > 20 will be the eventual error
in the converged BE according to the present scheme. The extrapolated BE for the
last entry of each system in Table 5 differs by 0.087% and 0.002%, respectively,
from the accurate multiparameter variational calculation of Pekeris [8–11]. While
the latter is of the same order as that obtained in our previous calculation [3],
the error for H− is significantly less (0.087% as compared with 0.2% in the earlier
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calculation). Since the H− is a diffused system, larger K values contribute to the
ground state and the present truncation scheme is especially beneficial. The largest
value of KM2

, used in the present work is 36, for which the number of CDE is
40 and 100, respectively, for the present truncation scheme and no truncation at
all. Thus, the CPU time has been reduced by a factor of 16, with minimal loss of
precision. Memory requirement is also reduced by a factor of 6.25.

TABLE 5.
Extrapolated BE using the data of Tables 3 and 4.

System Extrapolation based Extrapolated BE
on KM values

H− 8,12,16 0.526731
12,16,20 0.527300
16,20,24 0.526999
20,24,28 0.527395
24,28,32 0.527206
28,32,36 0.527278

He 8,12,16 2.903507
12,16,20 2.904381
16,20,24 2.903645
20,24,28 2.903881
24,28,32 2.903674
28,32,36 2.903779

5. Conclusion

We have proposed here a truncation scheme for the HH expansion, where all l1
partial waves for K ≤ KM1

and only l1 = 0 partial waves for KM1
< K ≤ KM2

,
are retained. Since the number of l1 partial waves for a given K value increases
very rapidly, this truncation scheme reduces the number of CDE drastically. Table
6 shows the reduction factors of memory and CPU time requirements for various
representative values of KM2

. Large KM values are essential for diffused and ex-
tended systems like H−, Ps− etc. We conclude that the proposed truncation scheme
is very beneficial for such diffused systems.

TABLE 6.
Benefits of the proposed truncation scheme for representative values of KM2

(KM1
= 20).

KM2
Number of CDE Reduction factor in

No truncation Truncated space Memory CPU time
36 100 40 6.25 15.625
40 121 41 8.71 25.704
48 169 43 15.45 60.709
60 256 46 30.97 172.364
100 676 56 145.72 1759.041
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OGRANIČENA BAZA RAZVOJA HIPERSFERIČNIH HARMONIKA ZA
DVOELEKTRONSKE ATOME

Uobičajena metoda razvoja po hipersferičnim harmonicima ima mnoge prednosti,
medutim, konvergencija je vrlo spora za proširene atomske sustave koji medudjeluju
dugodosežnim Coulombovim silama. Predlaže se učinkovito ograničenje razvoja u
kojem se zadržavaju samo parcijalni valovi l1 = 0 za K > KM1

.
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